
Optional Prereading
We’ve included:

-‐ Chapter 2 from TBB book
-‐ Chapter 1 from SPP book
-‐ Glossary from SPP book

Chapter 2 from James’ 2007 book on TBB has been often recommended as a good
introduction to parallelism. We recommend you read it prior to August 4.

You may also want to read more about “why shift to multicore?” and more on
programming models. We’ve included Chapter 1 from the 2012 SPP book for you to
enjoy.

Finally, terminology can be challenging – so we’ve included the Glossary from the
SPP book for your enjoyment.

-‐-‐-‐-‐-‐-‐-‐-‐-‐

Jackson Marusarz. Technical Consulting Engineer. Jackson is a consulting
engineer with Intel's Developer Products Division. He is currently working on
developer tools in the Technical Computing, Analyzers, and Runtimes group. His
areas of expertise include parallel programming and performance analysis and
tuning for both serial and multi-‐threaded applications. He is the main contributor to
the Intel® VTune™ Amplifier XE tuning guides and is currently working on
developing tuning methodologies with a focus on microarchitectural bottleneck
analysis. Jackson regularly presents online Webinars and works closely with
developers locally and remotely through trainings and performance analysis
engagements.

James Reinders. Parallel Programming Evangelist. James is involved in
multiple engineering, research and educational efforts to increase use of parallel
programming throughout the industry. He joined Intel Corporation in 1989, and has
contributed to numerous projects including the world's first TeraFLOP/s
supercomputer (ASCI Red) and the world's first TeraFLOP/s microprocessor
(Intel® Xeon Phi™ coprocessor). James been an author on numerous technical
books, including VTune™ Performance Analyzer Essentials (Intel Press, 2005),
Intel® Threading Building Blocks (O'Reilly Media, 2007), Structured Parallel
Programming (Morgan Kaufmann, 2012), Intel® Xeon Phi™ Coprocessor High
Performance Programming (Morgan Kaufmann, 2013), and Multithreading for
Visual Effects (A K Peters/CRC Press, 2014). James is working on a project to
publish a book of programming examples featuring Intel Xeon Phi programming
scheduled to be published in late 2014.

CHAPTER

Introduction 1
All computers are now parallel. Specifically, all modern computers support parallelism in hardware
through at least one parallel feature, including vector instructions, multithreaded cores, multicore
processors, multiple processors, graphics engines, and parallel co-processors. This statement does
not apply only to supercomputers. Even the smallest modern computers, such as phones, support many
of these features. It is also necessary to use explicit parallel programming to get the most out of such
computers. Automatic approaches that attempt to parallelize serial code simply cannot deal with the
fundamental shifts in algorithm structure required for effective parallelization.

Since parallel programming is no longer a special topic applicable to only select computers, this
book is written with a simple premise: Parallel programming is programming. The evolution of com-
puters has made parallel programming mainstream. Recent advances in the implementation of efficient
parallel programs need to be applied to mainstream applications.

We explain how to design and implement efficient, reliable, and maintainable programs, in C and
C++, that scale performance for all computers. We build on skills you already have, but without
assuming prior knowledge of parallelism. Computer architecture issues are introduced where their
impact must be understood in order to design an efficient program. However, we remain consistently
focused on programming and the programmer’s perspective, not on the hardware. This book is for
programmers, not computer architects.

We approach the problem of practical parallel programming through a combination of patterns and
examples. Patterns are, for our purposes in this book, valuable algorithmic structures that are com-
monly seen in efficient parallel programs. The kinds of patterns we are interested in are also called
“algorithm skeletons” since they are often used as fundamental organizational principles for algo-
rithms. The patterns we will discuss are expressions of the “best known solutions” used in effective
and efficient parallel applications. We will discuss patterns both “from the outside,” as abstractions,
and “from the inside,” when we discuss efficient implementation strategies. Patterns also provide a
vocabulary to design new efficient parallel algorithms and to communicate these designs to others. We
also include many examples, since examples show how these patterns are used in practice. For each
example, we provide working code that solves a specific, practical problem.

Higher level programming models are used for examples rather than raw threading interfaces and
vector intrinsics. The task of programming (formerly known as “parallel programming”) is presented
in a manner that focuses on capturing algorithmic intent. In particular, we show examples that are
appropriately freed of unnecessary distortions to map algorithms to particular hardware. By focusing

Structured Parallel Programming. DOI: 10.1016/B978-0-12-415993-8.00001-3
c© 2012 Elsevier Inc. All rights reserved.

1

2 CHAPTER 1 Introduction

on the most important factors for performance and expressing those using models with low-overhead
implementations, this book’s approach to programming can achieve efficiency and scalability on a
range of hardware.

The goal of a programmer in a modern computing environment is not just to take advantage of
processors with two or four cores. Instead, it must be to write scalable applications that can take
advantage of any amount of parallel hardware: all four cores on a quad-core processor, all eight cores
on octo-core processors, thirty-two cores in a multiprocessor machine, more than fifty cores on new
many-core processors, and beyond. As we will see, the quest for scaling requires attention to many
factors, including the minimization of data movement, serial bottlenecks (including locking), and other
forms of overhead. Patterns can help with this, but ultimately it is up to the diligence and intelligence
of the software developer to produce a good algorithm design.

The rest of this chapter first discusses why it is necessary to “Think Parallel” and presents recent
hardware trends that have led to the need for explicit parallel programming. The chapter then discusses
the structured, pattern-based approach to programming used throughout the book. An introduction to
the programming models used for examples and some discussion of the conventions and organization
of this book conclude the chapter.

1.1 THINK PARALLEL
Parallelism is an intuitive and common human experience. Everyone reading this book would expect
parallel checkout lanes in a grocery store when the number of customers wishing to buy groceries
is sufficiently large. Few of us would attempt construction of a major building alone. Programmers
naturally accept the concept of parallel work via a group of workers, often with specializations.

Serialization is the act of putting some set of operations into a specific order. Decades ago,
computer architects started designing computers using serial machine languages to simplify the pro-
gramming interface. Serial semantics were used even though the hardware was naturally parallel,
leading to something we will call the serial illusion: a mental model of the computer as a machine that
executes operations sequentially. This illusion has been successfully maintained over decades by com-
puter architects, even though processors have become more and more parallel internally. The problem
with the serial illusion, though, is that programmers came to depend on it too much.

Current programming practice, theory, languages, tools, data structures, and even most algorithms
focus almost exclusively on serial programs and assume that operations are serialized. Serialization
has been woven into the very fabric of the tools, models, and even concepts all programmers use.
However, frequently serialization is actually unnecessary, and in fact is a poor match to intrinsically
parallel computer hardware. Serialization is a learned skill that has been over-learned.

Up until the recent past, serialization was not a substantial problem. Mainstream computer archi-
tectures even in 2002 did not significantly penalize programmers for overconstraining algorithms with
serialization. But now—they do. Unparallelized applications leave significant performance on the table
for current processors. Furthermore, such serial applications will not improve in performance over
time. Efficiently parallelized applications, in contrast, will make good use of current processors and
should be able to scale automatically to even better performance on future processors. Over time, this
will lead to large and decisive differences in performance.

1.1 Think Parallel 3

Serialization has its benefits. It is simple to reason about. You can read a piece of serial code
from top to bottom and understand the temporal order of operations from the structure of the source
code. It helps that modern programming languages have evolved to use structured control flow to
emphasize this aspect of serial semantics. Unless you intentionally inject randomness, serial programs
also always do the same operations in the same order, so they are naturally deterministic. This means
they give the same answer every time you run them with the same inputs. Determinism is useful for
debugging, verification, and testing. However, deterministic behavior is not a natural characteristic of
parallel programs. Generally speaking, the timing of task execution in parallel programs, in particular
the relative timing, is often non-deterministic. To the extent that timing affects the computation, parallel
programs can easily become non-deterministic.

Given that parallelism is necessary for performance, it would be useful to find an effective approach
to parallel programming that retains as many of the benefits of serialization as possible, yet is also
similar to existing practice.

In this book, we propose the use of structured patterns of parallelism. These are akin to the patterns
of structured control flow used in serial programming. Just as structured control flow replaced the use of
goto in most programs, these patterns have the potential to replace low-level and architecture-specific
parallel mechanisms such as threads and vector intrinsics. An introduction to the pattern concept and
a summary of the parallel patterns presented in this book are provided in Section 1.4. Patterns provide
structure but have an additional benefit: Many of these patterns avoid non-determinism, with a few
easily visible exceptions where it is unavoidable or necessary for performance. We carefully discuss
when and where non-determinism can occur and how to avoid it when necessary.

Even though we want to eliminate unnecessary serialization leading to poor performance, current
programming tools still have many serial traps built into them. Serial traps are constructs that make,
often unnecessary, serial assumptions. Serial traps can also exist in the design of algorithms and in the
abstractions used to estimate complexity and performance. As we proceed through this book, starting
in Section 1.3.3, we will describe several of these serial traps and how to avoid them. However, serial
semantics are still useful and should not be discarded in a rush to eliminate serial traps. As you will see,
several of the programming models to be discussed are designed around generalizations of the seman-
tics of serial programming models in useful directions. In particular, parallel programming models
often try to provide equivalent behavior to a particular serial ordering in their parallel constructs, and
many of the patterns we will discuss have serial equivalents. Using these models and patterns makes
it easier to reason about and debug parallel programs, since then at least some of the nice properties of
serial semantics can be retained.

Still, effective programming of modern computers demands that we regain the ability to “Think
Parallel.” Efficient programming will not come when parallelism is an afterthought. Fortunately, we
can get most of “Think Parallel” by doing two things: (1) learning to recognize serial traps, some of
which we examine throughout the remainder of this section, and (2) programming in terms of parallel
patterns that capture best practices and using efficient implementations of these patterns.

Perhaps the most difficult part of learning to program in parallel is recognizing and avoiding serial
traps—assumptions of serial ordering. These assumptions are so commonplace that often their exis-
tence goes unnoticed. Common programming idioms unnecessarily overconstrain execution order,
making parallel execution difficult. Because serialization had little effect in a serial world, serial
assumptions went unexamined for decades and many were even designed into our programming
languages and tools.

4 CHAPTER 1 Introduction

We can motivate the map pattern (see Chapter 4) and illustrate the shift in thinking from serialized
coding styles to parallel by a simple but real example.

For example, searching content on the World Wide Web for a specific phrase could be looked at
as a serial problem or a parallel problem. A simplisitic approach would be to code such a search as
follows:

for (i = 0; i < number_web_sites; ++i) {
search(searchphrase, website[i]);

}

This uses a loop construct, which is used in serial programming as an idiom to “do something with a
number of objects.” However, what it actually means is “do something with a number of objects one
after the other.”

Searching the web as a parallel problem requires thinking more like

parallel_for (i = 0; i < number_web_sites; ++i) {
search(searchphrase, website[i]);

}

Here the intent is the same—“do something with a number of objects”—but the constraint that these
operations are done one after the other has been removed. Instead, they may be done simultaneously.

However, the serial semantics of the original for loop allows one search to leave information for
the next search to use if the programmer so chooses. Such temptation and opportunity are absent in
the parallel_for which requires each invocation of the search algorithm to be independent of other
searches. That fundamental shift in thinking, to using parallel patterns when appropriate, is critical
to harness the power of modern computers. Here, the parallel_for implements the map pattern
(described in Chapter 4). In fact, different uses of iteration (looping) with different kinds of dependen-
cies between iterations correspond to different parallel patterns. To parallelize serial programs written
using iteration constructs you need to recognize these idioms and convert them to the appropriate
parallel structure. Even better would be to design programs using the parallel structures in the first
place.

In summary, if you do not already approach every computer problem with parallelism in your
thoughts, we hope this book will be the start of a new way of thinking. Consider ways in which you
may be unnecessarily serializing computations. Start thinking about how to organize work to expose
parallelism and eliminate unnecessary ordering constraints, and begin to “Think Parallel.”

1.2 PERFORMANCE
Perhaps the most insidious serial trap is our affection for discussing algorithm performance with all
attention focused on the minimization of the total amount of computational work. There are two prob-
lems with this. First of all, computation may not be the bottleneck. Frequently, access to memory or
(equivalently) communication may constrain performance. Second, the potential for scaling perfor-
mance on a parallel computer is constrained by the algorithm’s span. The span is the time it takes to

1.2 Performance 5

perform the longest chain of tasks that must be performed sequentially. Such a chain is known as a
critical path, and, because it is inherently sequential, it cannot be sped up with parallelism, no matter
how many parallel processors you have. The span is a crucial concept which will be used throughout
the book. Frequently, getting improved performance requires finding an alternative way to solve a
problem that shortens the span.

This book focuses on the shared memory machine model, in which all parts of application have
access to the same shared memory address space. This machine model makes communication implicit:
It happens automatically when one worker writes a value and another one reads it. Shared memory
is convenient but can hide communication and can also lead to unintended communication. Unfortu-
nately, communication is not free, nor is its cost uniform. The cost in time and energy of communication
varies depending upon the location of the worker. The cost is minimal for lanes of a vector unit (a few
instructions), relatively low for hardware threads on the same core, more for those sharing an on-chip
cache memory, and yet higher for those in different sockets.

Fortunately, there is a relatively simple abstraction, called locality, that captures most of these cost
differences. The locality model asserts that memory accesses close together in time and space (and
communication between processing units that are close to each other in space) are cheaper than those
that are far apart. This is not completely true—there are exceptions, and cost is non-linear with respect
to locality—but it is better than assuming that all memory accesses are uniform in cost. Several of
the data access patterns in this book are used to improve locality. We also describe several pitfalls in
memory usage that can hurt performance, especially in a parallel context.

The concept of span was previously mentioned. The span is the critical path or, equivalently, the
longest chain of operations. To achieve scaling, minimizing an algorithm’s span becomes critical.
Unsurprisingly, parallel programming is simplest when the tasks to be done are completely indepen-
dent. In such cases, the span is just the longest task and communication is usually negligible (not zero,
because we still have to check that all tasks are done). Parallel programming is much more challeng-
ing when tasks are not independent, because that requires communication between tasks, and the span
becomes less obvious.

Span determines a limit on how fast a parallel algorithm can run even given an infinite number of
cores and infinitely fast communication. As a simple example, if you make pizza from scratch, having
several cooks can speed up the process. Instead of preparing dough, sauce, and topping one at a time
(serially), multiple cooks can help by mixing the dough and preparing the toppings in parallel. But the
crust for any given pizza takes a certain amount of time to bake. That time contributes to the span of
making a single pizza. An infinite number of cooks cannot reduce the cooking time, even if they can
prepare the pizza faster and faster before baking. If you have heard of Amdahl’s Law giving an upper
bound on scalability, this may sound familiar. However, the concept of span is more precise, and gives
tighter bounds on achievable scaling. We will actually show that Amdahl was both an optimist and
a pessimist. Amdahl’s Law is a relatively loose upper bound on scaling. The use of the work-span
model provides a tighter bound and so is more realistic, showing that Amdahl was an optimist. On the
other hand, the scaling situation is usually much less pessimistic if the size of the problem is allowed
to grow with the number of cores.

When designing a parallel algorithm, it is actually important to pay attention to three things:

• The total amount of computational work.
• The span (the critical path).
• The total amount of communication (including that implicit in sharing memory).

1.3 Motivation: Pervasive Parallelism 7

In most of this book, the illustrations usually show tasks as having equal size. We do not mean to
imply this is true; we do it only for ease of illustration. Considering again the example in Figure 1.1c,
even if the tasks are completely independent, suppose task A takes longer to run than the others. Then
the illustration might look like Figure 1.2b. Task A alone now determines the span.

We have not yet considered limitations due to communication. Suppose the tasks in a parallel pro-
gram all compute a partial result and they need to be combined to produce a final result. Suppose that
this combination is simple, such as a summation. In general, even such a simple form of communi-
cation, which is called a reduction, will have a span that is logarithmic in the number of workers
involved.

Effectively addressing the challenges of decomposing computation and managing communications
are essential to efficient parallel programming. Everything that is unique to parallel programming will
be related to one of these two concepts. Effective parallel programming requires effective management
of the distribution of work and control of the communication required. Patterns make it easier to reason
about both of these. Efficient programming models that support these patterns, that allow their efficient
implementation, are also essential.

For example, one such implementation issue is load balancing, the problem of ensuring that all pro-
cessors are doing their fair share of the work. A load imbalance can result in many processors idling
while others are working, which is obviously an inefficient use of resources. The primary program-
ming models used in this book, Cilk Plus and TBB, both include efficient work-stealing schedulers to
efficiently and automatically balance the load. Basically, when workers run out of things to do, they
actively find new work, without relying on a central manager. This decentralized approach is much
more scalable than the use of a centralized work-list. These programming models also provide mech-
anisms to subdivide work to an appropriate granularity on demand, so that tasks can be decomposed
when more workers are available.

1.3 MOTIVATION: PERVASIVE PARALLELISM
Parallel computers have been around for a long time, but several recent trends have led to increased
parallelism at the level of individual, mainstream personal computers. This section discusses these
trends. This section also discusses why taking advantage of parallel hardware now generally requires
explicit parallel programming.

1.3.1 Hardware Trends Encouraging Parallelism
In 1965, Gordon Moore observed that the number of transistors that could be integrated on silicon
chips were doubling about every 2 years, an observation that has become known as Moore’s Law.
Consider Figure 1.3, which shows a plot of transistor counts for Intel microprocessors. Two rough data
points at the extremes of this chart are on the order of 1000 (103) transistors in 1971 and about 1000
million (109) transistors in 2011. This gives an average slope of 6 orders of magnitude over 40 years,
a rate of 0.15 orders of magnitude every year. This is actually about 1.41× per year, or 1.995× every
2 years. The data shows that Moore’s original prediction of 2× per year has been amazingly accurate.
While we only give data for Intel processors, processors from other vendors have shown similar trends.

10 CHAPTER 1 Introduction

can be decomposed. Ten stages is about the maximum useful limit, although there have been processors
with 31 stages [DF90]. It is even possible for a processor to issue instructions speculatively, in order
to increase parallelism. However, since speculation results in wasted computation it can be expensive
from a power point of view. Modern processors do online program analysis, such as maintaining branch
history tables to try to increase the performance of speculative techniques such as branch prediction
and prefetching, which can be very effective, but they themselves take space and power, and programs
are by nature not completely predictable. In the end, ILP can only deliver constant factors of speedup
and cannot deliver continuously scaling performance over time.

Programming has long been done primarily as if computers were serial machines. Meanwhile,
computer architects (and compiler writers) worked diligently to find ways to automatically extract
parallelism, via ILP, from their code. For 40 years, it was possible to maintain this illusion of a serial
programming model and write reasonably efficient programs while largely ignoring the true parallel
nature of hardware. However, the point of decreasing returns has been passed with ILP techniques, and
most computer architects believe that these techniques have reached their limit. The ILP wall reflects
the fact that the automatically extractable low-level parallelism has already been used up.

The memory wall results because off-chip memory rates have not grown as fast as on-chip compu-
tation rates. This is due to several factors, including power and the number of pins that can be easily
incorporated into an integrated package. Despite recent advances, such as double-data-rate (DDR)
signaling, off-chip communication is still relatively slow and power-hungry. Many of the transistors
used in today’s processors are for cache, a form of on-chip memory that can help with this problem.
However, the performance of many applications is fundamentally bounded by memory performance,
not compute performance. Many programmers have been able to ignore this due to the effectiveness
of large caches for serial processors. However, for parallel processors, interprocessor communication
is also bounded by the memory wall, and this can severely limit scalability. Actually, there are two
problems with memory (and communication): latency and bandwidth. Bandwidth (overall data rate)
can still be scaled in several ways, such as optical interconnections, but latency (the time between
when a request is submitted and when it is satisfied) is subject to fundamental limits, such as the
speed of light. Fortunately, as discussed later in Section 2.5.9, latency can be hidden—given sufficient
additional parallelism, above and beyond that required to satisfy multiple computational units. So the
memory wall has two effects: Algorithms need to be structured to avoid memory access and commu-
nication as much as possible, and fundamental limits on latency create even more requirements for
parallelism.

In summary, in order to achieve increasing performance over time for each new processor generation,
you cannot depend on rising clock rates, due to the power wall. You also cannot depend on automatic
mechanisms to find (more) parallelism in naı̈ve serial code, due to the ILP wall. To achieve higher
performance, you now have to write explicitly parallel programs. And finally, when you write these
parallel programs, the memory wall means that you also have to seriously consider communication and
memory access costs and may even have to use additional parallelism to hide latency.

