
Understanding Application I/O
Behavior with Darshan

Shane Snyder, Phil Carns, Kevin Harms, Rob Latham, Rob Ross
Argonne National Laboratory

ECP Annual Meeting

April 14, 2021

2

Understanding and improving HPC I/O

• The ability to characterize and understand application
I/O workloads is critical to ensuring efficient use of an
evolving and increasingly complex HPC I/O stack

– Deep layers of coordinating I/O libraries and entirely
new-to-HPC storage paradigms (e.g., object storage)

– Emerging storage hardware (e.g., PMEM) and storage
architectures (e.g., burst buffers)

• I/O analysis tools are invaluable in helping to navigate
this complexity and to better understand I/O

– Characterize I/O behavior of individual jobs to inform
tuning decisions

– Characterize job populations to better understand
system-wide I/O stack usage and optimize deployments

Darshan:
An application I/O
characterization tool
for HPC

4

What is Darshan?

• Darshan is a lightweight I/O characterization tool that captures concise views of
HPC application I/O behavior
– Produces a summary of I/O activity for each instrumented job

• Counters, histograms, timers, & statistics
• Full I/O traces (if requested)

• Widely available
– Deployed (and commonly enabled by default!) at many HPC facilities around the world

• Easy to use
– No code changes required to integrate Darshan instrumentation
– Negligible performance impact; just “leave it on”

• Modular
– Adding instrumentation for new I/O interfaces or storage components is straightforward

5

How does Darshan work?

• Darshan can insert application I/O instrumentation at link-time (for static and dynamic
executables) or at runtime using LD_PRELOAD (for dynamic executables)
– Starting in version 3.2.0, Darshan supports instrumentation of any dynamically-linked executable (MPI or not)

using the LD_PRELOAD method

• Darshan records file access statistics for
each process as app executes

• At app shutdown, collect, aggregate,
compress, and write log data

• After job completes, analyze Darshan log
data

– darshan-job-summary - provides a summary PDF
characterizing application I/O behavior

– darshan-parser - provides complete text-format
dump of all counters in a log file

– PyDarshan - Python analysis module for Darshan
logs

Using Darshan on
ECP platforms

7

Using Darshan on Cori (NERSC)

• Darshan is already installed and on by default on NERSC’s Cori system
– Instrumentation enabled using Cray software module that injects Darshan linker options when

compiling MPI applications using Cray compiler wrappers (cc, CC, etc.)

MPI applications

Use ‘module list’ to confirm
Darshan is actually loaded

Darshan 3.2.1 current default
version available on Cori

If Darshan not loaded,
you can always load manually

using ‘module load’

8

Using Darshan on Cori (NERSC)

• Note that in addition to the default darshan/3.2.1 module, there is a special
darshan/3.2.1-hdf5 that enables instrumentation of HDF5 APIs*
– Offered as a separate module to prevent non-HDF5 applications from inheriting Darshan’s HDF5

library dependency

HDF5 applications

Use ‘module switch’ to switch to the non-default
Darshan module built with HDF5 support *More details to follow shortly

9

Using Darshan on Cori (NERSC)

• OK, Darshan is loaded...now what?
– Just compile and run your application!
– Darshan inserts instrumentation directly into executable

• LD_PRELOAD is another option for dynamically-linked executables:
– This method is necessary for Python environments (i.e., mpi4py, h5py)
– Also helpful for applications that cannot be recompiled

Manually set
LD_PRELOAD to point

to Darshan’s shared
library before running

your application

10

Using Darshan on Theta (ALCF)

• Darshan is also installed and enabled by default on ALCF’s Theta system,
another Cray XC40 system
– The process for using Darshan is exactly the same as Cori, even though Theta uses static linking

by default (compared to dynamic linking on Cori) -- Cray compiler wrappers handle this
transparently

MPI applications

Use ‘module list’ to confirm
Darshan is actually loaded

Darshan 3.2.1 current default
version available on Theta

Note: Theta does not currently offer a
Darshan+HDF5 install, though we hope to

have one available soon

11

Using Darshan on Summit (OLCF)

• Summit is an IBM Power9-based system that uses dynamic linking by default
– LD_PRELOAD mechanism used to interpose Darshan instrumentation libraries at runtime
– Like Cori/Theta, software modules used to enable Darshan instrumentation

MPI applications

Summit also provides ‘module
list’ command

Darshan 3.1.7 is the default
version on Summit.