Instead of using the growing number of transistors predicted by Moore’s Law for ways to maintain
the ‘‘serial processor illusion,” architects of modern processor designs now provide multiple mecha-
nisms for explicit parallelism. However, you must use them, and use them well, in order to achieve
performance that will continue to scale over time.

The resulting trend in hardware is clear: More and more parallelism at a hardware level will
become available for any application that is written to utilize it. However, unlike rising clock rates,

1.3 Motivation: Pervasive Parallelism 11

non-parallelized application performance will not change without active changes in programming.
The “free lunch” [Sut05] of automatically faster serial applications through faster microprocessors
has ended. The new “free lunch” requires scalable parallel programming. The good news is that if you
design a program for scalable parallelism, it will continue to scale as processors with more parallelism
become available.

1.3.2 Observed Historical Trends in Parallelism
Parallelism in hardware has been present since the earliest computers and reached a great deal of
sophistication in mainframe and vector supercomputers by the late 1980s. However, for mainstream
computation, miniaturization using integrated circuits started with designs that were largely devoid of
hardware parallelism in the 1970s. Microprocessors emerged first using simple single-threaded designs
that fit into an initially very limited transistor budget. In 1971, the Intel 4004 4-bit microprocessor
was introduced, designed to be used in an electronic calculator. It used only 2,300 transistors in its
design. The most recent Intel processors have enough transistors for well over a million Intel 4004
microprocessors. The Intel Xeon E7-8870 processor uses 2.6× 109 transistors, and the upcoming Intel
MIC architecture co-processor, known as Knights Corner, is expected to roughly double that. While a
processor with a few million cores is unlikely in the near future, this gives you an idea of the potential.

Hardware is naturally parallel, since each transistor can switch independently. As transistor counts
have been growing in accordance with Moore’s Law, as shown in Figure 1.3, hardware parallelism,
both implicit and explicit, gradually also appeared in microprocessors in many forms. Growth in
word sizes, superscalar capabilities, vector (SIMD) instructions, out-of-order execution, multithread-
ing (both on individual cores and on multiple cores), deep pipelines, parallel integer and floating point
arithmetic units, virtual memory controllers, memory prefetching, page table walking, caches, memory
access controllers, and graphics processing units are all examples of using additional transistors for
parallel capabilities.

Some variability in the number of transistors used for a processor can be seen in Figure 1.3, espe-
cially in recent years. Before multicore processors, different cache sizes were by far the driving factor
in this variability. Today, cache size, number of cores, and optional core features (such as vector units)
allow processors with a range of capabilities to be produced. This is an additional factor that we must
take into account when writing a program: Even at a single point in time, a program may need to run on
processors with different numbers of cores, different vector instruction sets and vector widths, different
cache sizes, and possibly different instruction latencies.

The extent to which software needed to change for each kind of additional hardware mechanism
using parallelism has varied a great deal. Automatic mechanisms requiring the least software change,
such as instruction-level parallelism (ILP), were generally introduced first. This worked well until
several issues converged to force a shift to explicit rather than implicit mechanisms in the multicore era.
The most significant of these issues was power. Figure 1.5 shows a graph of total power consumption
over time. After decades of steady increase in power consumption, the so-called power wall was hit
about 2004. Above around 130W, air cooling is no longer practical. Arresting power growth required
that clock rates stop climbing. From this chart we can see that modern processors now span a large
range of power consumption, with the availability of lower power parts driven by the growth of mobile
and embedded computing.

1.3 Motivation: Pervasive Parallelism 13

growth in clock rate. The power problem was arrested by adding more cores and more threads in each
core rather than increasing the clock rate. This ushered in the multicore era, but using multiple hard-
ware threads requires more software changes than prior changes. During this time vector instructions
were added as well, and these provide an additional, multiplicative form of explicit parallelism. Vector
parallelism can be seen as an extension of data width parallelism, since both are related to the width
of hardware registers and the amount of data that can be processed with a single instruction. A measure
of the growth of data width parallelism is shown in Figure 1.7. While data width parallelism growth
predates the halt in the growth of clock rates, the forces driving multicore parallelism growth are also
adding motivation to increase data width. While some automatic parallelization (including vector-
ization) is possible, it has not been universally successful. Explicit parallel programming is generally
needed to fully exploit these two forms of hardware parallelism capabilities.

Additional hardware parallelism will continue to be motivated by Moore’s Law coupled with power
constraints. This will lead to processor designs that are increasingly complex and diverse. Proper
abstraction of parallel programming methods is necessary to be able to deal with this diversity and
to deal with the fact that Moore’s Law continues unabated, so the maximum number of cores (and the
diversity of processors) will continue to increase.

Counts of the number of hardware threads, vector widths, and clock rates are only indirect measures
of performance. To get a more accurate picture of how performance has increased over time, looking at

1

2

4

8

16

32

64

128

256

512

1972 1976 1980 1984 1988 1992 1996 2000 2004 2008 2012

Width

FIGURE 1.7

Growth in data processing widths (log scale), measured as the number of bits in registers over time. At first the
width of scalar elements grew, but now the number of elements in a register is growing with the addition of
vector (SIMD) instructions that can specify the processing of multiple scalar elements at once.

14 CHAPTER 1 Introduction

benchmarks can be helpful. Unfortunately, long-term trend analysis using benchmarks is difficult due
to changes in the benchmarks themselves over time.

We chose the industry standard CPU2006 SPEC benchmarks. Unfortunately, these are exclusively
from the multicore era as they only provide data from 2006 [Sub06]. In preparing the graphs in this
section of our book, we also choose to show only data related to Intel processors. Considering only one
vendor avoids a certain blurring effect that occurs when data from multiple vendors is included. Similar
trends are observable for processors from other vendors, but the trends are clearer when looking at data
from a single vendor.

Some discussion of the nature of the CPU2006 benchmarks is important so the results can be prop-
erly understood. First, these benchmarks are not explicitly parallelized, although autoparallelization
is allowed. Autoparallelization must be reported, however, and may include the use of already-
parallelized libraries. It is however not permitted to change the source code of these benchmarks,
which prohibits the use of new parallel programming models. In fact, even standardized OpenMP
directives, which would allow explicit parallelization, must be explicitly disabled by the SPEC run
rules. There are SPEC benchmarks that primarily stress floating point performance and other bench-
marks that primarily stress integer and control flow performance. The FP and INT designations indicate
the floating-point and integer subsets. INT benchmarks usually also include more complex control flow.
The “rate” designations indicate the use of multiple copies of the benchmarks on computers with mul-
tiple hardware threads in order to measure throughput. These “rate” (or throughput) results give some
idea of the potential for speedup from parallelism, but because the benchmark instances are completely
independent these measurements are optimistic.

Figures 1.8, 1.9, and 1.10 show SPEC2006 benchmark results that demonstrate what has happened
to processor performance during the multicore era (since 2006). Figure 1.8 shows that performance
per Watt has improved considerably for entire processors as the core count has grown. Further-
more, on multiprocessor computers with larger numbers of cores, Figure 1.9 shows that throughput
(the total performance of multiple independent applications) has continued to scale to considerably
higher performance. However, Figure 1.10 shows that the performance of individual benchmarks has
remained nearly flat, even though autoparallelization is allowed by the SPEC process. The inescapable
conclusion is that, while overall system performance is increasing, increased performance of single
applications requires explicit parallelism in software.

1.3.3 Need for Explicit Parallel Programming
Why can’t parallelization be done automatically? Sometimes it can be, but there are many difficul-
ties with automatically parallelizing code that was originally written under the assumption of serial
execution, and in languages designed under that assumption.

We will call unnecessary assumptions deriving from the assumption of serial execution serial traps.
The long-sustained serial illusion has caused numerous serial traps to become built into both our tools
and ways of thinking. Many of these force serialization due to over-specification of the computation.
It’s not that programmers wanted to force serialization; it was simply assumed. Since it was convenient
and there was no penalty at the time, serial assumptions have been incorporated into nearly everything.
We will give several examples in this section. We call these assumptions “traps” because they cause
modern systems to be unable to use parallelism even though the algorithm writer did not explicitly
intend to forbid it.

1.3 Motivation: Pervasive Parallelism 17

1 void
2 addme(int n, double a[n], double b[n], double c[n]) {
3 int i;
4 for (i = 0; i < n; ++i)
5 a[i] = b[i] + c[i];
6 }

LISTING 1.1

Add two vectors in C, with implied serial ordering.

1 double a[10];
2 a[0] = 1;
3 addme(9, a+1, a, a); // pointer arithmetic causing aliasing

LISTING 1.2

Overlapping (aliased) arguments in C. By calling the serial addme with overlapping arguments, this code fills a
with powers of two. Such devious but legal usage is probably unintended by the author of addme, but the
compiler does not know that.

1 void
2 addme(int n, double a[n], double b[n], double c[n]) {
3 a[:] = b[:] + c[:];
4 }

LISTING 1.3

Add two vectors using Cilk Plus array notation.

constraint, even if the programmer never intended to exploit it. Parallelization requires reordering, but
usually you want all the different possible orders to produce the same result.

A syntax that treats arrays as a whole, as shown in Listing 1.3, makes the parallelism accessible to
the compiler by being explicit. This Cilk Plus array notation used here actually allows for simpler code
than the loop shown in Listing 1.1, as well. However, use of this syntax also requires that the arrays
not be partially overlapping (see Section B.8.5), unlike the code in Listing 1.1. This additional piece of
information allows the compiler to parallelize the code.

Loops can specify different kinds of computations that must be parallelized in different ways.
Consider Listing 1.4. This is a common way to sum the elements of an array in C.

Each loop iteration depends on the prior iteration, and thus the iterations cannot be done in parallel.
However, if reordering floating-point addition is acceptable here, this loop can be both parallelized
and vectorized, as explained in Section 5.1. But the compiler alone cannot tell whether the serial
dependency was deliberate or just convenient. Listing 1.5 shows a way to convey parallel intent, both
to the compiler and a human maintainer. It specifies a parallel loop and declares mysum in a way that

18 CHAPTER 1 Introduction

1 double summe(int n, double a[n]) {
2 double mysum = 0;
3 int i;
4 for (i = 0; i < n; ++i)
5 mysum += a[i];
6 return mysum;
7 }

LISTING 1.4

An ordered sum creates a dependency in C.

1 double summe(int n, double a[n]) {
2 sum_reducer<double> mysum (0);
3 cilk_for (int i = 0; i < n; ++i)
4 mysum += a[i];
5 return mysum.get_value();
6 }

LISTING 1.5

A parallel sum, expressed as a reduction operation in Cilk Plus.

1 void callme() {
2 foo();
3 bar();
4 }

LISTING 1.6

Function calls with step-by-step ordering specified in C.

says that ordering the individual operations making up the sum is okay. This additional freedom allows
the system to choose an order that gives the best performance.

As a final example, consider Listing 1.6, which executes foo and bar in exactly that order. Suppose
that foo and bar are separately compiled library functions, and the compiler does not have access to
their source code. Since foo might modify some global variable that bar might depend on, and the
compiler cannot prove this is not the case, the compiler has to execute them in the order specified in
the source code.

However, suppose you modify the code to explicitly state that foo and bar can be executed in
parallel, as shown in Listing 1.7. Now the programmer has given the compiler permission to execute
these functions in parallel. It does not mean the system will execute them in parallel, but it now has the
option, if it would improve performance.

1.4 Structured Pattern-Based Programming 19

1 void callme() {
2 cilk_spawn foo();
3 bar();
4 }

LISTING 1.7

Function calls with no required ordering in Cilk Plus.

Later on we will discuss the difference between mandatory parallelism and optional paral-
lelism. Mandatory parallelism forces the system to execute operations in parallel but may lead to poor
performance—for example, in the case of a recursive program generating an exponential number of
threads. Mandatory parallelism also does not allow for hierarchical composition of parallel software
components, which has a similar problem as recursion. Instead, the Cilk Plus cilk_spawn notation
simply identifies tasks that are opportunities for parallelism. It is up to the system to decide when,
where, and whether to use that parallelism. Conversely, when you use this notation you should not
assume that the two tasks are necessarily active simultaneously. Writing portable parallel code means
writing code that can deal with any order of execution—including serial ordering.

Explicit parallel programming constructs allow algorithms to be expressed without specifying unin-
tended and unnecessary serial constraints. Avoiding specifying ordering and other constraints when
they are not required is fundamental. Explicit parallel constructs also provide additional information,
such as declarations of independence of data and operations, so that the system implementing the pro-
gramming model knows that it can safely execute the specified operations in parallel. However, the
programmer now has to ensure that these additional constraints are met.

1.4 STRUCTURED PATTERN-BASED PROGRAMMING
History does not repeat itself, but it rhymes.

(attributed to Mark Twain)

In this book, we are taking a structured approach to parallel programming, based on patterns.
Patterns can be loosely defined as commonly recurring strategies for dealing with particular

problems. Patterns have been used in architecture [Ale77], natural language learning [Kam05], object-
oriented programming [GHJV95], and software architecture [BMR+96, SSRB00]. Others have also
applied patterns specifically to parallel software design [MAB+02, MSM04, MMS05], as we do here.
One notable effort is the OUR pattern language, an ongoing project to collaboratively define a set of
parallel patterns [Par11].

We approach patterns as tools, and we emphasize patterns that have proven useful as tools. As
such, the patterns we present codify practices and distill experience in a way that is reusable. In this
book, we discuss several prerequisites for achieving parallel scalability, including good data locality
and avoidance of overhead. Fortunately, many good strategies have been developed for achieving these
objectives.

We will focus on algorithm strategy patterns, as opposed to the more general design patterns
or system-specific implementation patterns. Design patterns emphasize high-level design processes.

20 CHAPTER 1 Introduction

These are important but rather abstract. Conversely, implementation patterns address low-level details
that are often specific to a particular machine architecture, although occasionally we will discuss
important low-level issues if they seriously impact performance. Algorithm strategy patterns lie
in between these two extremes. They affect how your algorithms are organized, and so are also known
as algorithmic skeletons [Col89, AD07].

Algorithm strategy patterns have two parts: semantics and implementation. The semantics describe
how the pattern is used as a building block of an algorithm, and consists of a certain arrangement of tasks
and data dependencies. The semantic view is an abstraction that intentionally hides some details, such
as whether the tasks making up the pattern will actually run in parallel in a particular implementation.
The semantic view of a pattern is used when an algorithm is designed. However, patterns also need to
be implemented well on real machines. We will discuss several issues related to the implementation
of patterns, including (for example) granularity control and good use of cache. The key point is that
different implementation choices may lead to different performances, but not to different semantics.
This separation makes it possible to reason about the high-level algorithm design and the low-level
(and often machine-specific) details separately. This separation is not perfect; sometimes you will want
to choose one pattern over another based on knowledge of differences in implementation. That’s all
right. Abstractions exist to simplify and structure programming, not to obscure important information.

Algorithm strategy patterns tend to map onto programming model features as well, and so are use-
ful in understanding programming models. However, algorithm strategy patterns transcend particular
languages or programming models. They do not have to map directly onto a programming language
feature to be usable. Just as it is possible to use structured control flow in FORTRAN 66 by follow-
ing conventions for disciplined use of goto, it is possible to employ the parallel patterns described in
this book even in systems that do not directly support them. The patterns we present, summarized in
Figure 1.11, will occur (or be usable) in almost any sufficiently powerful parallel programming model,
and if used well should lead to well-organized and efficient programs with good scaling properties.
Numerous examples in this book show these patterns in practice. Like the case with structured control
flow in serial programming, structured parallel patterns simplify code and make it more understandable,
leading to greater maintainability.

Three patterns deserve special mention: nesting, map, and fork–join. Nesting means that patterns
can be hierarchically composed. This is important for modular programming. Nesting is extensively
used in serial programming for composability and information hiding, but is a challenge to carry
over into parallel programming. The key to implementing nested parallelism is to specify optional,
not mandatory, parallelism. The map pattern divides a problem into a number of uniform parts and
represents a regular parallelization. This is also known as embarrassing parallelism. The map pattern
is worth using whenever possible since it allows for both efficient parallelization and efficient vec-
torization. The fork–join pattern recursively subdivides a problem into subparts and can be used for
both regular and irregular parallelization. It is useful for implementing a divide-and-conquer strategy.
These three patterns also emphasize that in order to achieve scalable parallelization we should focus on
data parallelism: the subdivision of the problem into subproblems, with the number of subproblems
able to grow with the overall problem size.

In summary, patterns provide a common vocabulary for discussing approaches to problem solving
and allow reuse of best practices. Patterns transcend languages, programming models, and even com-
puter architectures, and you can use patterns whether or not the programming system you are using
explicitly supports a given pattern with a specific feature.

22 CHAPTER 1 Introduction

Productivity: Expressive, composable, debuggable, and maintainable. Programming models should
be complete and it should be possible to directly and clearly express efficient implementations for a
suitable range of algorithms. Observability and predictability should make it possible to debug and
maintain programs.
Portability: Functionality and performance, across operating systems and compilers. Parallel
programming models should work on a range of targets, now and into the future.

In this book, we constrain all our examples to C and C++, and we offer the most examples in C++, since
that is the language in which many new mainstream performance-oriented applications are written. We
consider programming models that add parallelism support to the C and C++ languages and attempt to
address the challenges of performance, productivity, and portability.

We also limit ourselves to programming models available from Intel, although, as shown in
Figure 1.12, Intel actually supports a wide range of parallel programming approaches, including
libraries and standards such as OpenCL, OpenMP, and MPI. The two primary shared-memory parallel
programming models available from Intel are also the primary models used in this book:

Intel Threading Building Blocks (TBB): A widely used template library for C++ programmers to
address most C++ needs for parallelism. TBB supports an efficient task model. TBB is available as
a free, community-supported, open source version, as well as a functionally identical version with
commercial support available from Intel.
Intel Cilk Plus (Cilk Plus): Compiler extensions for C and C++ to support parallelism. Cilk Plus
has an efficient task model and also supports the explicit specification of vector parallelism through
a set of array notations and elemental functions. Cilk Plus has both open source and commercially
supported product options.

In the following, we will first discuss some desirable properties of parallel programming models,
then introduce the programming models used in this book.

Intel
Cilk Plus

C/C++ language
extensions to
simplify parallelism

Open sourced.
Also an Intel product.

Intel
Threading
Building Blocks
Widely used C++
template library for
parallelism

Open sourced.
Also an Intel product.

Domain-Specific
Libraries

Intel Integrated
Performance
Primitives (IPP)

Intel Math Kernel
Library (MKL)

Established
Standards

Message Passing
Interface (MPI)

OpenMP

Coarray Fortan

OpenCL

Research and
Development

Intel Concurrent
Collections (CnC)

Offload Extensions

River Trail:
Parallel Javascript

Intel Array Building
Blocks (ArBB)

Intel SPMD Program
Compiler (ISPC)

FIGURE 1.12

Parallel programming models supported by Intel. A choice of approaches is available, including pre-optimized
parallel libraries; standards such as MPI, Coarray Fortran, OpenMP, and OpenCL; dynamic data-parallel virtual
machines such as ArBB; domain-specific languages targeting SPMD vector parallelism such as ISPC;
coordination languages such as CnC; and the primary programming models used in this book: Cilk Plus and
TBB.

1.5 Parallel Programming Models 23

1.5.2 Abstractions Instead of Mechanisms
To achieve portable parallel programming you should avoid directly using hardware mechanisms.
Instead, you should use abstractions that map onto those mechanisms. In particular, you should avoid
vector intrinsics that map directly onto vector instructions and instead use array operations. You should
also avoid using threads directly and program in terms of a task abstraction. Tasks identify only oppor-
tunities for parallelism, not the actual parallel execution mechanism. Programming should focus on the
decomposition of the problem and the design of the algorithm rather than the specific mechanisms by
which it will be parallelized.

There are three big reasons to avoid programming directly to specific parallel hardware mecha-
nisms:

1. Portability is impaired severely when programming “close to the hardware.”
2. Nested parallelism is important and nearly impossible to manage well using the mandatory

parallelism implied by specific mechanisms such as threads.
3. Other mechanisms for parallelism, such as vectorization, exist and need to be considered. In fact,

some implementations of a parallel algorithm might use threads on one machine and vectors on
another, or some combination of different mechanisms.

Using abstractions for specifying vectorization rather than vector intrinsics avoids dependencies
on the peculiarities of a particular vector instruction set, such as the number of elements in a vector.
Even within Intel’s processor product line, there are now different vector instruction set extensions
with 4, 8, and 16 single-precision floating point elements per SIMD register. Fortunately there are
good abstractions available to deal with these differences. For example, in both Cilk Plus and ArBB it
is also possible to use either array operations or elemental functions to specify vector parallelism in
a machine-independent way. OpenCL primarily depends on elemental functions. In these three cases,
easily vectorized code is specified using portable abstractions.

The reasons for avoiding direct threading are more subtle, but basically a task model has less
overhead, supports better composability, and gives the system more freedom to allocate resources.
In particular, tasks support the specification of optional parallelism. Optional (as opposed to manda-
tory) parallelism supports nesting and efficient distributed load balancing, and can better manage
converting potential to actual parallelism as needed. Nested parallelism is important for develop-
ing parallel libraries that can be used inside other parallel programs without exposing the internals
of the implementation of those libraries. Such composability is fundamental to software engi-
neering. If you want to understand more about the reasons for this shift to programming using
tasks, an excellent detailed explanation of the perils of direct threading is “The Problem with
Threads” [Lee06].

Tasks were the basis of an MIT research project that resulted in Cilk, the basis of Cilk Plus. This
research led to the efficient work-stealing schedulers and tasking models that are now considered the
best available solutions to scalable and low-overhead load balancing. TBB likewise offers an extensive
set of algorithms for managing tasks using efficient, scalable mechanisms.

Cilk Plus and TBB each offer both parallel loops and parallel function invocation. The data paral-
lel focus of ArBB generates task parallelism by allowing programmers to specify many independent
operations to be run in parallel. However, ArBB does not explicitly manage tasks, leaving that to the
mechanisms supplied by Cilk Plus and TBB. This also means that ArBB is composable with these
models.

24 CHAPTER 1 Introduction

OpenCL is a standard based on a elemental function abstraction, and implementations vary. How-
ever, the most important pattern used by OpenCL the map pattern (the replicated execution of a single
function), and we will discuss how this can be implemented efficiently.

OpenMP has several features that make it difficult to implement a built-in load balancer. It is based
on loop parallelism, but unfortunately it directly exposes certain underlying aspects of its implementa-
tion. We will present some OpenMP examples in order to demonstrate that the patterns also apply to
the OpenMP standard, but we recommend that new software use one of Cilk Plus or TBB to benefit
from their superior composability and other advantages.

1.5.3 Expression of Regular Data Parallelism
Data parallelism is the key to achieving scalability. Merely dividing up the source code into tasks using
functional decomposition will not give more than a constant factor speedup. To continue to scale to
ever larger numbers of cores, it is crucial to generate more parallelism as the problem grows larger.
Data parallelism achieves this, and all programming models used for examples in this book support
data parallelism.

Data parallelism is a general term that actually applies to any form of parallelism in which the
amount of work grows with the size of the problem. Almost all of the patterns discussed in this book,
as well as the task models supported by TBB and Cilk Plus, can be used for data parallelism. However,
there is a subcategory of data parallelism, regular data parallelism, which can be mapped efficiently
onto vector instructions in the hardware, as well as to hardware threads. Use of vector instruction mech-
anisms can give a significant additional boost to performance. However, since vector instructions differ
from processor to processor, portability requires abstractions to express such forms of data parallelism.

Abstractions built into Cilk Plus, ArBB, and OpenCL make it natural to express regular data par-
allelism explicitly without having to rely on the compiler inferring it. By expressing regular data
parallelism explicitly, the ability of the programming model to exploit the inherent parallelism in an
algorithm is enhanced.

As previously discussed, reducing everything to a serially executed procedure is a learned skill.
However, such serial processing can in fact be quite unnatural for regular data-parallel problems. You
are probably so used to serial programming constructs such as loops that you may not notice anymore
how unnatural they can be, but the big problem for parallel programming systems is that a serial
ordering of operations is in fact unnecessary in many cases. By forcing ordering of operations in a serial
fashion, existing serial languages are actually removing opportunities for parallelism unnecessarily.

Consider again the simple loop shown in Listing 1.8 to add two vectors. The writer of the code
probably really just meant to say “add all of the corresponding elements in b and c and put the result in

1 for (i = 0; i < 10000; ++i) {
2 a[i] = b[i] + c[i];
3 }

LISTING 1.8

Serial vector addition coded as a loop in C.

1.5 Parallel Programming Models 25

1 a[0:10000] = b[0:10000] + c[0:10000];

LISTING 1.9

Parallel vector addition using Cilk Plus.

1 a = b + c;

LISTING 1.10

Parallel vector addition using ArBB.

the corresponding element of a.” But this code implies more: It implies that the additions are done in
a certain order as well. It might be possible for the compiler to infer that these operations can be done
in parallel and do so, but it is not clear from the literal semantics of the code given that this is what
is meant. Also, languages such as C and C++ make it possible to use pointers for these arrays, so in
theory the data storage for a, b, and c could overlap or be misaligned, making it hard for the compiler
to automatically use the underlying vector mechanisms effectively. For example, see Listing 1.2, which
shows that unfortunately, the order does matter if the memory for the arrays in the above code could
overlap.

Cilk Plus has the ability to specify data-parallel operations explicitly with new array notation exten-
sions for C and C++. The array notations make it clear to the compiler that regular data parallelism is
being specified and avoids, by specification, the above difficulties. Using array notation, we can rewrite
the above loop as shown in Listing 1.9.

ArBB is even simpler, as long as the data is already stored in ArBB containers: If a, b, and c are
all ArBB containers, the vector addition simplifies to the code shown in Listing 1.10. ArBB containers
have the additional advantage that the actual data may be stored in a remote location, such as the local
memory of a co-processor.

You can use these notations when you just want to operate on the elements of two arrays, and you
do not care in what order the individual operations are done. This is exactly what the parallel constructs
of Cilk Plus and ArBB add to C and C++. Explicit array operations such as this are not only shorter but
they also get rid of the unnecessary assumption of serial ordering of operations, allowing for a more
efficient implementation.

Cilk Plus, ArBB, and OpenCL also allow the specification of regular data parallelism through ele-
mental functions. Elemental functions can be called in regular data parallel contexts—for example,
by being applied to all the elements of an array at once. Elemental functions allow for vectorization
by replication of the computation specified across vector lanes. In Cilk Plus, the internals of these
functions are given using normal C/C++ syntax, but marked with a pragma and called from inside
a vectorized context, such as a vectorized loop or an array slice. In ArBB, elemental functions are
defined over ArBB types and called from a map operation—but the concept is the same. In OpenCL,
elemental functions are specified in a separate C-like language. These “kernels” are then bound to
data and invoked using an application programming interface (API). Elemental functions are con-
sistent with leaving the semantics of existing serial code largely intact while adding the ability to take

26 CHAPTER 1 Introduction

advantage of vector mechanisms in the hardware. Both array expressions and elemental functions can
also simultaneously map computations over hardware thread parallelism mechanisms.

Consider the code in Listing 1.11. Suppose the function my_simple_add is compiled separately,
or perhaps accessed by a function pointer or virtual function call. Perhaps this function is passed in by
a user to a library, and it is the library that is doing the parallel execution. Normally it would be hard
for this case to be vectorized. However, by declaring my_simple_add as an elemental function, then
it is possible to vectorize it in many of these cases. Using ArBB, it is even possible to vectorize this
code in the case of function pointers or virtual function calls, since ArBB can dynamically inline code.

Getting at the parallelism in existing applications has traditionally required non-trivial rewriting,
sometimes referred to as refactoring. Compiler technology can provide a better solution.

For example, with Cilk Plus, Listing 1.12 shows two small additions (the __declspec(vector)
and the pragma) to Listing 1.11 that result in a program that can use either SSE or AVX instructions
to yield significant speedups from vector parallelism. This will be the case even if my_simple_add
is compiled separately and made available as a binary library. The compiler will create vectorized
versions of elemental functions and call them whenever it detects an opportunity, which in this case is
provided by the pragma to specify vectorization of the given loop. In the example shown, the number
of calls to the function can be reduced by a factor of 8 for AVX or a factor of 4 for SSE. This can result
in significant performance increases.

Another change that may be needed in order to support vectorization is conversion of data layouts
from array-of-structures to structure-of-arrays (see Section 6.7). This transformation can be auto-

1 float my_simple_add(float x1, float x2) {
2 return x1 + x2;
3 }

4 ...
5 for (int j = 0; j < N; ++j) {
6 outputx[j] = my_simple_add(inputa[j], inputb[j]);
7 }

LISTING 1.11

Scalar function for addition in C.

1 __declspec(vector)
2 float my_simple_add(float x1, float x2) {
3 return x1 + x2;
4 }

5 ...
6 #pragma simd
7 for (int j = 0; j < N; ++j) {
8 outputx[j] = my_simple_add(inputa[j], inputb[j]);
9 }

LISTING 1.12

Vectorized function for addition in Cilk Plus.

1.5 Parallel Programming Models 27

mated by ArBB. So, while ArBB requires changes to the types used for scalar types, it can automate
larger scale code transformations once this low-level rewriting has been done.

These two mechanisms, array expressions and elemental functions, are actually alternative ways
to express one of the most basic parallel patterns: map. However, other regular data-parallel patterns,
such as the scan pattern and the reduce pattern (discussed in Chapter 5) are also important and can
also be expressed directly using the programming models discussed in this book. Some of these pat-
terns are harder for compilers to infer automatically and so are even more important to be explicitly
expressible.

1.5.4 Composability
Composability is the ability to use a feature without regard to other features being used elsewhere in
your program. Ideally, every feature in a programming language is composable with every other.

Imagine if this was not true and use of an if statement meant you could not use a for statement
anywhere else in an application. In such a case, linking in a library where any if statement was used
would mean for statements would be disallowed throughout the rest of the application. Sounds ridicu-
lous? Unfortunately, similar situations exist in some parallel programming models or combinations
of programming models. Alternatively, the composition may be allowed but might lead to such poor
performance that it is effectively useless.

There are two principal issues: incompatibility and inability to support hierarchical composition.
Incompatibility means that using two parallel programming models simultaneously may lead to failures
or possible failures. This can arise for many more-or-less subtle reasons, such as inconsistent use of
thread-local memory. Such incompatibility can lead to failure even if the parallel regions do not directly
invoke each other.

Even if two models are compatible, it may not be possible to use them in a nested or hierarchical
fashion. A common case of this is when a library function is called from a region parallelized by one
model, and the library itself is parallelized with a different model. Ideally a software developer should
not need to know that the library was parallelized, let alone with what programming model. Having
to know such details violates information hiding and separation of concerns, fundamental principles
of software engineering, and leads to many practical problems. For example, suppose the library was
originally serial but a new version of the library comes out that is parallelized. With models that are
not composable, upgrading to the new version of this library, even if the binary interface is the same,
might break the code with which it is combined.

A common failure mode in the case of nested parallelism is oversubscription, where each use of
parallelism creates a new set of threads. When parallel routines that do this are composed hierarchically
a very large number of threads can easily be created, causing inefficiencies and possibly exceeding the
number of threads that the system can handle. Such soft failures can be harder to deal with than hard
failures. The code might work when the system is quiet and not using a large number of threads, but
fail under heavy load or when other applications are running.

Cilk Plus and TBB, the two primary programming models discussed in this book, are fully com-
patible and composable. This means they can be combined with each other in a variety of situations
without causing failures or oversubscription. In particular, nested use of Cilk Plus with TBB is fine,
as is nested use of TBB with itself or Cilk Plus with itself. ArBB can also be used from inside TBB

28 CHAPTER 1 Introduction

or Cilk Plus since its implementation is based in turn on these models. In all these cases only a fixed
number of threads will be created and will be managed efficiently.

These three programming models are also, in practice, compatible with OpenMP, but generally
OpenMP routines should be used in a peer fashion, rather than in a nested fashion, in order to avoid
over-subscription, since OpenMP creates threads as part of its execution model.

Because composability is ultimately so important, it is reasonable to hope that non-composable
models will completely give way to composable models.

1.5.5 Portability of Functionality
Being able to run code on a wide variety of platforms, regardless of operating systems and processors,
is desirable. The most widely used programming languages such as C, C++, and Java are portable.

All the programming models used in this book are portable. In some cases, this is because a single
portable implementation is available; in other cases, it is because the programming model is a standard
with multiple implementations.

TBB has been ported to a wide variety of platforms, is implemented using standard C++, and is
available under an open source license. Cilk Plus is growing in adoption in compilers and is available
on the most popular platforms. The Cilk Plus extensions are available in both the Intel compiler and
are also being integrated into the GNU gcc compiler. Both TBB and Cilk Plus are available under
open source licenses. ArBB, like TBB, is a portable C++ library and has been tested with a variety of
C++ compilers. TBB and Cilk Plus are architecturally flexible and can work on a variety of modern
shared-memory systems.

OpenCL and OpenMP are standards rather than specific portable implementations. However,
OpenCL and OpenMP implementations are available for a variety of processors and compilers.
OpenCL provides the ability to write parallel programs for CPUs as well as GPUs and co-processors.

1.5.6 Performance Portability
Portability of performance is a serious concern. You want to know that the code you write today will
continue to perform well on new machines and on machines you may not have tested it on. Ideally, an
application that is tuned to run within 80% of the peak performance of a machine should not suddenly
run at 30% of the peak performance on another machine. However, performance portability is generally
only possible with more abstract programming models. Abstract models are removed enough from
the hardware design to allow programs to map to a wide variety of hardware without requiring code
changes, while delivering reasonable performance relative to the machine’s capability.

Of course, there are acceptable exceptions when hardware is considered exotic. However, in
general, the more flexible and abstract models can span a wider variety of hardware.

Cilk Plus, TBB, OpenMP, and ArBB are designed to offer strong performance portability. OpenCL
code tends to be fairly low level and as such is more closely tied to the hardware. Tuning OpenCL
code tends to strongly favor one hardware device over another. The code is (usually) still functionally
portable but may not perform well on devices for which it was not tuned.

1.5 Parallel Programming Models 29

1.5.7 Safety, Determinism, and Maintainability
Parallel computation introduces several complications to programming, and one of those complica-
tions is non-determinism. Determinism means that every time the program runs, the answer is the
same. In serial computation, the order of operations is fixed and the result is naturally deterministic.
However, parallel programs are not naturally deterministic. The order of operation of different threads
may be interleaved in an arbitrary order. If those threads are modifying shared data, it is possible that
different runs of a program may produce different results even with the same input. This is known,
logically enough, as non-determinism. In practice, the randomness in non-deterministic parallel pro-
grams arises from the randomness of thread scheduling, which in turn arises from a number of factors
outside the control of the application.

Non-determinism is not necessarily bad. It is possible, in some situations, for non-deterministic
algorithms to outperform deterministic algorithms. However, many approaches to application testing
assume determinism. For example, for non-deterministic programs testing tools cannot simply compare
results to one known good solution. Instead, to test a non-deterministic application, it is necessary to
prove that the result is correct, since different but correct results may be produced on different runs.
This may be as simple as testing against a tolerance for numerical applications, but may be significantly
more involved in other cases. Determinism or repeatability may even be an application requirement
(for example, for legal reasons), in which case you will want to know how to achieve it.

Non-determinism may also be an error. Among the possible interleavings of threads acting on
shared data, some may be incorrect and lead to incorrect results or corrupted data structures. The
problem of safety is how to ensure that only correct orderings occur.

One interesting observation is that many of the parallel patterns used in this book are either deter-
ministic by nature or have deterministic variants. Therefore, one way to achieve complete determinism
is to use only the subset of these patterns that are deterministic. An algorithm based on a composition
of deterministic patterns will be deterministic. In fact, the (unique) result of each deterministic pattern
can be made equivalent to some serial ordering, so we can also say that such programs are serially
consistent—they always produce results equivalent to some serial program. This makes debugging
and reasoning about such programs much simpler.

Of the programming models used in this book, ArBB in particular emphasizes determinism. In the
other models, determinism can (usually) be achieved with some discipline. Some performance may be
lost by insisting on determinism, however. How much performance is lost will depend on the algorithm.
Whether a non-deterministic approach is acceptable will necessarily be decided on a case-by-case basis.

1.5.8 Overview of Programming Models Used
We now summarize the basic properties of the programming models used in this book.

Cilk Plus
The Cilk Plus programming model provides the following features:

• Fork–join to support irregular parallel programming patterns and nesting
• Parallel loops to support regular parallel programming patterns, such as map
• Support for explicit vectorization via array sections, pragma simd, and elemental functions

30 CHAPTER 1 Introduction

• Hyperobjects to support efficient reduction
• Serial semantics if keywords are ignored (also known as serial elision)
• Efficient load balancing via work-stealing

The Cilk Plus programming model is integrated with a C/C++ compiler and extends the language with
the addition of keywords and array section notation.

The Cilk (pronounced “silk”) project originated in the mid-1990s at M.I.T. under the guidance of
Professor Charles E. Leiserson. It has generated numerous papers, inspired a variety of “work stealing”
task-based schedulers (including TBB, Cilk Plus, TPL, PPL and GCD), has been used in teaching, and
is used in some university-level textbooks.

Cilk Plus evolved from Cilk and provides very simple but powerful ways to specify parallelism
in both C and C++. The simplicity and power come, in no small part, from being embedded in the
compiler. Being integrated into the compiler allows for a simple syntax that can be added to existing
programs. This syntax includes both array sections and a small set of keywords to manage fork–join
parallelism.

Cilk started with two keywords and a simple concept: the asynchronous function call. Such a call,
marked with the keyword cilk_spawn, is like a regular function call except that the caller can keep
going in parallel with the callee. The keyword cilk_sync causes the current function to wait for all
functions that it spawned to return. Every function has an implicit cilk_sync when it returns, thus
guaranteeing a property similar to plain calls: When a function returns, the entire call tree under it has
completed.

Listings 1.13 and 1.14 show how inserting a few of these keywords into serial code can make it
parallel. The classic recursive function to compute Fibonacci numbers serves as an illustration. The
addition of one cilk_spawn and one cilk_sync allows parallel execution of the two recursive calls,
waiting for them to complete, and then summing the results afterwards. Only the first recursive call is
spawned, since the caller can do the second recursive call.

This example highlights the key design principle of Cilk: A parallel Cilk program is a serial program
with keyword “annotations” indicating where parallelism is permitted (but not mandatory). Further-
more there is a strong guarantee of serial equivalence: In a well-defined Cilk program, the parallel
program computes the same answer as if the keywords are ignored. In fact, the Intel implementation of
Cilk Plus ensures that when the program runs on one processor, operations happen in the same order as
the equivalent serial program. Better yet, the serial program can be recovered using the preprocessor;
just #define cilk_spawn and cilk_sync to be whitespace. This property enables Cilk code to be
compiled by compilers that do not support the keywords.

Since the original design of Cilk, one more keyword was added: cilk_for. Transforming a loop
into a parallel loop by changing for to cilk_for is often possible and convenient. Not all serial
loops can be converted this way; the iterations must be independent and the loop bounds must not be
modified in the loop body. However, within these constraints, many serial loops can still be parallelized.
Conversely, cilk_for can always be replaced with for by the preprocessor when necessary to obtain
a serial program.

The implementation of cilk_for loops uses a recursive approach (Section 8.3) that spreads over-
head over multiple tasks and manages granularity appropriately. The alternative of writing a serial
for loop that spawns each iteration is usually much inferior, because it puts all the work of spawning
on a single task and bottlenecks the load balancing mechanism, and a single iteration may be too small
to justify spawning it as a separate task.

1.5 Parallel Programming Models 31

1 int fib (int n) {
2 if (n < 2) {
3 return n;
4 } else {
5 int x, y;
6 x = fib(n − 1);
7 y = fib(n − 2);
8 return x + y;
9 }

10 }

LISTING 1.13

Serial Fibonacci computation in C. It uses a terribly inefficient algorithm and is intended only for illustration of
syntax and semantics.

1 int fib (int n) {
2 if (n < 2) {
3 return n;
4 } else {
5 int x, y;
6 x = cilk_spawn fib(n − 1);
7 y = fib(n − 2);
8 cilk_sync;
9 return x + y;

10 }

11 }

LISTING 1.14

Parallel Cilk Plus variant of Listing 1.13.

Threading Building Blocks (TBB)
The Threading Building Blocks (TBB) programming model supports parallelism based on a tasking
model. It provides the following features:

• Template library supporting both regular and irregular parallelism
• Direct support for a variety of parallel patterns, including map, fork–join, task graphs, reduction,

scan, and pipelines
• Efficient work-stealing load balancing
• A collection of thread-safe data structures
• Efficient low-level primitives for atomic operations and memory allocation

TBB is a library, not a language extension, and thus can be used with with any compiler supporting
ISO C++. Because of that, TBB uses C++ features to implement its “syntax.” TBB requires the use
of function objects (also known as functors) to specify blocks of code to run in parallel. These were

32 CHAPTER 1 Introduction

somewhat tedious to specify in C++98. However, the C++11 addition of lambda expressions (see
Appendix D) greatly simplifies specifying these blocks of code, so that is the style used in this book.