Note: darshan-runtime and
darshan-util are separate

modules, with only
darshan-runtime loaded by

default

12

Finding Darshan log files

• After the application terminates, look for
your log files:

Darshan logs typically stored in a central
directory for all users for system-wide
deployments, use ‘darshan-config

--log-path’ to find

Logs further
indexed using

‘year/month/day’
the job executed.

Log file name starts with the following pattern:
‘username_exename_jobid…’

13

Using Darshan with non-MPI applications

• Starting in version 3.2.0, Darshan supports
instrumentation of non-MPI applications using
LD_PRELOAD (i.e., dynamically-linked binaries)
– Users must additionally export ‘DARSHAN_ENABLE_NONMPI=1’

to enable Darshan in this case
•

• Note: due to a bug in version 3.2.1, the previously
mentioned Darshan deployments do not support
this feature currently
– Users can manually install a non-MPI version for now (e.g.,

‘spack install darshan-runtime~mpi’ and ‘spack
install darshan-util’)

– Spack-installed Darshan versions put log files in HOME by
default -- override using DARSHAN_LOG_DIR_PATH env
variable

Darshan
instrumentation

Analyzing Darshan
logs

15

Analyzing Darshan logs

• After generating and locating your log, use Darshan analysis tools to inspect log
file data: Copy the log file

somewhere else for
analysis

Invoke darshan-parser
(already in PATH on Cori)
to get detailed counters

Modules use a common format
for printing counters, indicating

the module, rank, record ID,
counter name, counter value,
filename, etc. -- here sample
counters are shown for both
POSIX and MPI-IO modules

16

Analyzing Darshan logs

• But, darshan-parser output isn’t so accessible for most users… use
darshan-job-summary tool to produce summary PDF of app I/O behavior
– Due to LaTeX and Perl dependencies, it may be easier just to copy Darshan logs to a personal

workstation for analysis
Invoke darshan-job-summary on

log file to produce PDF

Output PDF file name based on
Darshan log file name

17

Analyzing Darshan logs

Result is a multi-page
PDF containing graphs,
tables, and performance
estimates characterizing
the I/O workload of the

application

We will summarize some
of the highlights in the

following slides

18

Analyzing Darshan logs

PDF header contains some high-level
information on the job execution

I/O performance estimates (and total I/O
volumes) provided for MPI-IO/POSIX and

STDIO interfaces

19

Analyzing Darshan logs

Across main I/O interfaces, how much time
was spent reading, writing, doing

metadata, or computing?

If mostly compute, limited opportunities for
I/O tuning

What were the relative totals of different I/O
operations across key interfaces?

Lots of metadata operations (open, stat,
seek, etc.) could be a sign of poorly

performing I/O

20

Analyzing Darshan logs

Histograms of POSIX and MPI-IO
access sizes are provided to better
understand general access patterns

In general, larger access sizes
perform better with most storage

systems

Table indicating total number
of files of different types

(opened, created, read-only,
etc.) recorded by Darshan

21

Analyzing Darshan logs

Darshan can also provide basic timing bounds for read/write activity,
both for independent file access patterns (illustrated) or for shared

file access patterns

reads

writes

Obtaining
finer-grained details
with Darshan

23

Focusing analysis on individual files

• If we want to focus Darshan analysis tools on a specific file, Darshan offers a
couple of different options

– darshan-convert utility can be used to create a new Darshan log file containing a specified file
record ID (obtainable from darshan-parser output)

• e.g., ‘darshan-convert --file RECORD_ID input_log.darshan output_log.darshan’
• New log file can be ran through existing log utilities we have already covered

– darshan-summary-per-file tool can be used to generate separate job summary PDFs for every
file in a given Darshan log

• Do not use if your application opens a lot of files!

24

Disabling reductions of shared records

You may notice that Darshan is
unable to provide more detailed

access information for shared file
workloads, as illustrated here

For shared files, information from
each rank is combined into a single

record to save space

25

Disabling reductions of shared records

Setting the
‘DARSHAN_DISABLE_SHARED_REDUCTION’

environment variable will force
Darshan to skip the shared file
reduction step, retaining each

process’s independent view of access
information

This results in larger log files, but may
be useful in better understanding

underlying access patterns in collective
workloads

26

Obtaining fine-grained traces with DXT

• Darshan’s DXT module can be enabled at runtime for users wishing to capture
detailed I/O traces for MPI-IO and POSIX interfaces