TBB relies on templates and generic programming. Generic programming means that algorithms
are written with the fewest possible assumptions about data structures, which maximizes potential for
reuse. The C++ Standard Template Library (STL) is a good example of generic programming in which
the interfaces are specified only by requirements on template types and work across a broad range of
types that meet those requirements. TBB follows a similar philosophy.

Like Cilk Plus, TBB is based on programming in terms of tasks, not threads. This allows it to reduce
overhead and to more efficiently manage resources. As with Cilk Plus, TBB implements a common
thread pool shared by all tasks and balances load via work-stealing. Use of this model allows for nested
parallelism while avoiding the problem of over-subscription.

The TBB implementation generally avoids global locks in its implementation. In particular, there
is no global task queue and the memory allocator is lock free. This allows for much more scalability.
As discussed later, global locks effectively serialize programs that could otherwise run in parallel.

Individual components of TBB may also be used with other parallel programming models. It is
common to see the TBB parallel memory allocator used with Cilk Plus or OpenMP programs, for
example.

OpenMP
The OpenMP programming model provides the following features:

• Creation of teams of threads that jointly execute a block of code
• Conversion of loops with bounded extents to parallel execution by a team of threads with a simple

annotation syntax
• A tasking model that supports execution by an explicit team of threads
• Support for atomic operations and locks
• Support for reductions, but only with a predefined set of operations

The OpenMP interface is based on a set of compiler directives or pragmas in Fortran, C and C++
combined with an API for thread management. In theory, if the API is replaced with a stub library
and the pragmas are ignored then a serial program will result. With care, this serial program will
produce a result that is the “same” as the parallel program, within numerical differences introduced by
reordering of floating-point operations. Such reordering, as we will describe later, is often required for
parallelization, regardless of the programming model.

OpenMP is a standard organized by an independent body called the OpenMP Architecture Review
Board. OpenMP is designed to simplify parallel programming for application programmers working
in high-performance computing (HPC), including the parallelization of existing serial codes. Prior to
OpenMP (first released in 1997), computer vendors had distinct directive-based systems. OpenMP
standardized common practice established by these directive-based systems. OpenMP is supported by
most compiler vendors including the GNU compilers and other open source compilers.

The most common usage of OpenMP is to parallelize loops within a program. The pragma syntax
allows the reinterpretation of loops as parallel operations, which is convenient since the code inside
the loop can still use normal Fortran, C, or C++ syntax and memory access. However, it should be
noted that (as with Cilk Plus) only loops that satisfy certain constraints can be annotated and converted
into parallel structures. In particular, iteration variable initialization, update, and termination tests must

1.5 Parallel Programming Models 33

be one of a small set of standard forms, it must be possible to compute the number of iterations in
advance, and the loop iterations must not depend on each other. In other words, a “parallel loop” in
OpenMP implements the map pattern, using the terminology of this book. In practice, the total number
of iterations is broken up into blocks and distributed to a team of threads.

OpenMP implementations do not, in general, check that loop iterations are independent or that race
conditions do not exist. As with Cilk Plus, TBB, and OpenCL, avoiding incorrect parallelizations is
the responsibility of the programmer.

The main problem with OpenMP for mainstream users is that OpenMP exposes the threads used
in a computation. Teams of threads are explicit and must be understood to understand the detailed
meaning of a program. This constrains the optimizations available from the OpenMP runtime system
and makes the tasking model within OpenMP both more complex to understand and more challenging
to implement.

The fact that threads are exposed encourages a programmer to think of the parallel computation
in terms of threads and how they map onto cores. This can be an advantage for algorithms explicitly
designed around a particular hardware platform’s memory hierarchy, which is common in HPC. How-
ever, in more mainstream applications, where a single application is used on a wide range of hardware
platforms, this can be counterproductive. Furthermore, by expressing the programming model in terms
of explicit threads, OpenMP encourages (but does not require) algorithm strategies based on explicit
control over the number of threads. On a dedicated HPC machine, having the computation depend
upon or control the number of threads may be desirable, but in a mainstream application it is better to
let the system decide how many threads are appropriate.

The most serious problem caused by the explicit threading model behind OpenMP is the fact that it
limits the ability of OpenMP to compose with itself. In particular, if an OpenMP parallel region creates
a team of threads and inside that region a library is called that also uses OpenMP to create a team of
threads, it is possible that n2 threads will be created. If repeated (for example, if recursion is used) this
can result in exponential oversubscription. The resulting explosion in the number of threads created
can easily exhaust the resources of the operating system and cause the program to fail. However,
this only happens if a particular OpenMP option is set: OMP_NESTED=TRUE. Fortunately the default
is OMP_NESTED=FALSE, and it should generally be left that way for mainstream applications. When
OpenMP and a model like TBB or Cilk Plus are nested and the default setting OMP_NESTED=FALSE is
used, at worst 2p workers will be created, where p is the number of cores. This can be easily managed
by the operating system.

It is also recommended to use OMP_WAIT_POLICY=ACTIVE and OMP_DYNAMIC=TRUE to enable
dynamic scheduling. Using static scheduling in OpenMP (OMP_DYNAMIC=FALSE) is not recommended
in a mainstream computing environment, since it assumes that a fixed number of threads will be used
from one parallel region to the next. This constrains optimizations the runtime system may carry out.

HPC programmers often use OpenMP to explicitly manage a team of threads using the thread
ID available through the OpenMP API and the number of threads to control how work is mapped
to threads. This also limits what the runtime system can do to optimize execution of the threads. In
particular, it limits the ability of the system to perform load balancing by moving work between threads.
TBB and Cilk Plus intentionally do not include these features.

In OpenMP, point-to-point synchronization is provided through low-level (and error-prone) locks.
Another common synchronization construct in OpenMP is the barrier. A classical barrier synchronizes
a large number of threads at once by having all threads wait on a lock until all other threads arrive at

34 CHAPTER 1 Introduction

the same point. In Cilk Plus and TBB, where similar constructs exist (for example, implicitly at the
end of a cilk_for), they are implemented as pairwise joins, which are more scalable.

Array Building Blocks (ArBB)
The Array Building Blocks (ArBB) programming model supports parallelization by the specification
of sequences of data-parallel operations. It provides the following features:

• High-level data parallel programming with both elemental functions and vector operations
• Efficient collective operations
• Automatic fusion of multiple operations into more intensive kernels
• Dynamic code generation under programmer control
• Offload to attached co-processors without change to source code
• Deterministic by default, safe by design

ArBB is compiler independent and, like TBB, in conjunction with its embedded C++ front-end can in
theory be used with any ISO C++ compiler. The vectorized code generation supported by its virtual
machine library is independent of the compiler it is used with.

Array Building Blocks is the most high level of the models used in this book. It does not explicitly
depend on tasks in its interface, although it does use them in its implementation. Instead of tasks,
parallel computations are expressed using a set of operations that can act over collections of data.
Computations can be expressed by using a sequence of parallel operations, by replicating elemental
functions over the elements of a collection, or by using a combination of both.

Listing 1.15 shows how a computation in ArBB can be expressed using a sequence of parallel oper-
ations, while Listing 1.16 shows how the same operation can be expressed by replicating a function
over a collection using the map operation. In addition to per-element vector operations, ArBB also sup-
ports a set of collective and data-reorganization operations, many of which map directly onto patterns
discussed in later chapters.

1 void arbb_vector (
2 dense<f32>& A,
3 dense<f32> B,
4 dense<f32> C,
5 dense<f32> D
6) {
7 A += B − C/D;
8 }

9

10 dense<f32> A, B, C, D;
11 // fill A, B, C, D with data ...
12

13 // invoke function over entire collections
14 call(arbb_vector)(A,B,C,D);

LISTING 1.15

Vector computation in ArBB.

1.5 Parallel Programming Models 35

1 void arbb_map (
2 f32& a, // input and output
3 f32 b, // input
4 f32 c, // input
5 f32 d // input
6) {
7 a += b − c/d;
8 }

9

10 void arbb_call (
11 dense<f32>& A, // input and output
12 dense<f32> B, // input
13 dense<f32> C, // input
14 f32 d // input (uniform; will be replicated)
15) {
16 map(arbb_map)(A,B,C,d);
17 }

LISTING 1.16

Elemental function computation in ArBB.

ArBB manages data as well as code. This has two benefits: Data can be laid out in memory for better
vectorization and data locality, and data and computation can be offloaded to attached co-processors
with no changes to the code. It has the disadvantage that extra code is required to move data in and out
of the data space managed by ArBB, and extra data movement may be required.

OpenCL
The OpenCL programming model provides the following features:

• Ability to offload computation and data to an attached co-processor with a separate memory space
• Invocation of a regular grid of parallel operations using a common kernel function
• Support of a task queue for managing asynchronous kernel invocations

The OpenCL programming model includes both a kernel language for specifying kernels and an API
for managing data transfer and execution of kernels from the host. The kernel language is both a
superset and a subset of C99, in that it omits certain features, such as goto, but includes certain other
features, such as a “swizzle” notation for reordering the elements of short vectors.

OpenCL is a standard organized by Khronos and supported by implementations from multiple ven-
dors. It was primarily designed to allow offload of computation to GPU-like devices, and its memory
and task grouping model in particular reflects this. In particular, there are explicit mechanisms for
allocating local on-chip memory and for sharing that memory between threads in a workgroup. How-
ever, this sharing and grouping are not arranged in an arbitrary hierarchy, but are only one level deep,
reflecting the hardware architecture of GPUs. However, OpenCL can also in theory be used for other
co-processors as well as CPUs.

36 CHAPTER 1 Introduction

The kernel functions in OpenCL corresponds closely to what we call “elemental functions,” and
kernel invocation corresponds to the map pattern described in this book.

OpenCL is a relatively low-level interface and is meant for performance programming, where the
developer must specify computations in detail. OpenCL may also be used by higher level tools as a
target language. The patterns discussed in this book can be used with OpenCL but few of these patterns
are reflected directly in OpenCL features. Instead, the patterns must be reflected in algorithm structure
and conventions.

As a low-level language, OpenCL provides direct control over the host and the compute devices
attached to the host. This is required to support the extreme range of devices addressed by OpenCL:
from CPUs and GPUs to embedded processors and field-programmable gate arrays (FPGAs). However,
OpenCL places the burden for performance portability on the programmer’s shoulders. Performance
portability is possible in OpenCL, but it requires considerable work by the programmer, often to the
point of writing a different version of a single kernel for each class of device.

Also, OpenCL supports only a simple two-level memory model, and for this and other reasons (for
example, lack of support for nested parallelism) it lacks composability.

In placing OpenCL in context with the other programming models we have discussed, it is impor-
tant to appreciate the goals for the language. OpenCL was created to provide a low-level “hardware
abstraction layer” to support programmers needing full control over a heterogeneous platform. The
low-level nature of OpenCL was a strategic decision made by the group developing OpenCL. To best
support the emergence of high-level programming models for heterogeneous platforms, first a portable
hardware abstraction layer was needed.

OpenCL is not intended for mainstream programmers the way TBB, Cilk Plus, or OpenMP are.
Lacking high-level programming models for heterogeneous platforms, application programmers often
turn to OpenCL. However, over time, higher level models will likely emerge to support mainstream
application programmers and OpenCL will be restricted to specialists writing the runtimes for these
higher level models or for detailed performance-oriented libraries.

However, we have included it in this book since it provides an interesting point of comparison.

1.5.9 When to Use Which Model?
When multiple programming models are available, the question arises: When should which model
be used? As we will see, TBB and Cilk Plus overlap significantly in functionality, but do differ in
deployment model, support for vectorization, and other factors. OpenCL, OpenMP, and ArBB are each
appropriate in certain situations.

Cilk Plus can be used whenever a compiler supporting the Cilk Plus extensions, such as the Intel
C++ compiler or gcc, can be used. It targets both hardware thread and vector mechanisms in the
processor and is a good all-around solution. It currently supports both C and C++.

Threading Building Blocks (TBB) can be used whenever a compiler-portable solution is needed.
However, TBB does not, itself, do vectorization. Generation of vectorized code must be done by the
compiler TBB is used with. TBB does, however, support tiling (“blocking”) and other constructs so
that opportunities for vectorization are exposed to the underlying compiler.

TBB and Cilk Plus are good all-around models for C++. They differ mainly in whether a compiler
with the Cilk Plus extensions can be used. We also discuss several other models in this book, each of
which may be more appropriate in certain specific circumstances.

1.6 Organization of this Book 37

OpenMP is nearly universally available in Fortran, C, and C++ compilers. It has proven both popu-
lar and effective with scientific code, where any shortcomings in composability tend to be unimportant
because of the dominance of intense computational loops as opposed to complex nested parallelism.
Also, the numerous options offered for OpenMP are highly regarded for the detailed control they afford
for the difficult task of tuning supercomputer code.

Array Building Blocks can be used whenever a high-level solution based on operations on collec-
tions of data is desired. It supports dynamic code generation, so it is compiler independent like TBB
but supports generation of vectorized code like Cilk Plus.

Because of its code generation capabilities, ArBB can also be used for the implementation of cus-
tom parallel languages, a topic not discussed at length in this book. If you are interested in this use
of ArBB, please see the online documentation for the ArBB Virtual Machine, which provides a more
suitable interface for this particular application of ArBB than the high-level C++ interface used in this
book. ArBB can also be used to offload computation to co-processors.

OpenCL provides a standard solution for offloading computation to GPUs, CPUs, and accelerators.
It is rather low level and does not directly support many of the patterns discussed in this book, but many
of them can still be implemented. OpenCL tends to use minimal abstraction on top of the physical
mechanisms.

OpenMP is also standard and is available in many compilers. It can be used when a solution is
needed that spans compilers from multiple vendors. However, OpenMP is not as composable as Cilk
Plus or TBB. If nested parallelism is needed, Cilk Plus or TBB would be a better choice.

1.6 ORGANIZATION OF THIS BOOK
This chapter has provided an introduction to some key concepts and described the motivation for
studying this book. It has also provided a basic introduction to the programming models that we will
use for examples.

Chapter 2 includes some additional background material on computer architecture and performance
analysis and introduces the terminology and conventions to be used throughout this book.

Chapters 3 to 9 address the most important and common parallel patterns. Gaining an intuitive
understanding of these is fundamental to effective parallel programming. Chapter 3 provides a general
overview of all the patterns and discusses serial patterns and the relationship of patterns to structured
programming. Chapter 4 explains map, the simplest and most scalable parallel pattern and one of
the first that should be considered. Chapter 5 discusses collective patterns such as reduce and scan.
Collectives address the need to combine results from map operations while maintaining the benefits
of parallelism. Chapter 6 discusses data reorganization. Effective data management is often the key
to efficient parallel algorithms. This chapter also discusses some memory-related optimizations, such
as conversion of array-of-structures to structures-of-arrays. Chapter 8 explains the fork–join pattern
and its relationship to tasks. This pattern provides a method to subdivide a problem recursively while
distributing overhead in an efficient fashion. This chapter includes many detailed examples, including
discussions of how to implement other patterns in terms of fork–join. Chapter 9 discusses the pipeline
pattern, where availability of data drives execution rather than control flow.

The remainder of the chapters in the book consist of examples to illustrate and extend the
fundamentals from earlier chapters.

38 CHAPTER 1 Introduction

The appendices include a list of further reading and self-contained introductions to the primary
programming models used in this book.

1.7 SUMMARY
In this chapter, we have described recent trends in computer architecture that are driving a need for
explicit parallel programming. These trends include a continuation of Moore’s Law, which is leading
to an exponentially growing number of transistors on integrated devices. Three other factors are lim-
iting the potential for non-parallelized applications to take advantage of these transistors: the power
wall, the ILP (instruction-level-parallelism) wall, and the memory wall. The power wall means that
clock rates cannot continue to scale without exceeding the air-cooling limit. The ILP wall means that,
in fact, we are already taking advantage of most low-level parallelism in scalar code and do not expect
any major improvements in this area. We conclude that explicit parallel programming is likely neces-
sary due to the significant changes in approach needed to achieve scalability. Finally, the memory wall
limits performance since the bandwidth and latency of communication are improving more slowly than
the capability to do computation. The memory wall affects scalar performance but is also a major fac-
tor in the scalability of parallel computation, since communication between processors can introduce
overhead and latency. Because of this, it is useful to consider the memory and communication structure
of an algorithm even before the computational structure.

In this book, we take a structured approach to parallel computation. Specifically, we describe a set
of patterns from which parallel applications can be composed. Patterns provide a vocabulary and a set
of best practices for describing parallel applications. The patterns embody design principles that will
help you design efficient and scalable applications.

Throughout this book, we give many examples of parallel applications. We have chosen to use
multiple parallel programming models for these examples, but with an emphasis on TBB and Cilk
Plus. These models are portable and also provide high performance and portability. However, by using
multiple programming models, we seek to demonstrate that the patterns we describe can be used in a
variety of programming systems.

When designing an algorithm, it is useful as you consider various approaches to have some idea
of how each possible approach would perform. In the next chapter, we provide additional background
especially relevant for predicting performance and scalability. First, we describe modern computer
architectures at a level of detail sufficient for this book, with a focus on the key concepts needed for
predicting performance. Then, we describe some classic performance models, including Amdahl’s Law
and Gustafson-Barsis’ Law. These laws are quite limited in predictive power, so we introduce another
model, the work-span model, that is much more accurate at predicting scalability.

APPENDIX

TBB C
This appendix provides a concise introduction to Intel Threading Building Blocks (Intel TBB). It covers
the subset used by this book. A good introduction is available in the O’Reilly Nutshell Book on TBB,
which covers the essentials of TBB [Rei07]. The book was published in 2007 when TBB version 2.0
appeared, so some newer features are not covered. It is nevertheless a solid introduction to TBB. For a
more complete guide, see the TBB Reference, Tutorial, and Design Patterns documents, which can be
downloaded from http://threadingbuildingblocks.org/.

TBB is a collection of components that outfits C++ for parallel programming. Figure C.1 illustrates
these components. At the heart of TBB is a task scheduler, which is most often used indirectly via the
parallel algorithms in TBB, such as tbb::parallel_for. The rest of TBB provides thread-aware
memory allocation, portable synchronization primitives, scalable containers, and a variety of useful
utilities. Each part is important for parallelism. Indeed the non-tasking features are intended for use
with other parallelism frameworks such as Cilk Plus, ArBB, and OpenMP, so that those frameworks
do not have to duplicate key functionality.

C.1 UNIQUE CHARACTERISTICS
TBB shares many of the key attributes of Cilk Plus as enumerated in Section B.1, but it differs form
Cilk Plus on several points:

• TBB is designed to work without any compiler changes, and thus be quickly portable to new plat-
forms. As a result, TBB has been ported to a multitude of key operating systems and processors,
and code written with TBB can likewise be easily ported.

• As a consequence of avoiding any need for compiler support, TBB does not have direct support for
vector parallelism. However, TBB combined with array notation or #pragma simd from Cilk Plus
or auto-vectorization can be an effective tool for exploiting both thread and vector parallelism.

• TBB is designed to provide comprehensive support for C++ developers in one package. It supports
multiple paradigms of parallel programming. It goes beyond the strict fork–join model of Cilk Plus
by supporting pipelines, dataflow, and unstructured task graphs. The additional power that these
features bring is sometimes worth the additional complexity they bring to a program.

• TBB is intended to provide low-level services such as memory allocation and atomic operations
that can be used by programs using other frameworks, including Cilk Plus.

349

350 APPENDIX C TBB

Concurrent containers

Scalable containers.
Includes vectors, hash
tables, and queues.

Utility
Cross-thread
accurate timers.

Memory

Scalable memory allocation,
plus false-sharing avoidance,
and thread-local storage.

Threads

Synchronization

Includes atomic ops,
mutexes, and
condition variables.

Tasks

Work-stealing task
scheduler.

Task groups.

Selective over- and
under-subscription
capability.

TBB

A C++ template library.
Implementation is portable across platforms, operating systems,
and processors.

Threading building blocks.

Parallel algorithms

Generic scalable algorithms.
Includes parallel for, reduction,
work pile, scan, pipeline,
flow graph...

FIGURE C.1

Overview of Threading Building Blocks.

TBB is an active open source project. It is widely adopted and often cited in articles about
parallelism in C++. It continues to grow as the parallel ecosystem evolves.

C.2 USING TBB
Include the header <tbb/tbb.h> to use TBB in a source file. All public identifiers are in namespace
tbb or tbb::flow. In the following descriptions, the phrase “in parallel” indicates that parallelism is
permitted if resources allow, but is not mandated. As with Cilk Plus, the license to ignore unnecessary
parallelism allows the TBB task scheduler to use parallelism efficiently.

C.3 parallel for 351

C.3 parallel for
The function template parallel_for maps a functor across range of values. The template takes
several forms. The simplest is:

tbb::parallel_for(first,last,f)

where f is a functor. It evaluates the expression f (i) in parallel for all i in the half-open interval
[first,last), Both first and last must be of the same integral type. It is a parallel equivalent of:

for (auto i=first; i<last; ++i) f (i);

A slight variation specifies a stride:

tbb::parallel_for(first,last,stride,f)

It is like the previous version, except that the possible values of i step by stride, starting with first. This
form is a parallel equivalent of:

for (auto i=first; i<last; i+=stride) f (i);

Another form of parallel_for takes two arguments:

tbb::parallel_for(range,f)

It decomposes range into subranges and applies f to each subrange, in parallel. Hence, the programmer
has the opportunity to optimize f to operate on an entire subrange instead of a single index. This version
in effect exposes the tiled implementation of the map pattern used by TBB.

This form of parallel for also generalizes the parallel map pattern beyond one-dimensional ranges.
The argument range can be any recursively splittable range type. A type R is such a type if it has the
following methods:

R::R(const R&) Copy constructor.

R:: R() Destructor.

bool R::is divisible() const True if splitting constructor can be called, false
otherwise.

bool R::empty() const True if range is empty, false otherwise.

R::R(R& r, split) Splitting constructor. It splits range r into two
subranges. One of the subranges is the newly con-
structed range. The other subrange is overwritten
onto r.

The implementation of parallel_for uses these methods to implement a generic recursive map
in the spirit of Listing 8.1.

C.3.1 blocked range
The most commonly used recursive range is tbb::blocked_range. It is typically used with integral
types or random-access iterator types. For example, blocked_range<int>(0,8) represents the
index range {0,1,2,3,4,5,6,7}. An optional third argument called the grainsize specifies the maximum

352 APPENDIX C TBB

size for splitting. It defaults to 1. For example, the following snippet splits a range of size 30 with
grainsize 20 into two indivisible subranges of size 15:

// Construct half-open interval [0,30) with grainsize of 20
blocked_range<int> r(0,30,20);
assert(r.is_divisible());
// Call splitting constructor
blocked_range<int> s(r);
// Now r=[0,15) and s=[15,30) and both have a grainsize 20
// Inherited from the original value of r
assert(!r.is_divisible());
assert(!s.is_divisible());

Listing 4.2 on page 126 shows an example that uses blocked_range with parallel_for.
A two-dimensional variant is called tbb::blocked_range2d. It permits using a single

parallel_for to iterate over two dimensions at once, which sometimes yields better cache behavior
than nesting two one-dimensional instances of parallel_for.

C.3.2 Partitioners
The range form of parallel_for takes an optional partitioner argument, which lets the programmer
specify performance-related tactics [RVK08]. The argument can have one of three types:

• auto partitioner: The runtime will try to subdivide the range sufficiently to balance load, but
no further. This behavior is the same as when no partitioner is specified.

• simple partitioner: The runtime must subdivide the range into subranges as finely as possible;
that is, method is_divisible will be false for the final subranges.

• affinity partitioner: Request that the assignment of subranges to underlying threads be
similar to a previous invocation of parallel_for or parallel_reduce with the same
affinity_partitioner object.

These partitioners also work with parallel_reduce.
An invocation of parallel_for with a simple_partitioner looks like:

parallel_for(r,f,simple_partitioner());

This partitioner is useful in two scenarios:

• The functor f uses a fixed amount of memory for temporary storage, and hence cannot deal with
subranges of arbitrary size. For example, if r is a blocked_range, the partitioner guarantees that
f is invoked on subranges not exceeding the grainsize of r.

• The work for f (r) is highly unbalanced in a way that fools the auto_partitioner heuristic into
not dividing work finely enough to balance load.

An affinity_partitioner can be used for cache fusion (Section 4.4). Unlike the other two
partitioners, it carries state. The state holds information for replaying the assignment of subranges
to threads. Listing C.1 shows an example of its use in a common pattern: serially iterating a map.
In the listing, variable ap enables cache fusion of each map to the next map. Because it is carrying
information between serial iterations, it must be declared outside the serial loop.

C.4 parallel reduce 353

1 void relax(
2 double* a, // Pointer to array of data
3 double* b, // Pointer to temporary storage
4 size_t n, // Number of data elements
5 int iterations // Number of serial iterations
6) {
7 assert(iterations%2==0);
8 // Partitioner should be declared outside the loop
9 tbb::affinity_partitioner ap;

10 // Serial loop around a parallel loop
11 for(size_t t=0; t<iterations; ++t) {
12 tbb::parallel_for(
13 tbb::blocked_range<size_t>(1,n−1),
14 [=](tbb::blocked_range<size_t> r) {
15 size_t e = r.end();
16 #pragma simd
17 for(size_t i=r.begin(); i<e; ++i)
18 b[i] = (a[i−1]+a[i]+a[i+1])*(1/3.0);
19 },
20 ap);
21 std::swap(a,b);
22 }

23 }

LISTING C.1

Example of affinity_partitioner. TBB uses the variable ap to remember on which threads ran which
subranges of the previous invocation of parallel_for and biases execution toward replaying that
assignment. The pragma simd is for showmanship. It makes the impact of the partitioner more dramatic by
raising arithmetic performance so that memory bandwidth becomes the limiting resource.

C.4 parallel reduce
Function template parallel_reduce performs a reduction over a recursive range. It has several
forms. The form used in this book is:

T result = tbb::parallel_reduce(
range,
identity,
subrange reduction,
combine);

where:

• range is a recursive range as for parallel_for, such as blocked_range.
• identity is the identity element of type T . The type of this argument determines the type used to

accumulate the reduction value, so be careful about what type it has.

354 APPENDIX C TBB

• subrange_reduction is a functor such that subrange reduction(subrange,init) returns a reduc-
tion value over init and subrange. The type of subrange is the type of the range argument to
parallel_reduce. The type of init is T , and the returned reduction value must be convertible
to type T . Do not forget to include the contribution of init to the reduction value.

• combine is a functor such that combine(x,y) takes two arguments of type T and returns a reduction
value for them. This function must be associative but does not need to be commutative.

Listings 5.5 and 5.6 in Section 5.3.4 show example invocations. The latter listing demonstrates how to
do accumulation at higher precision than the values being reduced.

An alternative way to do reduction is via class tbb::enumerable_thread_specific, as
demonstrated in Section 11.3. General advice on which to use:

• If type T takes little space and is cheap to copy, or the combiner operation is non-commutative, use
parallel_reduce.

• If type T is large and expensive to copy and the combiner operation is commutative, use
enumerable_thread_specific.

C.5 parallel deterministic reduce
Template function parallel_deterministic_reduce is a variant of parallel_reduce that is
deterministic even when the combiner operation is non-associative. The result is not necessarily the
same as left-to-right serial reduction, even when executed with a single worker, because the template
uses a fixed tree-like reduction order for a given input.

As of this writing, parallel_deterministic_reduce is a “preview feature” that must be
enabled by setting the preprocessory symbol TBB_PREVIEW_DETERMINISTIC_REDUCE=1 either on
the compiler command line or before including TBB headers in a source file.

C.6 parallel pipeline
Template function parallel_pipeline is used for building a pipeline of serial and parallel stages.
See Section 9.4.1 for details and Listing 12.2 for an example.

C.7 parallel invoke
Template function parallel_invoke evaluates a fixed set of functors in parallel. For example,

tbb::parallel_invoke(f,g,h);

evaluates the expressions f(), g(), and h() in parallel and waits until they all complete. Anywhere
from 2 to 10 functors are currently supported. Listing 13.3 (page 302) and Listing 15.4 (page 322)
show uses of parallel_invoke. Both listings cross-reference similar code in Cilk Plus, so you can
compare the syntactic difference.

C.9 task 355

C.8 task group
Class task_group runs an arbitrary number of functors in parallel. Listing C.2 shows an example.

In general, a single task_group should not be used to run a large number of tasks, because it can
become a sequential bottleneck. Consider using parallel_for for a large number of tasks.

If one of the functors throws an exception, the task group is cancelled. This means that any tasks in
the group that have not yet started will not start at all, but all currently running tasks will keep going.
After all running tasks in the group complete, one of the exceptions thrown by the tasks will be thrown
to the caller of wait. Hence, if nested parallelism is created by nesting task_group, the exception
propagates up the task tree until it is caught.

Listing 8.12 on page 235 shows a use of task_group.

C.9 task
Class tbb::task is the lowest-level representation of a task in TBB. It is designed primarily for
efficient execution, not convenience, because it serves as a foundation, and thus should impose min-
imal performance penalty. Higher level templates such as parallel_for and task_group provide

1 // Item in a linked list
2 class morsel {
3 public:
4 void munch();
5 morsel* next;
6 };
7

8 // Apply method munch to each item in a linked

9 // list rooted at p
10 void munch_list(morsel* p) {
11 tbb::task_group g;
12 while(p) {
13 // Call munch on an item
14 g.run([=]{p−>munch();});
15 // Advance to the next item

16 p = p−>next;
17 }

18 // Wait for all tasks to complete
19 g.wait();
20 }

LISTING C.2

Using task_group.

356 APPENDIX C TBB

convenient interfaces. Tasks can be spawned explicitly, or implicitly when all of their predecessor tasks
complete. See the discussion of Listing 8.13 on pages 236–237 for how to use it.

C.9.1 empty task
A tbb::empty_task is a task that does nothing. It is sometimes used for synchronization purposes,
as in Listing 8.13 on pages 236–237.

C.10 atomic
Atomic objects have update operations that appear to happen instantaneously, as a single indivisible
task. They are often used for lock-free synchronization. Atomic objects can be declared as instances
of the class template tbb::atomic<T>, where T is an integral, enum, or pointer type. Listing C.3
shows an example use case.

1 float array[N];
2 tbb::atomic<int> count;
3

4 void append(float value) {
5 array[count++] = value;
6 }

LISTING C.3

Example of using atomic<int> as a counter.

If m threads execute count++ at the same time, and its initial value is k, each thread will get a distinct
result value drawn from the set k,k+ 1, . . . ,k+m− 1, and afterward count will have value k+m.
This, is true even if the threads do this simultaneously. Thus, despite the lack of mutexes, the code
correctly appends items to the array.

In the example it is critical to use the value returned by count++ and not reread count, because
another thread might intervene and cause the reread value to be different than the result of count++.

Here is a description of the atomic operations supported by a variable x declared as a tbb::atomic
<X>:

• read, write: Reads and writes on x are atomic. This property is not always true of non-atomic types.
For example, on hardware with a natural word size of 32 bits, often reads and writes of 64-bit values
are not atomic, even if executed by a single instruction.

• fetch-and-add: The operations x+=k, x−=k, ++x, x++, −−x, and x−− have the usual meaning,
but atomically update x. The expression x.fetch_and_add(k) is equivalent to (x+=k)−k.

• exchange: The operation x.fetch_and_store(y) atomically performs x=y and returns the
previous value of x.

C.10 atomic 357

1 // Node in a linked list
2 struct node {
3 float data;
4 node* next;
5 };
6

7 // Root of a linked list
8 tbb::atomic<node*> root;
9

10 // Atomically prepend node a to the list
11 void add_to_list(node* a) {
12 for(;;) {
13 // Take snapshot of root
14 node* b = root;
15 // Use the snapshot as link for a
16 a−>next = b;
17 // Update root with a if root is still equal to b
18 if(root.compare_and_swap(a,b)==b) break;
19 // Otherwise start over and try again
20 }

21 }

22

23 // Atomically grab pointer to the entire list and reset root to NULL
24 node* grab_list() {
25 return root.fetch_and_store((node*)NULL);
26 }

LISTING C.4

Using atomic operations on a list.

• compare-and-swap: The operation x.compare_and_swap(y,z) atomically performs if(x==
z) x=y, and returns the original value of x. The operation is said to succeed if the assignment
happens. Code can check for success by testing whether the return value equals z.

Listing C.4 shows uses of compare-and-swap and exchange to manipulate a linked list.
Doing more complicated list operations atomically is beyond the scope of this appendix.
In particular, implementing pop with a compare-and-swap loop scheme similar to the one in

add_to_list requires special care to avoid a hazard called the ABA problem [Mic04]. The code
shown has a benign form of the ABA problem, which happens when:

1. A thread executes node* b=a, and a was NULL.
2. Another threads executes add_to_list and grab_list.
3. The thread in step 1 executes root.compare_and_swap(a,b). The compare-and-swap sees that

a== NULL and succeeds, just as if no other thread intervened.

The point is that a successful compare-and-swap does not mean that no thread intervened. Here, there
is no harm done because as long as root==a−>next when the compare-and-swap succeeds, the

358 APPENDIX C TBB

resulting list is correct. But, in other operations on linked structures, the effects can corrupt the structure
or even cause invalid memory operations on freed memory.

Compare-and-swap loops also require care if there might be heavy contention. If P threads exe-
cute a compare-and-swap loop to update a location, P− 1 threads will fail and have to try again.
Then P− 2 threads will fail, and so forth. The net burden is 2(P2) attempts and corresponding
memory traffic, which can saturate the memory interconnect. One way to avoid the problem is expo-
nential backoff —wait after each compare-and-swap fails, and double the wait after each subsequent
failure.

C.11 enumerable thread specific
An object e of type enumerable_thread_specific<T> has a separate instance (or “local view”)
of T for each thread that accesses it. The expression e.local() returns a reference to the local view for
the calling thread. Thus, multiple threads can operate on a enumerable_thread_specific without
locking. The expression e.combine(combine) returns a reduction over the local view. See Section 11.3
for more details on how to use enumerable_thread_specific.

C.12 NOTES ON C++11
Though TBB works fine with C++98, it is simpler to use with C++11. In particular, C++11 introduces
lambda expressions (Section D.2) and auto declarations (Section D.1) that simplify use of TBB and
other template libraries. Lambda expressions are already implemented in the latest versions of major
C++ compilers. We strongly recommend using them to teach, learn, and use TBB, because once you
get past the novelty, they make TBB code easier to write and easier to read.

Additionally, TBB implements most of some C++11 features related to threading, thus providing
an immediate migration path for taking advantage of these features even before they are implemented
by C++ compilers. This path is further simplified by the way that TBB’s injection of these features into
namespace std is optional.

These features are:

• std::mutex: A mutex with a superset of the C++11 interface. The superset includes TBB’s
interface for mutexes.

• std::lock guard: C++11 support for exception-safe scoped locking.
• std::thread: A way to create a thread and wait for it to complete. Sometimes threads really are

a better solution than tasks, particularly if the “work” must be preemptively scheduled or mostly
involves waiting for something to happen. Also, note that threads provide mandatory parallelism,
which may be important when interacting with the outside world or in a user interface. Tasks
provide optional parallelism, which is better for efficient computation.

• std::condition variable: A way to wait until the state protected by a mutex meets a condition.

C.13 History 359

The parts of the C++11 interface not implemented in TBB are those that involve time intervals,
since those would have involved implementing the C++11 time facilities. However, TBB does have
equivalents to this functionality, based on TBB’s existing tick_count interface for time.

A condition variable solves the problem of letting a thread wait until a state protected by a mutex
meets a condition. It is used when threads need to wait for some other thread to update some state
protected by a mutex. The waiting thread(s) acquire the mutex, check the state, and decide whether to
wait. They wait on an associated condition variable. The wait member function atomically releases
the mutex and starts the wait. Another thread acquires mutex associated with the condition, modifies
the state protected by the mutex, and then signals one or all of the waiter(s) when it is done. Once the
mutex is released, the waiters reacquire the mutex and can recheck the state to see if they can proceed
or need to continue waiting.

Condition variables should be the method of choice to have a thread wait until a condition changes.
TBB makes this method of choice portable to more operating systems.

C.13 HISTORY
The development of TBB was done at Intel and with the involvement of one of the authors of this
book, Arch Robison. We can therefore recount the history of TBB from a personal perspective.

TBB was first available as a commercial library from Intel in the summer of 2006, not long after
Intel shipped its first dual-core processors. It provided a much needed comprehensive answer to the
question, “What must be fixed or added to C++ for parallel programming?” TBB’s key programming
abstractions for parallelism focused on logical specification of parallelism via algorithm templates. By
also including a task-stealing scheduler, a thread-aware memory allocator, portable mutexes, global
timestamps, and concurrent containers, TBB provided what was needed to program for parallelism in
C++. The first release was primarily focused on strict fork–join or loop-type data parallelism.

The success of Intel TBB would, however, have been limited if it had remained a proprietary
solution. Even during the release of version 1.0, Intel was in discussions with early customers on
the future direction of TBB in both features and licensing.

Watching and listening to early adopters, such as Autodesk Maya, highlighted that much of the
value of TBB was not only for data parallelism but also for more general parallelism using tasks,
pipelines, scalable memory allocation, and lower-level constructs like synchronization primitives. Intel
also received encouragement to make TBB portable by creating and supporting it via an open source
project.

This customer feedback and encouragement led, only a year later, to version 2.0, which included a
GPL v2 with the runtime exception version of both the source and binaries, as well as maintaining the
availability of non-GPL binaries. Intel’s customers had said that this would maximize adoption, and
the results have definitely shown they were right.

Intel increased the staffing on TBB, worked proactively to build a community to support the project,
and continued to innovate with new usage models and features over the next few years. We have been
amazed and humbled by the response of such users as Adobe Systems, Avid, Epic Games, Dream-
Works, and many others, along with that of other community members. TBB now has a very large
user community and has had contributions that have led to Intel TBB being ported to many operating

360 APPENDIX C TBB

systems, platforms, and processors. We appreciate Intel’s willingness to let us prove that an open source
project initiated by Intel, yet supporting non-x86 processors, not only made sense—but would be very
popular with developers. We’ve definitely proven that!

Through the involvement of customers and community, TBB has grown to be the most feature-rich
and comprehensive solution for parallel application development available today. It has also become
the most popular!

The TBB project was grown by a steady addition of ports to a wide variety of machines and operat-
ing systems and the addition of numerous new features that have added to the applicability and power
of TBB.

TBB was one of the inspirations for Microsoft’s Task Parallel Library (TPL) for .NET and
Microsoft’s Parallel Patterns Library (PPL) for C++. Intel and Microsoft have worked jointly to spec-
ify and implement a common subset of functionality shared by TBB and Microsoft’s Parallel Patterns
Library (PPL). In some cases, Intel and Microsoft have exchanged implementations and tests to ensure
compatibility. An appendix of The TBB Reference Manual summarizes the common subset.

The most recent version of TBB, version 4.0, adds a powerful capability for expressing parallelism
as data flowing through a graph. Use of TBB continues to grow, and the open source project enjoys
serious support from Intel and others.

The Intel Cilk Plus project complements TBB by supplying C interfaces, simpler syntax, better
opportunity for compiler optimization, and data parallel operations that lead to effective vectoriza-
tion. None of these would be possible without direct compiler support. Intel briefly considered calling
Cilk Plus simply “compiled TBB.” While this conveyed the desire to extend TBB for the objectives
mentioned, it proved complicated to explain the name so the name Cilk Plus was introduced. The full
interoperability between TBB and Cilk Plus increases the number of options for software developers
without adding complications. Like TBB, Intel has open sourced Cilk Plus to help encourage adoption
and contribution to the project. TBB and Cilk Plus are sister projects at Intel.

C.14 SUMMARY
Intel Threading Building Blocks is a widely used and highly portable template library that pro-
vides a comprehensive set of solutions to programs using tasks in C++. It also provides a set
of supporting functionality that can be used with or without the tasking infrastructure, such as
concurrency-safe STL-compatible data structures, memory allocation, and portable atomics. Although
we focus on tasks in this book due to their increased machine independence, safety, and scalabil-
ity over threads, TBB also implements a significant subset of the C++11 standard’s thread support,
including platform-independent mutexes and condition variables. Much more information is available
at http://threadingbuildingblocks.org.