– Fine-grained trace data comes at cost of larger per-process memory overheads
– Set the DXT_ENABLE_IO_TRACE environment variable to enable

• darshan-dxt-parser can be then be used to dump text-format trace data:

27

Obtaining fine-grained traces with DXT

• dxt_analyzer Python script installed with darshan-util can be used to help
visualize read/write trace activity:

Provides details on each
I/O operation issued by
each rank, providing a

complete picture of which
ranks are performing I/O
and how long they are

spending on I/O

New and upcoming
Darshan features:
HDF5 instrumentation

29

HDF5 instrumentation

• HDF5 offers a convenient abstraction for large data collections, but it can be
difficult to understand how it interacts with lower layers of the I/O stack that most
impact performance

• To help better understand HDF5 usage and performance, we have developed
Darshan instrumentation modules for HDF5 file (H5F) and dataset (H5D) APIs
– What are file and dataset properties?
– How are datasets accessed?
– How are datasets organized within files?
– Do HDF5 accesses decompose efficiently to lower-level (i.e., MPI-IO and POSIX) accesses? If

not, do any optimizations make sense?

Available in Darshan 3.2.0+

30

HDF5 instrumentation

• H5F instrumentation
highlights:
– Operation counts

• open/create
• flush

– MPI-IO usage
– Metadata timing

Available in Darshan 3.2.0+

31

HDF5 instrumentation

• H5D instrumentation highlights:
– Operation counts:

• open/create
• read/write
• flush

– Total bytes read/written
– Access size histograms
– Dataspace selection types

• Regular hyperslab
• Irregular hyperslab
• Points

– Dataspace total dimensions, points
– Chunking parameters
– MPI-IO collective usage
– Deprecated function usage
– Read, write, and metadata timing

Available in Darshan 3.2.0+

32

HDF5 instrumentation

• Using the MACSio¹ HDF5 plugin, run a couple of simple examples
demonstrating the types of insights HDF5 I/O instrumentation can enable
– 60-process (5-node) single shared file, 3d mesh, write roughly 1 GiB of cumulative H5D data
– Compare performance of collective and independent I/O configurations

Available in Darshan 3.2.0+

1. https://github.com/LLNL/MACSio

b/w: ~30 MB/sec

POSIX I/O dominates, H5
incurs non-negligible
overhead forming this

workload

Negligible time spent in
MPI-IO

b/w: ~290 MB/sec

H5 and POSIX incur
minimal overhead for

this workload

MPI-IO collective I/O
algorithm dominates

Average per-process time spent in I/O

33

HDF5 instrumentation

• Using the MACSio¹ HDF5 plugin, run a couple of simple examples
demonstrating the types of insights HDF5 I/O instrumentation can enable
– 60-process (5-node) single shared file, 3d mesh, write roughly 1 GiB of cumulative H5D data
– Compare performance of collective and independent I/O configurations

Available in Darshan 3.2.0+

1. https://github.com/LLNL/MACSio

Radar plots, or other methods, can be
used to help visualize characteristics

of HDF5 dataset accesses

Dataset access patterns could be
used to help set/optimize chunking
parameters to limit accesses to as

few chunks as possible
Number of elements accessed in each dataset dimension

for the most common access for each MACSio configuration

New and upcoming
Darshan features:
DAOS instrumentation

35

DAOS instrumentation

• Intel’s DAOS offers an exciting new storage
paradigm for HPC apps, utilizing object-based
storage interfaces over a combo of SCM and
SSD devices
– libdfs: DAOS’s POSIX file system emulation API
– libdaos: DAOS’s native object (key-val) API

• Darshan will instrument libdaos and libdfs APIs
to help provide insight into application and I/O
middleware usage of DAOS
– Legacy POSIX app usage and performance

characteristics
– Usage and performance characteristics of

libdaos users (libdfs, HDF5 VOL, MPI-IO, etc.)