APPENDIX

Glossary E
The specialized vocabulary used in this book is defined here. In some cases, where existing terminology
is ambiguous, we have given all meanings but note which meaning we primarily use in this book.

absolute speedup: Speedup in which the best parallel solution to a problem is compared to the best
serial solution to the same problem, even if they use different algorithms. See relative speedup.

access controls: Any mechanism to regulate access to something, but for parallel programs this term
generally applies to shared memory. The term is sometimes extended to I/O devices as well. For
parallel programming, the objective is generally to provide deterministic results by preventing an
object from being modified by multiple tasks simultaneously. Most often this is referred to as
mutual exclusion, which includes locks, mutexes, atomic operations, and transactional memory
models. This may also require some control on reading access to prevent viewing of an object in a
partially modified state.

actual parallelism: The number of physical workers available to execute a parallel program.
algorithmic skeleton: Synonym for pattern, specifically the subclass of patterns having to do with

algorithms.
algorithm strategy pattern: A class of patterns that emphasize the parallelization of the internal

workings of algorithms.
aliasing: Refers to when two distinct program identifiers or expressions refer to overlapping memory

locations. For example, if two pointers p and q point to the same location, then p[0] and q[0]
are said to alias each other. The potential for aliasing can severely restrict a compiler’s ability to
optimize a program, even when there is no actual aliasing.

Amdahl’s Law: Speedup is limited by the non-parallelizable serial portion of the work. Compare with
other attempts to characterize the bounds of parallelism: span complexity and Gustafson–Barsis’
Law. See Section 2.5.4.

application binary interface (ABI): A set of binary entry points corresponding to an application pro-
gramming interface. Fixed ABIs are useful to allow relinking to different implementations of a
library module.

application programming interface (API): An interface (set of function calls, operators, variables,
and/or classes) by which an application developer uses a module. The implementation details of
a module are ideally hidden from the application developer and the functionality is only defined
through the API.

arithmetic intensity: The ratio of computational (typically arithmetic) operations to communication,
where communication includes memory operations. Comparing this ratio for an algorithm with
the hardware’s ratio gives a hint of whether computation or communication will be the limiting
resource. See Section 10.3.

367

368 APPENDIX E Glossary

array operations: See vector operations.
array processors: See vector processor.
array-of-structures (AoS): A data layout for collections of heterogeneous data where all the data for

each element is stored in adjacent physical locations, even if the data are of different types. Compare
with structure-of-arrays.

associative cache: A cache organization where copies of data in main memory can be stored anywhere
in the cache.

associative operation: An operation ⊗ is associative if (a⊗ b)⊗ c= a⊗ (b⊗ c). Modular integer
arithmetic is associative. Real addition is associative, but floating-point addition is not. However,
sometimes the roundoff differences from reassociating floating-point addition are small enough to
be ignored, in which case floating-point operations can be considered approximately associative.

asymptotic complexity: Algebraic limit on behavior, including time and space but also ratios such as
speedup and efficiency. See big O notation, big Omega notation, and big Theta notation.

asymptotic efficiency: An asymptotic complexity measure for efficiency.
asymptotic speedup: An asymptotic complexity measure for speedup.
atomic operation: An operation guaranteed to appear as if it occurred indivisibly without interference

from other threads. For example, a processor might provide a memory increment operation. This
operation needs to read a value from memory, increment it, and write it back to memory. An atomic
increment guarantees that the final memory value is the same as would have occurred if no other
operations on that memory location were allowed to happen between the read and the write. See
Section C.10, and lock and mutual exclusion.

atomic scatter pattern: A non-deterministic data pattern in which multiple writers to a single storage
location result in exactly one value being written and all others being discarded. The value written
is chosen non-deterministically from the multiple sources. The only guarantee is that the resulting
value in the target memory locations will be one of the values being written by at least one of the
writers. See Section 6.2.

attached co-processor: A separate processor, often on an add-in card (such as a PCIe card), usually
with its own physical memory, which may or may not be in a separate address space from the host
processor. Often also known as an accelerator (although it may only accelerate specific workloads).

auto-vectorization: Automatically generating vectorized code from programs expressed using serial
programming languages.

autotuning: The process of automatically adjusting parameters in parameterized code in order to
achieve optimal performance.

available parallelism: See potential parallelism.
bandwidth: The rate at which information is transferred, either from memory or over a communica-

tions channel. This term is used when the process being measured can be given a frequency-domain
interpretation. When applied to computation, it can be seen as being equivalent to throughput.

barrier: When a computation is broken into phases, it is often necessary to ensure that all threads
complete all the work in one phase before any thread moves onto another phase. A barrier is a
form of synchronization that ensures this. Threads arriving at a barrier wait there until the last
thread arrives, then all threads continue. A barrier can be implemented using an atomic operation.
For example, all threads might try to increment a shared variable, then block if the value of that
variable does not equal the number of threads that need to synchronize at the barrier. The last thread
to arrive can then reset the barrier to zero and release all the blocked threads.

APPENDIX E Glossary 369

big O notation: Complexity notation that denotes an upper bound; written as O(f (n)). Big O notation
is useful for classification of algorithm efficiency. In particular, big O notation is used to classify
algorithms based on how they respond to changes in their input set in terms of processing time or
other characteristics of interest.

For instance, a bubble sort routine may be described as taking O(n2) time because the time to
run a bubble sort routine is proportional to the square of the size of the data set to sort. Since big O
notation is about asymptotic growth, it may neglect significant constant factors. A pair of algorithms
with running times of n2

+ 100n+ 1019 and 5n2
+ n+ 2, respectively, are both generally described

as O(n2), despite significant differences in performance for most values of n.
For characterizing the suitability of an algorithm for parallel execution, big O analysis applies

to both the work complexity and the span complexity, but typically big Theta notation is preferred.
See Section 2.5.7.

big Omega notation: Complexity notation that denotes a lower bound; written as �(f (N)). See
Section 2.5.7.

big Theta notation: Complexity notation that denotes an upper and a lower bound; written as
2(f (N)). See Section 2.5.7.

binning: The process of subdividing labeled data in a collection into separate sub-collections, each
with a unique label. See bin pattern.

bin pattern: A generalized version of the split pattern, which is in turn a generalization of the pack
pattern, the bin pattern takes as input a collection of data and a collection of labels to go with every
element of that collection, and reorganizes the data into a category (a bin) for every unique label in
the input. The determinisitic version of this pattern is stable, in that it preserves the original order
of the input collection. One major application of this pattern is in radix sort. It can also be used to
implement the category reduction pattern. See Section 6.4.

BLAS: The Basic Linear Algebra Subprograms are routines that provide standard building blocks
for basic vector and matrix operations. The Level 1 BLAS perform scalar, vector, and vector–
vector operations; the Level 2 BLAS perform matrix–vector operations; and the Level 3 BLAS
perform matrix–matrix operations. Because the BLAS are efficient, portable, and widely available,
they are commonly used in the development of high-quality linear algebra software (LAPACK, for
example). A sophisticated and generic implementation of BLAS has been maintained for decades
at http://netlib.org/blas. Vendor-specific implementations of BLAS are common, includ-
ing the Intel Math Kernel Library (MKL), which is a highly efficient version of BLAS and other
standard routines for Intel architecture.

block: Block can be used in two senses: (1) a state in which a thread is unable to proceed while it waits
for some synchronization event, or (2) a region of memory. The second meaning is also used in the
sense of dividing a loop into a set of parallel tasks of a suitable granularity. To avoid confusion
in this book, the term tile is generally used for the second meaning, and likewise the term tiling is
preferred over “blocking.”

branch and bound pattern: A non-deterministic pattern designated to find one satisfactory answer
when many may be possible. Branch refers to using concurrency, and bound refers to limiting
the computation in some manner—for example, by using an upper bound (perhaps the best result
found so far). This pattern is often used to implement search, where it is highly effective. See
Section 3.7.1.

burdened span: The span augmented with overhead costs.

370 APPENDIX E Glossary

by reference: A parameter to a function that acts exactly as if it were the original location passed to
the function.

by value: A parameter to a function that is a copy of the original value passed to the function.
cache: A part of memory system that stores copies of data temporarily in a fast memory so that future

uses for that data can be handled more quickly than if the request had to be fetched again from
a more distant storage. Caches are generally automatic and are designed to enhance programs
with temporal locality and/or spatial locality. Caching systems in modern computers are usually
multileveled.

cache coherence: A mechanism for keeping multiple copies of the same data in different caches
consistent.

cache conflict: When multiple locations in memory are mapped to the same location in a cache only a
subset of them can be kept in cache.

cache fusion: An optimization for a sequence of /vector operations/ where the vector operations are
broken into tiles and the entire sequence executed on each tile, so that the intermediate values can
be kept in cache.

cache line: The units in which data retrieved and held by a cache; in order to exploit spatial locality,
they are generally larger than a word. The general trend is for increasing cache line sizes, which are
generally large enough to hold at least two double-precision floating-point numbers, but unlikely
to hold more than eight on any current design. Larger cache lines allow for more efficient bulk
transfers from main memory but worsen certain issues, including false sharing which generally
degrades performance.

cache-oblivious programming: Refers to designing an algorithm to have good cache behavior with-
out knowing the size or design of the cache system in advance. This is usually accomplished by
using recursive patterns of data locality so that locality is present at all scales. See Section 8.8, as
well as [ABF05] and [Vit08].

cancellation: The ability to stop a running (or ready to run) task from another task. Used in the
speculative selection pattern discussed in Section 3.6.3.

category reduction pattern: A combination of search and segmented reduction, this is the form of
reduction used in the map–reduce programming model. Each input has a label, and reduction occurs
only between elements with the same label. The output is a set of reduction results for each unique
label. See Section 3.6.8.

circuit complexity: See span complexity.
closures: Objects that consist of a function definition and a copy of the environment (that is, the values

of all variables referenced by the function) in effect at the time and visible from the scope in which
the function was defined. See lambda function and Section 3.4.4.

cloud: A set of computers, typically maintained in a data center, that can be allocated dynamically and
accessed remotely. Unlike a cluster, cloud computers are typically managed by a third party and
may host multiple applications from different, unrelated users.

cluster: A set of computers with distributed memory communicating over a high-speed interconnect.
The individual computers are often called nodes.

codec: An abbreviation for coder–decoder, a module that implements a data compression and decom-
pression algorithm in order to reduce memory storage or communication bandwidth. For example,
codecs that compress to/from MPEG4 are common for video.

code fusion: An optimization for a sequence of vector operations that combines the operations into a
single elemental function.

APPENDIX E Glossary 371

coherent masks: When the SPMD programming model is emulated on SIMD machines using
masking, the situation where the masks contain all 0’s or all 1’s.

collective operation: An operation, such as a reduction or a scan, that acts on a collection of data as
a whole. See Chapter 5.

collision: In the scatter pattern, or when using random writes from parallel tasks, a collision occurs
when two items try to write to the same location. The result is typically non-deterministic since it
depends on the timing of the writes. In the worst case, a collision results in garbage being written
to the location if the writes are not atomic and are not protected with locks. See Sections 3.5.5
and 6.2.

combiner operation: The (ideally) associative and (possibly) commutative operation used in the
definition of collective operations such as reduction and scan. See Chapter 5.

communication: Any exchange of data or synchronization between software tasks or threads. Under-
standing that communication costs are often a limiting factor in scaling is a critical concept for
parallel programming.

communication avoiding algorithm: An algorithm that avoids communication, even if it results in
additional or redundant computation.

commutative operation: A commutative operation⊕ satisfies the equation a⊕ b= b⊕ a for all a and
b in its domain. Some techniques for vectorizing reductions require commutativity.

composability: The ability to use two components with each other. Can refer to system features,
programming models, or software components. See Section 1.5.4.

concurrent: Logically happening simultaneously. Two tasks that are both logically active at some
point in time are considered to be concurrent. Contrast with parallel.

continuation: The state necessary to continue a program from a certain logical location in that pro-
gram. A well-known example is the statement following a subroutine call, which will be where
a program continues after a subroutine finishes (returns). The continuation is more than just the
location; it also includes the state of data, variable declarations, and so forth at that point.

continuation passing style: A style of programming in which the continuations of operations are
explicitly created and managed.

control dependency: A dependency between two tasks where whether or not a task executes depends
on the result computed by another task.

convergent memory access: When memory accesses in adjacent SIMD lanes access adjacent memory
locations.

cooperative scheduling: A thread scheduling system that allows thread to switch tasks only at
predictable switch points.

core: A separate subprocessor on a multicore processor. A core should be able to support (at least one)
separate and divergent flow of control from other cores on the same processor. Note that there is
some inconsistency in the use of this term. For example, some graphic processor vendors use the
term as well for SIMD lanes supporting fibers. However, the separate flows of control in fibers
are simulated with masking on these devices, so there is a performance penalty for divergence.
We will restrict the use of the term core to the case where control flow divergence can be done
without penalty.

critical path: The longest chain of tasks ordered by dependencies in a program.
DAG: See directed acyclic graph.
data dependency: A dependency between two tasks where one task requires as input data the output

of another task.

372 APPENDIX E Glossary

data locality: See locality.
data parallelism: An attempt to an approach to parallelism that is more oriented around data rather

than tasks. However, in reality, successful strategies in parallel algorithm development tend to focus
on exploiting the parallelism in data, because data decomposition (generating tasks for different
units of data) scales, but functional decomposition (generation of hetereogeneous tasks for different
functions) does not. See Amdahl’s Law, Gustafson–Barsis’ Law, and Section 2.2.

deadlock: A programming error that occurs when at least two tasks wait for each other and each
will not resume until the other task proceeds. This happens easily when code requires locking
multiple mutexes; for example, each task can be holding a mutex required by the other task.
See Section 2.6.3.

dependencies: A relationship among tasks that results in an ordering constraint. See data dependency
and control dependency.

depth: See span complexity.
deque: A double-ended queue.
design pattern: A general term for pattern that includes not only algorithmic strategy patterns but

also patterns related to overall code organization.
deterministic: A deterministic algorithm is an algorithm that behaves predictably. Given a particular

input, a deterministic algorithm will always produce the same output. The definition of what is
the “same” may be important due to limited precision in mathematical operations and the likeli-
hood that optimizations including parallelization will rearrange the order of operations. These are
often referred to as “rounding” differences, which result when the order of mathematical operations
to compute answers differs between the original program and the final concurrent program. Con-
currency is not the only factor that can lead to non-deterministic algorithms but in practice it is
often the cause. Use of programming models with sequential semantics and eliminating data races
with proper access controls will generally eliminate non-determinism other than the “rounding”
differences.

directed acyclic graph: A graph that defines a partial order so that nodes can be sorted into a linear
sequence with references only going in one direction. A directed acyclic graph has, as its name
suggests, directed edges and no cycles.

direct memory access (DMA): The ability of one processing unit to access another processing unit’s
memory without the involvement of the other processing unit.

direct-mapped cache: A cache in which every location in memory can be stored in only one location
in the cache, typically using a modular function of the address.

distributed memory: Memory which is located in multiple physical locations. Accessing data from
more remote locations typically has higher latency and possibly lower bandwidth than accessing
local memory.

distributed memory: Memory that is physically located in separate computers. An indirect interface,
such as message passing, is required to access memory on remote computers, while local memory
can be accessed directly. Distributed memory is typically supported by clusters, which, for purposes
of this definition, we are considering to be a collection of computers. Since the memory on attached
co-processors also cannot typically be addressed directly from the host, it can be considered, for
functional purposes, to be a form of distributed memory.

divergent memory access: When memory accesses in adjacent SIMD lanes access non-adjacent
memory locations. See convergent memory access.

APPENDIX E Glossary 373

divide-and-conquer pattern: Recursive decomposition of a problem. Can often be parallelized with
the fork–join parallel pattern. See Section 8.1.

domain-specific language (DSL): A language with specialized features suitable for a specific appli-
cation domain, along with (typically) some restrictions to make optimization for that domain easier.
For instance, an image processing language might support direct specification of the stencil pattern
but restrict the use of general pointers. Domain-specific languages are often embedded languages,
in which case they are called embedded domain-specific languages, or EDSLs.

dwarf: A workload is which typical of some class of workloads. Sometimes used as a synonym for
pattern.

efficiency: Efficiency measures the return on investment in using additional hardware to operate in
parallel. See Section 2.5.2.

elemental function: A function used in a map pattern. An elemental function syntactically is defined
as acting on single item inputs, but in fact is applied in parallel to all the elements of a collection.
An elemental function can be vectorized by replicating the computation it specifies across multiple
SIMD lanes. See Sections 4.1 and B.10.

embarrassing parallelism: Refers to an algorithm that can be decomposed into a large number
of independent tasks with little or no synchronization or communication required. See map
pattern.

embedded language: A programming system whose syntax is supported using another language; for
example, ArBB supports an embedded interface in C++. The computations specified using this
interface are not, however, performed by C++. Instead, ArBB supports a set of types and opera-
tions in C++. Sequences of these operations can be recorded by ArBB and are then dynamically
recompiled to machine language. See Section B.10.

expand pattern: A pattern in which each element of a map pattern can output zero or more data
elements, which are then assembled into a single (possibly segmented) array. Related to the pack
pattern. See Sections 3.6.7 and 6.4.

false sharing: Two separate tasks in two separate cores may write to separate locations in memory, but
if those memory locations happened to be allocated in the same cache line, the cache coherence
hardware will attempt to keep the cache lines coherent, resulting in extra interprocessor com-
munication and reduced performance, even though the tasks are not actually sharing data. See
Section 2.4.2.

fiber: A very lightweight unit of parallelism that (conceptually) has its own flow of control but is
mapped onto a single lane of a SIMD processor. Divergent control flow between fibers on a sin-
gle SIMD processor is simulated by masking updates to registers and memory. See Section 2.3.
A masked implementation has implications for performance. In particular, divergent control flow
reduces lane utilization. There may also be limitations on control flow; for example, GOTO may
not be supported, only nested control flow. Note that the term fiber is not universally accepted. In
particular, on GPUs, fibers are often called threads and what we call threads are called work groups
in OpenCL.

Fibonacci numbers: The Fibonacci numbers are defined by linear recurrence relationship and suffer
from overuse in computer science as examples of recursion as a result. Fibonacci numbers are
defined as F(0)= 0 and F(1)= 1 plus the relationship defined by F(N)= F(N− 1)+F(N− 2).

fine-grain locking: Locks that are used to protect parts of a larger data structure from race conditions.
Such locks avoid locking the entirety of a large data structure during parallel accesses.

374 APPENDIX E Glossary

fine scale: A level of parallelism with very small units of parallel work. Reduction of overhead is very
important for fine-scale parallelism to be effective, since otherwise the overhead will dominate the
computation.

Flynn’s characterization: A classic categorization of parallel processors by Flynn [Fly72] based on
whether they have multiple flows of control or multiple streams of data. See Section 2.4.3.

fold: A collective operation in which every output is a function of all previous outputs and all inputs
up to the current output point. A fold is based on a successor function that computes a new output
value and a new state for the fold for each new input value. A scan is a special, parallelizable case
of a fold where the successor function is associative.

fork: The creation of a new thread or task. The original thread or task continues in parallel with the
forked thread or task. See spawn.

fork–join pattern: A pattern of computation in which new (potential) parallel flows of control are
created/split with forks and terminated/merged with joins. See Sections 3.3.1 and 8.1.

fork point: A point in the code where a fork takes place.
fully associative cache: See associative cache.
functional decomposition: An approach to parallelization of existing serial code where modules are

run on different threads. This approach does not give more than a constant factor of speedup at best
since the number of modules in a program is fixed.

functional unit: A hardware processing element that can do a simple operation, such as a single
arithmetic operation.

functor: A class which supports a function-call interface. Unlike functions in C and C++ however,
functors can also hold state and can support additional interfaces to modify that state. See lambda
functions.

fusion: An optimization in which two or more things with similar forms are combined. See loop fusion,
cache fusion, and code fusion.

future: An approach to asynchronous computing in which a computation is specified but does not
necessarily begin immediately. Instead, construction of a future returns an object which can be
used to query the status of the computation or wait for its completion.

future-proofed: A computer program written in a manner so it will survive future computer architec-
ture changes without significant changes to the program itself being necessary. Generally, the more
abstract a programming method is, the more future-proof that program is. Lower-level program-
ming methods that in some way mirror computer architectural details will be less able to survive
the future without change. Writing in an abstract, more future-proof fashion may involve tradeoffs
in efficiency, however.

gather pattern: A set of parallel random reads from memory. A gather takes a collection of addresses
and an input collection and returns a collection of data drawn from the input collection at the given
locations. Gathers are equivalent to random reads inside a map pattern. See Sections 3.5.4 and 6.1.

geometric decomposition pattern: A pattern that decomposes the computational domain for an algo-
rithm into a set of possibly overlapping subdomains. A special case is the partition pattern, which
is when the subdomains do not overlap. See Sections 3.5.3 and 6.6.

GPU: A graphics processing unit is an attached graphics processor originally specialized for graphics
computations. GPUs are able to support arbitrary computation, but they are specialized for mas-
sively parallel, fine-grained computations. They typically use multithreading, hyperthreading, and
fibers and make extensive use of latency hiding. They are typically able to maintain the state for
many more threads in memory than CPUs, but each thread can have less total state.

APPENDIX E Glossary 375

grain: A unit of work to be run serially. See granularity.
grain size: The amount of work in a grain.
granularity: The amount of decomposition applied to the parallelization of an algorithm, and the

grain size of that decomposition. If the granularity is too coarse, there are not enough parallel tasks
to effectively make use of all parallel hardware units and hide latency. If the granularity is too fine,
there are too many parallel tasks and overhead may dominate the computation.

graphics accelerators: A processor specialized for graphics workloads, usually in support of real-time
graphics APIs such as Direct3D and OpenGL. See GPU.

graph rewriting: A computational pattern where nodes of a graph are matched against templates and
substitutions made with other subgraphs. When applied to directed acyclic graphs (trees with shar-
ing), this is known as term graph rewriting and is equivalent to the lambda calculus, except that it
also explicitly represents sharing of memory. See Section 3.6.9.

greedy scheduling: A scheduling strategy in which no worker idles if there is work to be done.
grid: A distributed set of computers that can be allocated dynamically and accessed remotely. A grid is

distinguished from a cloud in that a grid may be supported by multiple organizations and is usually
more heterogeneous and physically distributed.

Gustafson–Barsis’ Law: A different view on Amdahl’s Law that factors in the fact that as problem
sizes grow the serial portion of computations tend to shrink as a percentage of the total work to
be done. Compare with other attempts to characterize the bounds of parallelism, such as Amdahl’s
Law and span complexity. See Section 2.5.5.

halo: In the implementation of the stencil pattern on distributed memory a set of elements surrounding
a partition that are replicated on different workers to allow each portion of the partition to be
computed in parallel.

hardware thread: A hardware implementation of a task with a separate flow of control. Multiple
hardware threads can be implemented using multiple cores, or they can run concurrently or simul-
taneously on one core in order to hide latency using methods such as hyperthreading of a processor
core. See Sections 1.2 and 2.5.9.

heap allocation: An allocation mechanism that supports unstructured memory allocations of different
sizes and at arbitrary times in the execution of a program. Compare with stack allocation.

heterogeneous computer: A computer which supports multiple processors each with special-
ized capabilities or performance characteristics.

holders: A form of /hyperobject/ useful for managing temporary task-local storage.
host processor: The main control processor in a system, as opposed to any graphics processors or

co-processors. The host processor is responsible for booting and running the operating system.
hyperobjects: A mechanism in Cilk Plus to support operations such as reduction that combine multiple

objects. See Section B.7. For examples using hyperobjects, see Sections 5.3.5, 8.10, and 11.2.1.
hyperthreading: Multithreading on a single processor core. With hyperthreading, also called simul-

taneous multithreading, multiple hardware threads may run on one core and share resources, but
some benefit is still obtained from parallelism or concurrency. For example, the processor may
draw instructions from multiple hyperthreads to fill superscalar instruction slots, or the processor
may switch between multiple hyperthreads in order to hide memory access latency. Typically each
hyperthread has, at least, its own register file and program counter, so that switching between
hyperthreads is relatively lightweight.

implementation pattern: A pattern that is specific to efficient implementation (usually of some other
pattern) using specific hardware mechanisms.

376 APPENDIX E Glossary

instance: In a map pattern one invocation of an elemental function on one element of the map.
instruction-level parallelism (ILP) wall: The limits to automatic parallelism given by the amount of

parallelism naturally available at the instruction level in serial programs.
intrinsics: Intrinsics appear to be functions in a language but are supported by the compiler directly. In

the case of SSE or vector intrinsics, the intrinsic function may map directly to a small number, often
one, of machine instructions which the compiler inserts without the overhead of a real function call.
For a discussion of SSE intrinsics, see Section 5.3.3.

irregular parallelism: parallelism with disimiliar tasks with unpredictable dependencies.
iteration pattern: A serial pattern in which the same sequence of instructions is executed repeatedly

and in sequence.
join: When multiple flows of control meet and a single flow continues onwards. Not to be confused

with a barrier, in which all the incoming flows continue onwards.
join point: A point in the code where a join takes place.
kernel: A general term for a small section of code that (1) executes a large amount of computation

relative to other parts of the program (also known as a hotspot), and/or (2) is the key code sequence
for an algorithm.

lambda expression: an expression that returns a lambda function.
lambda function: A lambda function, for programmers, is an anonymous function. Long a staple

of languages such as LISP, it was only recently supported for C++ per the C++11 standard. A
lambda function enables a fragment of code to be passed to another function without having to
write a separate named function or functor. This ability is particularly handy for using TBB. See
Section D.2.

lane: An element of a SIMD register file and associated functional unit, considered as a unit of hardware
for performing parallel computation. SIMD instructions execute computations across multiple lanes.

latency: The time it takes to complete a task—that is, the time between when the task begins and when
it ends. Latency has units of time. The scale can be anywhere from nanoseconds to days. Lower
latency is better in general. See Section 2.5.1.

latency hiding: Schedules computations on a processing element while other tasks using that core are
waiting for long-latency operations to complete, such as memory or disk transfers. The latency is
not actually hidden, since each task still takes the same time to complete, but more tasks can be
completed in a given time since resources are shared more efficiently, so throughput is improved.
See Section 2.5.9.

latent parallelism: See potential parallelism.
linear speedup: Speedup in which the performance improves directly proportional to the physical

processing resources available. Considered to be optimal.
Little’s formula: A formula relating parallelism, concurrency, and latency.
livelock: A situation in which multiple workers are active, but are not doing useful work and are not

making forward progress. See deadlock.
load balancing: Distributing work across resources so that no resource idles while there is work to be

done.
load imbalance: A situation where uneven sizes of tasks assigned to workers results in some workers

finishing early and then idling while waiting for other workers to complete larger tasks. See load
balancing.

APPENDIX E Glossary 377

locality: Refers to either spatial locality or temporal locality. Maintaining a high degree of locality of
reference is a key to scaling. See Section 2.6.5.

lock: A mechanism for implementing mutual exclusion. Before entering a mutual exclusion region, a
thread must first try to acquire a lock on that region. If the lock has already been acquired by another
thread, the current thread must block, which it may do by either suspending operation or spinning.
When the lock is released, then the current thread is free to acquire it. Locks can be implemented
using atomic operations, which are themselves a form of mutual exclusion on basic operations,
implemented in hardware. See Section 2.6.2.

loop-carried dependencies: A dependency that exists between multipleiterations of an iteration
pattern.

loop fusion: An optimization where two loops with the compatible indexing executed in sequence can
be combined into a single loop.

mandatory concurrency: See mandatory parallelism.
mandatory parallelism: Parallelism that is semantically required for program correctness. See

Section 9.6.
many-core processor: A multicore processor with so many cores that in practice we do not enumerate

them; there are just “lots.” The term has been generally used with processors with 32 or more cores,
but there is no precise definition.

map pattern: Replicates a function that is applied to all elements of a collection, producing a new
collection with the same shape as the input. The function being replicated is called an elemental
function since it applies to the elements of an actual collection of input data. See Sections 3.3.2
and Chapter 4.

masking: A technique for emulating SPMD control flow on SIMD machines in which elements that
are not active are prohibited from updating externally visible state.

megahertz era: A historical period of time during which processors doubled clock rates at a rate sim-
ilar to the doubling of transistors in a design, roughly every 2 years. Such rapid rise in processor
clock speeds ceased at just under 4 GHz (4,000 megahertz) in 2004. Designs shifted toward adding
more cores, marking the shift to the multicore era.

member function: A function associated with an object and which can access instance-specific object
state.

memory fences: A synchronization mechanism which can ensure that memory operations before the
fence are completed and are visible before memory operations after the fence.

memory hierarchy: See memory subsystem.
memory subsystem: The portion of a computer system responsible for moving code and data between

the main system memory and the computational units. The memory subsystem may include addi-
tional connections to I/O devices including graphics cards, disk drives, and network interfaces. A
modern memory subsystem will generally have many levels, including some levels of caching both
on and off the processor die. Coherent memory subsystems, which are used in most computers,
provide for a single view of the contents of the main system memory despite temporary copies in
caches and concurrency in the system. See Section 2.4.1.

memory wall: A limit to parallel scalability given by the fact that memory (and more gener-
ally, communication) bandwidth and in particular latency are not scaling at the same rate as
computation.

378 APPENDIX E Glossary

merge scatter pattern: In a merge scatter, results that collide while implementing a scatter pattern
are combined with an associative operator. The operator needs to be associative so the answer is
the same regardless of the order in which elements are combined. We might also want to use this
operator to combine scattered values with the previous contents of the target array. The merge
scatter pattern can be used to implement histograms, for example. See Section 6.2.

metaprogramming: The use of one program to generate or manipulate another, or itself. See also
template metaprogramming.

method: See member function.
MIC: The Intel Many Integrated Core architecture is designed for highly parallel workloads. The archi-

tecture emphasizes higher core counts on a single die, and simpler more efficient cores, than on a
traditional CPU. A prototype with up to 32 cores and based on 45-nm process technology, known
as Knight Ferry, was made available, but not sold, by Intel in 2010 and 2011. A product built on
22-nm process technology with more than 50 cores is expected in late 2012 or sometime in 2013.

MIMD: Multiple Instruction, Multiple Data, one of Flynn’s classes of computer that supports multiple
threads of control, each with its own data access. See SIMD and Section 2.4.3.

monoid: An associative operation that has an identity.
Moore’s Law: Describes a long-term trend that the number of transistors that can be incorporated

inexpensively on an integrated circuit chip doubles approximately every 2 years. It is named for
Intel co-founder Gordon Moore, who described the trend in his 1965 paper in Electronics Magazine.
This forecast of the pace of silicon technology has essentially described the basic business model
for the semiconductor industry as well as being a driving force of technological and social change
since the late 20th century.

motif: Sometimes used as a synonym for pattern.
multicore: A processor with multiple subprocessors, each subprocessor (known as a core) supporting

at least one hardware thread.
multicore era: Time after which processor designs shifted away from rapidly rising clock rates and

shifted toward adding more cores. This era began roughly in 2005.
multiple-processor systems: A system with two or more processors implemented on separate physical

dies.
mutex: Short for /mutual exclusion/, and also used as a synonym for lock.
mutual exclusion: A mechanism for protecting a set of data values so that while they are manipu-

lated by one parallel thread they cannot be manipulated by another. See lock and transactional
memory.

nesting pattern: Refers to the ability to hierarchically compose other patterns. The nesting pattern
simply means that all “tasks” in the pattern diagrams within this book are actually locations within
which general code can be inserted. This code can in turn be composed of other patterns.

Network interface controller (NIC): A specialized communication processor.
node (in a cluster): A shared memory computer, often on a single board with multiple processors, that

is connected with other nodes to form a cluster computer or supercomputer.
non-deterministic: Exhibiting a lack of deterministic behavior, so results can vary from run to run of

an algorithm. See more in the definition for deterministic.
non-uniform memory access (NUMA): A memory system in which certain banks of memory take

longer to access than others, even though all the memory uses a single address space. See also
distributed memory.

APPENDIX E Glossary 379

objects: Objects are a language construct that associate data with the code to act on and manage that
data. Multiple functions may be associated with an object and these functions are called the methods
or member functions of that object. Objects are considered to be members of a class of objects,
and classes can be arranged in a hierarchy in which subclasses inherit and extend the features of
superclasses. The state of an object may or may not be directly accessible; in many cases, access to
an object’s state may only be permitted through its methods. See Section 3.4.5.

offload: Placing part of a computation on an attached device such as a GPU or co-processor.
online: An algorithm which can begin execution before all input data is read.
OpenCL: Open Computing Language, initiated by Apple Corporation, is now a standard defined by

the Khronos group for graphics processors and attached co-processors. However, OpenCL can also
be used to specify parallel and vectorized computations on multicore host processors.

optional parallelism: Parallelism that is specified by a programming model but is not semantically
necessary. Antonym is mandatory parallelism.

over-decomposition: A parallel programming style where many more tasks are specified than there are
physical workers for executing it. This can be beneficial for load balancing particularly in systems
that support optional parallelism.

over-subscription: More threads run on a system than it has physical workers, resulting in exces-
sive overhead for switching between multiple threads or exceeding the number of threads that can
be supported by the operating system. This can be avoided by using a programming model with
optional parallelism.

pack pattern: A data management pattern where certain elements of a collection are discarded and
the remaining elements are placed in a contiguous sequence, maintaining the order of the original
input. Related to the expand pattern.

page: The granularity at which virtual to physical address mapping is done. Within a page, the mapping
of virtual to physical memory addresses is continuous. See Section 2.4.1.

parallel: Physically happening simultaneously. Two tasks that are both actually doing work at some
point in time are considered to be operating in parallel. When a distinction is made between con-
current and parallel, the key is whether work can ever be done simultaneously. Multiplexing of
a single processor core, by multitasking operating systems, has allowed concurrency for decades
even when simultaneous execution was impossible because there was only one processing core.

parallel pattern: Patterns arising specifically in the specification of parallel applications. Examples
of parallel patterns include the map pattern, the reduction pattern, the fork–join pattern, and the
partition pattern.

parallel slack: The amount of “extra” parallelism available above the minimum necessary to use the
parallel hardware resources. See Sections 2.4.2 and 2.5.6.

parallelism: Doing more than one thing at a time. Attempts to classify types of parallelism are
numerous; read more about classifications of parallelism in Sections 2.2 and 2.3.

parallelization: The act of transforming code to enable simultaneous activities. The parallelization of
a program allows at least parts of it to execute in parallel.

partition pattern: A pattern that decomposes the computational domain for an algorithm into a set of
non-overlapping subdomains called tiles or blocks (although tile is the term preferred in this book).
See the geometric decomposition pattern, which is similar but allows overlap between subdomains.
The partition pattern is a special case of the geometric decomposition pattern that does not allow
overlap. See Section 6.6.

380 APPENDIX E Glossary

pattern: A recurring combination of data and task management, separate from any specific algo-
rithm. Patterns are universal in that they apply to and can be used in any programming system.
Patterns have also been called dwarfs, motifs, and algorithmic skeletons. Patterns are not nec-
essarily tied to any particular hardware architecture or programming language or system. Exam-
ples of patterns include the sequence pattern and the object pattern. See parallel pattern and
Chapter 3.

PCIe bus: A peripheral bus supporting relatively high bandwidth and DMA, often used for attaching
specialized co-processors such as GPUs and NICs.

permutation scatter pattern: A form of the scatter pattern in which multiple writes to a single stor-
age location are illegal. This form of scatter is deterministic, but can only be considered safe if
collisions are checked for. See Section 6.2.

pipeline pattern: A set of data processing elements connected in series, generally so that the output
of one element is the input of the next one. The elements of a pipeline are often executed con-
currently. Describing many algorithms, including many signal processing problems, as pipelines is
generally quite natural and lends itself to parallel execution. However, in order to scale beyond the
number of pipeline stages, it is necessary to exploit parallelism within a single pipeline stage. See
Sections 3.5.2, 9.2, 12.2, and C.6.

potential parallelism: At a given point of time, the number of parallel tasks that could be used by a
parallel implementation of an algorithm, given sufficient hardware resources. Additional hardware
resources above the potential parallelism in an algorithm are not usable. If the potential paral-
lelism is larger than the physical parallelism, then the tasks will need to share physical resources by
serialization. Also known as latent parallelism and available parallelism.

power wall: A limit to the practical clock rate of serial processors given by thermal dissipation and the
non-linear relationship between power and switching speed.

pragma: A form of program markup used to give a hint to a compiler but not change the semantics of
a program. Also called a “compiler directive.”

precision: The detail in which a quantity is expressed. Lack of precision is the source of rounding
errors in computation. The finite number of bits used to store a number requires some approximation
of the true value. Errors accumulate when multiple computations are made to the data in operations
such as reductions. Precision is measured in terms of the number of digits that contain meaningful
data, known as significant digits. Since precision is most often considered in reference to floating-
point numbers, significant digits in computer science have often been measured in bits (binary
digits) because most floating-point arithmetic is done in radix-2. With the advent of IEEE-754-
2008, radix-10 arithmetic is once again popular and precision of such data would be expressed in
terms of decimal digits. See Section 5.1.4.

preemptive scheduling: A scheduling system that allows a thread to switch tasks at any time.
priority scatter pattern: A deterministic form of the scatter pattern in which an attempt to write

multiple values in parallel to a single storage location results in one value (and only one) value
being stored based on a priority function, while all other values are discarded. The unique priority
given to each parallel write in a priority scatter can be assigned in such a way that the result is
deterministic and equivalent to a serial implementation. See Section 6.2.

process: A application-level unit of parallel work. A process has its own thread of control and is
managed by the operating system. Usually, unless special provisions are made for shared memory,
a process cannot access the memory of another process.

APPENDIX E Glossary 381

producer–consumer: A relationship in which the producer creates data that is passed to the consumer
to utilize or further process. If data is not consumed exactly when it is produced, it must be buffered.
Buffering introduces challenges of stalling the producer when the buffer is full, and stalling the
consumer when the buffer is empty.

pure function: A function whose output depends only on its input, and that does not modify any other
system state.

race condition: Non-deterministic behavior in a parallel program that is generally a programming
error. A race condition occurs when concurrent tasks perform operations on the same memory
location without proper synchronization and one of the memory operations is a write. Code with a
race may operate correctly sometimes and fail other times. See Section 2.6.1.

recurrence pattern: A sequence defined by a recursive equation. In a recursive equation, one or more
initial terms are given and each further term of the sequence is defined as a function of the preceding
terms. Implementing recurrences with recursion is often inefficient since it tends to recompute ele-
ments of the recurrence unnecessarily. Recurrences also occur in loops with dependencies between
iterations. In the case of a single loop, if the dependence is associative, it can be parallelized with
the scan pattern. If the dependence is inside a multidimensional loop nest, the entire nest can
always be parallelized over n− 1 dimensions using a hyperplane sweep, and it can also often be
parallelized with the fork–join pattern. See Sections 3.3.6, 7.5, and 8.12.

recursion: The act of a function being re-entered while an instance of the function is still active in the
same thread of execution. In the simplest and most common case, a function directly calls itself,
although recursion can also occur between multiple functions. Recursion is supported by storing the
state for the continuations of partially completed functions in dynamically allocated memory, such
as on a stack, although if higher-order functions are supported a more complex memory allocation
scheme may be required. Bounding the depth of recursion can be important to prevent excessive
use of memory.

reduce: Apply operation to merge a collection of values to a single value. An example is summing a
sequence of values. See reduction pattern.

reducers: Hyperobjects that can implement reduce operations.
reduction pattern: The most basic collective pattern, a reduction combines all the elements in a col-

lection into a single element using pairwise applications of a combiner operation. In order to
allow parallelization, the combiner operation should be associative. In order to allow for efficient
vectorization, it is useful if the combiner operation is also commutative. Many useful reduction
operations, such as maximum and (modular integer) addition, are both associative and commuta-
tive. Unfortunately, floating-point addition and multiplication are not, which can lead to potential
non-determinism. See Section 5.1.

reduction variable: A variable that appears in a loop for combining the results of many different loop
iterations.

refactoring: Reorganizing code to make it better suited for some purpose, such as parallelization.
registers: Very fast but usually very limited on-core storage for intermediate results.
regular parallelism: A class of algorithms in which the tasks and data dependencies are arranged in a

regular and predictable pattern.
relative speedup: Speedup in which a parallel solution to a problem is compared to a serialization of

the same solution, that is, using the same algorithm. See absolute speedup.
relaxed sequential semantics: See sequential semantics for an explanation.