Work in progress

Figure courtesy of Intel

36

DAOS instrumentation

• libdfs instrumentation highlights:
– Operation counts:

• open
• read/write
• punch
• stat

– Total bytes read/written
– Access size histograms
– File chunk size
– DTX usage (strict consistency mode)
– Corresponding DAOS object record ID

• Necessary to link Darshan’s DFS
records with native DAOS records

– Read, write, and metadata timing

Work in progress

Note: Unsurprisingly, Darshan’s DFS
instrumentation module closely follows

the design of the POSIX module

37

DAOS instrumentation

• libdaos instrumentation highlights:
– Operation counts:

• open
• fetch (read) and update (write)
• list (enumeration)
• punch

– Total bytes read/written
– Access size histograms
– Object class parameters

• layout (static or dynamic striping)
• redundancy (replication, erasure

coding)
– Container/pool UUIDs
– Read, write, and metadata timing

Work in progress

Note: Each DAOS object is multi-level
key-val store, creating challenges for

deciding what can be instrumented using a
fixed set of Darshan counters -- we are still
investigating what characteristics about key

access patterns to capture

Figure courtesy of Intel

New and upcoming
Darshan features:
PyDarshan

39

PyDarshan log file analysis

• Darshan has traditionally offered only the C-based darshan-util library and a
handful of corresponding utilities to users

– Development of custom Darshan analysis utilities is cumbersome, requiring users to either:
• Develop analysis tools in C using the low-level darshan-util library
• Perform an inconvenient conversion from darshan-parser text output

• PyDarshan has been developed* to simplify the interfacing of analysis tools with
Darshan log data

– Use Python CFFI module to provide Python bindings to the native darshan-utils C API
– Expose Darshan log data as dictionaries, pandas dataframes, and numpy arrays

• We are hopeful PyDarshan will lead to a richer ecosystem for Darshan log
analysis utilities

Available for Darshan 3.3.0 (coming soon!)

* Thanks to Jakob Luettgau (DKRZ) for
contributing most of the PyDarshan code,

examples, and documentation

40

PyDarshan log file analysis

• We’ve already found Jupyter notebooks to be an effective way of sharing PyDarshan
analysis examples (code, documentation, visualizations) with users, collaborators, etc.

Available for Darshan 3.3.0 (coming soon!)

In just a few lines of code, users can read a Darshan log
into memory and generate plots describing access patterns

41

PyDarshan log file analysis

• The first stable version (3.3.0.0) of PyDarshan is currently available and ready
for users to analyze Darshan logs with

Available for Darshan 3.3.0 (coming soon!)

– Use ‘pip install
darshan’ to install the
PyDarshan module from
PyPI on your system

– Alternatively, PyDarshan
can be installed directly
from the Darshan source,
by running ’python3
setup.py install
--user‘ from the
‘darshan-util/pydarshan’
directory

https://pypi.org/project/darshan/

42

Darshan roadmap

• In addition to those covered today, the following features are also on the
Darshan roadmap:
– Autoperf instrumentation module (available in Darshan 3.3.0)

• APMPI - MPI communication counters
• CrayXC - compute and network counters for Cray XC systems
• Thanks to Sudheer Chunduri (ALCF) for this contribution!

– PnetCDF instrumentation module (work in progress)
• Full instrumentation of PnetCDF blocking/nonblocking APIs
• Thanks to Claire Lee (NWU) and Wei-keng Liao (NWU) for this contribution!

– Fork handlers for non-MPI mode (work in progress, available in ‘dev-fork-safe’ branch)
• Numerous updates to allow forked processes to generate their own Darshan logs

– Enhanced analysis tools and report generation (???)
• Building off of our pydarshan log utility bindings, we want to revamp our analysis tools and

report generation using Python

43

Wrapping up

• We've covered a lot of ground today, but hopefully there was helpful information for new
Darshan users and experienced Darshan users alike

• Come to our breakout session tomorrow (“Interpreting Darshan Logs”, 2:30-3:30 PM
EST) to learn more about how to best interpret Darshan log data to gain meaningful insight
into I/O behavior

– Feel free to provide us logs you would like to see analyzed (or even job IDs on one of
the systems we’ve covered), but we also have our own interesting examples we can
share if nothing else

• Please reach out with any questions, comments, or feedback!

• Darshan website: https://www.mcs.anl.gov/research/projects/darshan/
• Darshan-users mailing list: darshan-users@lists.mcs.anl.gov
• Source code, issue tracking: https://xgitlab.cels.anl.gov/darshan/darshan

https://www.mcs.anl.gov/research/projects/darshan/
mailto:darshan-users@lists.mcs.anl.gov
https://xgitlab.cels.anl.gov/darshan/darshan

44

This research was supported by the Exascale Computing Project
(17-SC-20-SC), a joint project of the U.S. Department of Energy’s
Office of Science and National Nuclear Security Administration,

responsible for delivering a capable exascale ecosystem, including
software, applications, and hardware technology, to support the

nation’s exascale computing imperative.