382 APPENDIX E Glossary

response time: The time between when a request is made and when a response is received.
rotate pattern: A special case of the shift pattern that handles boundary conditions by moving data

from the other side of the collection. See Section 6.1.2.
safety: A system property that automatically guards against certain classes of programmer errors, such

as race conditions.
saturation: Saturation arithmetic has maximum and minimum values that are utilized when compu-

tation would logically arrive at higher or lower values if unbounded numerical representations
were utilized. Saturation arithmetic is needed only because numerical representations on computer
systems are almost always limited in precision and range. In floating-point arithmetic, the con-
cept of positive and negative infinity as uniquely represented numbers in the floating-point format
is utilized and is the default in instances of saturation. In integer arithmetic, wrap-around arith-
metic is generally the default. Special instructions for saturation arithmetic are available in modern
instruction sets (such as MMX), often originally motivated by graphics where the desire to make
a graphical pixel brighter and brighter by increasing the value of a pixel was frustrated by a sud-
den dimming of the pixel due to wrap-around arithmetic. In an 8-bit unsigned number format, the
addition of 254 with 9 will result in an answer of 7 in wrap-around or 255 in saturation arith-
metic. Likewise, the subtraction of 11 from 7 would result in 252 in wrap-around vs. 0 in saturation
arithmetic. Note, however, that saturation arithmetic for signed numbers is not associative.

scalability: A measure of the increase in performance as a function of the availability of more hardware
to use in parallel. See Section 2.5.2.

scalable: An application is scalable if its performance increases when additional parallel hardware
resources are added. See scalability.

scalar promotion: When a scalar and a vector are combined using a vector operation, the scalar is
automatically treated as a vector with all elements set to the same value.

scan pattern: Pattern arising from a one-dimensional recurrence relationship in the definition of a
computation. This often arises as a loop-carried dependency where the computation of one iteration
is dependent on the results of a prior iteration. Such loops are, surprisingly, still parallelizable if the
dependency can be expressed as an associative operation. See Section 5.4.

scatter pattern: A set of input data and a set of indices is given, and each element of the input is
written at the given location. Scatter can be considered the inverse of the gather pattern. A collision
in output occurs if the set of indices maps multiple input data to the same location. There are at
least four ways to resolve such collisions: permutation scatter, atomic scatter, priority scatter, and
merge scatter. See Section 3.5.5.

search pattern: A pattern that finds data that meets some criteria within a collection of data. See
Section 3.6.5.

segmentation: A representation of a collection divided into non-uniform non-overlapping subdo-
mains. Operations such as reduction and scan can be generalized to operate over the segments
of a collection independently while still being perfectly load balanced. See Section 3.6.6.

selection pattern: A serial pattern in which one of two flows of control are chosen based on a Boolean
control expression.

semantics: What a programming language construct does, as opposed to how it does it (pragmatics)
or how it is expressed (syntax).

separating hyperplane: A plane that can be used to determine the sweep order for executing a
multidimensional recurrence in parallel.

APPENDIX E Glossary 383

sequence pattern: The most fundamental serial pattern in which tasks are executed one after the other,
with each task completing before the next one starts. See Section 3.2.1.

sequential bottlenecks: See serial bottlenecks.
sequential consistency: Sequential consistency is a memory consistency model where every task in a

concurrent system sees all memory writes (updates) happen in the exact same order, and a task’s
own writes occur in the order that the task specified. See Section 2.6.1.

sequential semantics: Refers to when a (parallel) program can be executed using a single thread of
control as an ordinary sequential program without changing the semantics of the program. Paral-
lel programming with sequential semantics has many advantages over programming in a manner
that precludes serial execution and is therefore strongly encouraged. Such programs are consid-
ered easier to understand, easier to debug, more efficient on sequential machines, and better at
supporting nested parallelism. Sequential semantics casts parallelism as an accelerator and not
as mandatory for correctness. This means that one does not need a conceptual parallel model to
understand or execute a program with sequential semantics. Examples of mandatory parallelism
include producer–consumer relationships with bounded buffers (hence, the producer cannot nec-
essarily be completely executed before the consumer because the producer can become blocked)
and message passing (e.g., MPI) programs with cyclic message passing. Due to timing, precision,
and other sources of inexactness, the results of a sequential execution may differ from the concur-
rent invocation of the same program. Sequential semantics solely means that any such variation
is not due to the semantics of the program. The term “relaxed sequential semantics” is sometimes
used to explicitly acknowledge the variations possible due to non-semantic differences in serial vs.
concurrent executions. See Section 1.1 See serial semantics.

serial: Neither concurrent nor parallel.
serial bottlenecks: A region of an otherwise parallel program that runs serially.
serial consistency: A parallel program that produces the same result as a specific serial ordering of its

tasks.
serial elision: The serial elision of a Cilk Plus program is generated by erasing occurrences of the

cilk_spawn and cilk_sync keywords and replacing cilk_for with for. Cilk Plus is a faith-
ful extension of C/C++ in the sense that the serial elision of any Cilk Plus program is both a
serial C/C++ program and a semantically valid implementation of the Cilk Plus program. The term
elision arose from earlier versions of Cilk that lacked cilk_for, so eliding (omitting) the two
other keywords sufficed. The term “C elision” is sometimes used, too, harking back to when Cilk
was an extension of C but not C++. See Section B.4.

serial illusion: The apparent serial execution order of machine language instructions in a computer.
In fact, hardware is naturally parallel, and many low-level optimizations and high-performance
implementation techniques can reorder operations.

serial semantics: Same as sequential semantics.
serial traps: A serial trap is a programming construct that semantically requires serial execution for

proper results in general even though common cases may be overconstrained with regard to con-
currency by such semantics. The term “trap” acknowledges how such constructs can easily escape
attention as barriers to parallelism, in part because they are so common and were not intentionally
designed to preclude parallelism. For instance, for, in the C language, has semantics that dictate
the order of iterations by allowing an iteration to assume that all prior iterations have been exe-
cuted. Many loops do not rely upon side-effects of prior iterations and would be natural candidates

384 APPENDIX E Glossary

for parallel execution, but they require analysis in order for a system to determine that parallel exe-
cution would not violate the program semantics. Use of cilk_for, for instance, has no such serial
semantics and therefore is not a serial trap. See examples in Section 1.3.3.

serialization: Refers to when the tasks in a potentially parallel algorithm are executed in a specific
serial order, typically due to resource constraints. The opposite of parallelization.

set associative cache: A cache architecture in which a particular location in main memory can be
stored in a (small) number of different locations in cache.

shared address space: Even if units of parallel work do not share a physical memory, they may agree
on conventions that allow a single unified set of addresses to be used. For example, one range
of addresses could refer to memory on the host, while another range could refer to memory on a
specific co-processor. The use of unified addresses simplifies memory management.

shared memory: Refers to when two units of parallel work can access data in the same location. Nor-
mally doing this safely requires synchronization. The units of parallel work—processes, threads,
tasks, and fibers—can all share data this way, if the physical memory system allows it. However,
processes do not share memory by default and special calls to the operating system are required to
set it up.

shift pattern: A special case of the gather pattern that translates (that is, offsets the location of) data
in a collection. There are a few variants based on how boundary conditions are handled. The basic
pattern fills in a default value at boundaries, while the rotate pattern moves data from the other side
of the collection. See Section 6.1.2.

SIMD: Single Instruction, Multiple Data, one of Flynn’s classes of computer that supports a single
operation over multiple data elements. See MIMD and Section 2.4.3.

simultaneous multithreading: A technique that supports the execution of multiple threads on a sin-
gle core by drawing instructions from multiple threads and scheduling them in each superscalar
instruction slot.

SIMT: Single Instruction, Multiple Threads, a variation on Flynn’s characterizations that is really a
collection of multiple SIMD processors, with control flow emulated on SIMD machines using a
mechanism such as masking. See Section 2.4.3.

software thread: A software thread is a virtual hardware thread—in other words, a single flow of
execution in software intended to map one for one to a hardware thread. An operating system
typically enables many more software threads to exist than there are actual hardware threads by
mapping software threads to hardware threads as necessary. See Section 2.3.

space complexity: A complexity measure for the amount of memory used by an algorithm as a
function of problem size.

span: How long a program would take to execute on an idealized machine with an infinite number of
processors. The span of an algorithm can also be seen as the critical path in its task dependency
graph. See span complexity.

span complexity: Span complexity is an asymptotic measure of complexity based on the span. In the
analysis of parallel algorithms and in particular in order to predict their scalability, this measure
is as important as work complexity. Other synonyms for span complexity in the literature are step
complexity, depth, or circuit complexity. Compare with other attempts to characterize the bounds
of parallelism: Amdahl’s Law and Gustafson-Barsis’ Law. See Section 2.5.6.

spatial locality: Nearby when measured in terms of distance (in memory address). Compare with tem-
poral locality. Spatial locality refers to a program behavior where the use of one data element

APPENDIX E Glossary 385

indicates that data nearby, often the next data element, will probably be used soon. Algorithms
exhibiting good spatial locality in data usage can benefit from cache line structures and prefetching
hardware, both common components in modern computers.

spawn: Generically, the creation of a new task. In terms of Cilk Plus, cilk_spawn creates a spawn,
but the new task created is actually the continuation and not the call that is the target of the spawn
keyword. See fork.

spawning block: The function, try block, or cilk_for body that contains the spawn. A sync
(cilk_sync) waits only for spawns that have occurred in the same spawning block and have no
effect on spawns done by other tasks or threads, nor those done prior to entering the current spawn-
ing block. A sync is always done, if there have been spawns, when exiting the enclosing spawning
block.

speedup: Speedup is the ratio between the latency for solving a problem with one processing unit
versus the latency for solving the same problem with multiple processing units in parallel. See
Section 2.5.2.

split pattern: A generalized version of the pack pattern that takes an input collection and a set of
Boolean labels to go with every element of that collection. It reorganizes the data so all the elements
marked with false are at one end of the output collection (rather than discarding them as with the
pack pattern), and all the elements marked with true are at the other end of the collection. The
determinisitic version of this pattern is stable, in that it preserves the original order of the input
collection in each output partition. One major application of this pattern is in base-2 radix sort. The
bin pattern is a generalization to more than two categories. See Section 6.4.

SPMD (Single Program, Multiple Data): A programming system that runs a single function on mul-
tiple programming elements, but allows each instance of the function to follow different control
flow paths. See also SIMD, MIMD, and SIMT.

stencil pattern: A regular input data access pattern based on a set of fixed offsets relative to an output
position. The stencil is repeated for every output position in a grid. This pattern combines the map
pattern with a local gather over a fixed set of relative offsets and can optionally be implemented
using the shift pattern. Stencil operations are common in algorithms that deal with regular grids of
data, such as image processing. For example, convolution is an image processing operation where
the inputs from a stencil are combined linearly using a weighted sum. See Chapter 7.

step complexity: See span complexity.
strand: In Cilk Plus, a serially executed sequence of instructions that does not contain a spawn or sync

point. In the directed acyclic graph model of Section 2.5.2, a strand is a vertex with at most one
outgoing and at most one incoming edge. A cilk_spawn ends the current strand and starts two
new strands, one for the callee and one for the continuation of the caller. A cilk_sync ends one
or more strands and starts a new strand for the continuation after the join.

strangled scaling: A programming error in which the performance of parallel code is poor due to high
contention or overhead, so much so that it may underperform the non-parallel (serial) code. See
Section 2.6.4.

strip-mining: When implementing a stencil or map, an optimization that groups instances in a way
that avoids unnecessary and redundant memory accesses and aligns memory accesses with vector
lanes.

strong scalability: A form of scalability that measures how performance increases when using
additional workers but with a fixed problem size. See Amdahl’s Law and weak scalability.

386 APPENDIX E Glossary

structure-of-arrays (SoA): A data layout for collections of heterogeneous data where all the data for
each component of each element of the collection is stored in adjacent physical locations, so that
data of the same type is stored together. Compare with array-of-structures.

successor function: In a fold, the function that computes a new state given the old state and a new
input item.

superlinear speedup: Speedup where performance grows at a rate greater than the rate at which new
workers are added. Since linear scalability is technical optimal, superlinear speedup is typically the
result of cache effects, changes in the algorithm behavior, or speculative execution.

superscalar processor: A processor that can execute multiple instructions in a single clock cycle.
superscalar sequence pattern: A sequence of tasks ordered by data dependencies rather than being

ordered by a single sequential ordering. This allows parallel (superscalar) execution of tasks that
have no relative ordering relative to each other. See Sections 3.6.1.

switch-on-event multithreading: A technique that supports the execution of multiple threads on a
single core by switching to another thread on a long-latency event, such as a cache miss.

sync: In terms of Cilk Plus, cilk_sync creates a sync point. Control flow pauses at a sync point until
completion of all spawns issued by the spawning block that contains the sync point. A sync is
not affected by spawns done by other tasks or threads, nor those done prior to entering the current
spawning block. An sync is always done when exiting a spawning block that contained any spawns.
This is required for program composability.

synchronization: The coordination, of tasks or threads, in order to obtain the desired runtime order.
Commonly used to avoid undesired race conditions.

tail recursion: A form of recursion where a result of the recursive call is returned immediately without
modification to the parent function. Such uses of recursion can be converted to iteration.

target processor: A (typically specialized) processor to which work can be offloaded. See host
processor.

task: A lightweight unit of potential parallelism with its own control flow. Unlike threads, tasks usu-
ally do not imply mandatory parallelism. Threads are a mechanism for executing tasks in parallel,
whereas tasks are units of work that merely provide the opportunity for parallel execution; tasks
are not themselves a mechanism of parallel execution.

task parallelism: An attempt to classify parallelism as more oriented around tasks than data. We delib-
erately avoid use of this term because its meaning varies. In particular, elsewhere “task parallelism”
can refer to tasks generated by functional decomposition or to irregular tasks still generated by data
decomposition. In this book, any parallelism generated by data decomposition, regular or irregular,
is considered data parallelism. See Section 2.2.

template metaprogramming: The use of generic programming techniques to manipulate and
optimize source code before it is compiled. Specifically, the template rewriting rules in C++ can
be interpreted as a functional language for manipulating C++ source code. Some high-performance
libraries make use of this fact to automatically perform optimizations of C++ code by, for example,
fusing operations together. See the more general term metaprogramming.

temporal locality: Nearby when measured in terms of time; compare with spatial locality. Temporal
locality refers to a program behavior in which data is likely to be reused relatively soon. Algo-
rithms exhibiting good temporal locality in data usage can benefit from the data caching common
in modern computers. It is not unusual to be able to achieve both temporal and spatial locality in
data usage. Computer systems are generally more able to achieve optimal performance when both
are achieved, hence the interest in algorithm design to do so.

APPENDIX E Glossary 387

thread: In general, a software thread is any software unit of parallel work with an independent flow of
control, and a hardware thread is any hardware unit capable of executing a single flow of control
(in particular, a hardware unit that maintains a single program counter). Threads are a mechanism
for implementing tasks. A multitasking or multithreading operating system will multiplex multi-
ple software threads onto a single hardware thread by interleaving execution via software-created
time-slices. A multicore or many-core processor consists of multiple cores to execute at least one
independent software thread per core through duplication of hardware. A multithreaded or hyper-
threaded processor core will multiplex a single core to execute multiple software threads through
interleaving of software threads via hardware mechanisms.

thread parallelism: A mechanism for implementing parallelism in hardware using a separate flow of
control for each task. See Section 2.3.

throughput: Given a set of tasks to be performed, the rate at which those tasks are completed.
Throughput measures the rate of computation, and it is given in units of tasks per unit time. See
bandwidth and latency and Section 2.5.1.

tile: A region of memory, typically a section of a larger collection, such as might result from the
application of the partition pattern. See granularity, block, and tiling.

tiled decomposition: See tiling.
tiled SIMD: Execution of an SPMD program using an array of SIMD processors, each such processor

with a separate thread of control.
tiling: Dividing a loop into a set of parallel tasks of a suitable granularity. In general, tiling con-

sists of applying multiple steps on a smaller part of a problem instead of running each step on
the whole problem one after the other. The purpose of tiling is to increase the reuse of data
in caches. Tiling can lead to dramatic performance increases when a whole problem does not
fit in cache. We prefer the term “tiling” to “blocking” and “tile” rather than “block.” Tiling
and tile have become the more common term in recent times. Sections 5.1.3 and 7.3 for more
discussion.

time complexity: A complexity measure for the amount of time used by an algorithm as a function of
problem size.

TLB: A Translation Lookaside Buffer is a specialized cache used to hold translations of virtual to
physical page addresses. The number of elements in the TLB determines how many pages of mem-
ory can be accessed simultaneously with good efficiency. Accessing a page not in the TLB will
cause a TLB miss. A TLB miss typically causes a trap to the operating system so that the page table
can be referenced and the TLB updated. See Section 2.4.1.

TLB miss: Occurs when a virtual memory access is made for which the page translation is not
available in the TLB.

TLB thrashing: The overhead caused by the high TLB miss rate that results when a program
frequently accesses more pages than can be covered by a TLB.

transaction: An atomic update to data, meaning that the results of the update either are not seen or
are seen in their entirety. Transactions satisfy the need for atomic data updates to a central reposi-
tory without requiring an ordering on the updates. Transactions are motivated by the need to have
updates be observed in an “all or nothing” fashion. Consider an update to a hotel reservation in an
online system, from an “economy room for $75/night” to a “penthouse suite for $9800/night.” We
do not want a separate task to see a partial update and bill us for $9800/night for an economy room.
In general, transaction operations will be non-associative and the outcome will not be determinis-
tic if the order in which the individual operations are performed is non-deterministic. The merge

388 APPENDIX E Glossary

scatter pattern with a non-associative operator can result in simple forms of the transaction pattern.
See Sections 3.7.2 and 6.2.

transactional memory: A way of accessing memory so that a collection of memory updates, called a
transaction, will be visible to other tasks or threads all at once. Additionally, for a transaction to
succeed, any data read during the transaction must not be modified during the transaction by other
tasks or threads. Transactions that fail are generally retried until they succeed. Transactional mem-
ory offers an alternative method of mutual exclusion from traditional locking that may enhance the
scalability of an algorithm in certain cases. Intel Transactional Support Extensions (TSX) support
is an example of hardware support for transactional memory.

Translation Lookaside Buffer: See TLB.
uniform parameter: A parameter that is broadcast to all the elements of a map and therefore is the

same for each instance of the map’s elemental function. See varying parameter.
unpack pattern: The inverse of the pack pattern, this operation scatters data back into its original

locations. It may optionally fill in a default value for missing data.
unsplit pattern: The inverse of the split pattern, this operation scatters data back into its original

locations. Unlike the case with the unpack pattern, there is no missing data to worry about.
unzip pattern: The inverse of the zip pattern, this operation deinterleaves data and can be used to

convert from array-of-structures to structure-of-arrays.
varying parameter: A parameter to a map pattern that delivers a different element to each instance

of the map’s elemental function. See uniform parameter.
vector intrinsics: An instrinsic used to specify a vector operation.
vector operation: A low-level operation that can act on multiple data elements at once in SIMD

fashion.
vector parallelism: A mechanism for implementing parallelism in hardware using the same flow of

control on multiple data elements. See Section 2.3.
vector processor: A form of SIMD processor in which large amounts of data are streamed to and from

external memory. True vector processors are rare today, so this term now is also used for processors
with SIMD instructions that can act on short, fixed-length vectors held in registers.

vectorization: The act of transforming code to enable simultaneous computations using vector
hardware. Instructions such as MMX, SSE, and AVX instructions utilize vector hardware. The
vectorization of code tends to enhance performance because more data is processed per instruction
than would be done otherwise. Vectorization is a specialized form of parallelism. See also vectorize.

vectorize: Converting a program from a scalar implementation to a vectorized implementation to
utilize vector hardware such as SIMD instructions (MMX, SSE, AVX, etc.).

vector units: functional units that can issue multiple operations of the same type in a single clock
cycle in SIMD fashion.

virtual memory: Virtual memory decouples the address used by software from the physical addresses
of real memory. The translation from virtual addresses to physical addresses is done in hardware
which is initialized and controlled by the operating system. See Section 2.4.1.

VLIW (Very Large Instruction Word): An processor architecture which supports instructions which
can explicitly issue multiple operations in a single clock cycle. See superscalar processor.

weak scalability: A form of scalability that measures how performance increases when using addi-
tional workers with a problem size that grows at the same rate. See Gustafson-Barsis’s Law and
strong scalability.

APPENDIX E Glossary 389

work: The computational part of a program, as contrasted with communication or coordination. An
abstract unit of such computation.

work complexity: The asymptotic number of operations required by an algorithm to run on a single
thread. Work complexity is essentially the traditional asymptotic complexity for sequential running
time, although frequently, so speedup ratios can be computed, it is better to use big Theta notation
rather than big O notation. Related terms include span complexity.

worker: An abstract unit of actual parallelism, for example, a core or a SIMD lane.
working set: For an algorithm, the set of data that should be maintained in cache for good performance.
work-span: A model for parallel computation that can be used to compute both upper and lower

bounds on speedup. See Section 2.5.6. Related terms include span complexity and work complexity.
workpile pattern: An extension of the map pattern that allows new work items to be added during

execution from inside the elemental function. If the map pattern can be thought of as a paralleliza-
tion of a for loop, the workpile pattern can be thought of as a generalization of a while loop. See
Section 3.6.4.

work-stealing: A load balancing technique where /workers/ that become idle search for and “steal”
pending work from other, busy workers.

zip pattern: A special case of the gather pattern that interleaves elements from collections, converting
from structure-of-arrays to array-of-structures. See Section 6.1.3.

