# Understanding Application I/O Behavior with Darshan

**Shane Snyder**, Phil Carns, Kevin Harms, Rob Latham, Rob Ross Argonne National Laboratory

ECP Annual Meeting

April 14, 2021





# Understanding and improving HPC I/O

DARSHAN HPC I/O Characterization Tool

- The ability to characterize and understand application I/O workloads is critical to ensuring efficient use of an evolving and increasingly complex HPC I/O stack
  - Deep layers of coordinating I/O libraries and entirely new-to-HPC storage paradigms (e.g., object storage)
  - Emerging storage hardware (e.g., PMEM) and storage architectures (e.g., burst buffers)
- I/O analysis tools are invaluable in helping to navigate this complexity and to better understand I/O
  - Characterize I/O behavior of individual jobs to inform tuning decisions
  - Characterize job populations to better understand system-wide I/O stack usage and optimize deployments









## Darshan: An application I/O characterization tool for HPC





## What is Darshan?



- Darshan is a lightweight I/O characterization tool that captures concise views of HPC application I/O behavior
  - Produces a summary of I/O activity for each instrumented job
    - Counters, histograms, timers, & statistics
    - Full I/O traces (if requested)
- Widely available
  - Deployed (and commonly enabled by default!) at many HPC facilities around the world
- Easy to use
  - No code changes required to integrate Darshan instrumentation
  - Negligible performance impact; just "leave it on"
- Modular
  - Adding instrumentation for new I/O interfaces or storage components is straightforward





## How does Darshan work?

- Darshan can insert application I/O instrumentation at link-time (for static and dynamic executables) or at runtime using LD\_PRELOAD (for dynamic executables)
  - Starting in version 3.2.0, Darshan supports instrumentation of any dynamically-linked executable (MPI or not) using the LD\_PRELOAD method
- Darshan records file access statistics for each process as app executes
- At app shutdown, collect, aggregate, compress, and write log data
- After job completes, analyze Darshan log data
  - darshan-job-summary provides a summary PDF characterizing application I/O behavior
  - darshan-parser provides complete text-format dump of all counters in a log file
  - PyDarshan Python analysis module for Darshan logs







# Using Darshan on ECP platforms





# Using Darshan on Cori (NERSC) MPI applications



- Darshan is already installed and on by default on NERSC's Cori system
  - Instrumentation enabled using Cray software module that injects Darshan linker options when compiling MPI applications using Cray compiler wrappers (cc, CC, etc.)







# Using Darshan on Cori (NERSC)

HDF5 applications



- Note that in addition to the default darshan/3.2.1 module, there is a special darshan/3.2.1-hdf5 that enables instrumentation of HDF5 APIs\*
  - Offered as a separate module to prevent non-HDF5 applications from inheriting Darshan's HDF5 library dependency

| ssnyder@cori07:~> module avail -l 2>&1   | grep darshan   | cat         |
|------------------------------------------|----------------|-------------|
| darshan/3.1.7                            |                | 2021/03/03  |
| darshan/3.1.7-test                       |                | 2021/03/03  |
| darshan/3.2.1                            | default        | 2021/03/03  |
| darshan/3.2.1-hdf5                       |                | 2021/03/03  |
| ssnyder@co.t07:~>                        |                |             |
| ssnyder@cori07:~> module switch darshan/ | /3.2.1 darshan | /3.2.1-hdf5 |

Use 'module switch' to switch to the non-default Darshan module built with HDF5 support

\*More details to follow shortly





## Using Darshan on Cori (NERSC)



- OK, Darshan is loaded...now what?
  - Just compile and run your application!
  - Darshan inserts instrumentation directly into executable
- LD\_PRELOAD is another option for dynamically-linked executables:
  - This method is necessary for Python environments (i.e., mpi4py, h5py)
  - Also helpful for applications that cannot be recompiled

| ssnyder@nid00010                                                              | ):/global/cscratch1/sd/ssnyder/darshan-test> module show darshan                                                                                                                                                                                           |
|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| /global/common/s                                                              | software/nersc/cle7/extra_modulefiles/darshan/3.2.1:                                                                                                                                                                                                       |
| module-whatis<br>prepend-path<br>prepend-path<br>prepend-path<br>prepend-path | a scalable HPC I/O characterization tool<br>PE_PKGCONFIG_LIBS darshan-runtime<br>PKG CONFIG PATH /usr/common/software/darshan/3.2.1/lib/pkoconfig<br>LD LIBRARY PATH /usr/common/software/darshan/3.2.1/lib<br>PATH /usr/common/software/darshan/3.2.1/bin |
| ssnyder@nid00010                                                              | ):/global/cscratch1/sd/ssnyder/darshan-test> export LD_PRELOAD=/usr                                                                                                                                                                                        |

Manually set LD\_PRELOAD to point to Darshan's shared library before running your application

Argonne 🐴 🛛 75



## Using Darshan on Theta (ALCF)

**MPI** applications



- Darshan is also installed and enabled by default on ALCF's Theta system, another Cray XC40 system
  - The process for using Darshan is exactly the same as Cori, even though Theta uses static linking by default (compared to dynamic linking on Cori) -- Cray compiler wrappers handle this transparently



Use 'module list' to confirm Darshan is actually loaded

Darshan 3.2.1 current default version available on Theta

**Note:** Theta does not currently offer a Darshan+HDF5 install, though we hope to have one available soon





# Using Darshan on Summit (OLCF)

#### **MPI** applications



- Summit is an IBM Power9-based system that uses dynamic linking by default
  - LD\_PRELOAD mechanism used to interpose Darshan instrumentation libraries at runtime
  - Like Cori/Theta, software modules used to enable Darshan instrumentation



Summit also provides 'module list' command

Darshan 3.1.7 is the default version on Summit.

Note: darshan-runtime and darshan-util are separate modules, with only darshan-runtime loaded by default





## Finding Darshan log files





Log file name starts with the following pattern: 'username\_exename\_jobid...'





# Using Darshan with non-MPI applications

DARSHAN HPC I/O Characterization Tool

- Starting in version 3.2.0, Darshan supports instrumentation of non-MPI applications using LD\_PRELOAD (i.e., dynamically-linked binaries)
  - Users must additionally export 'DARSHAN\_ENABLE\_NONMPI=1' to enable Darshan in this case
- Note: due to a bug in version 3.2.1, the previously mentioned Darshan deployments do not support this feature currently
  - Users can manually install a non-MPI version for now (e.g., 'spack install darshan-runtime~mpi' and 'spack install darshan-util')
  - Spack-installed Darshan versions put log files in HOME by default -- override using DARSHAN\_LOG\_DIR\_PATH env variable













 After generating and locating your log, use Darshan analysis tools to inspect log file data:

ssnyder@cori07:.../4> cp ssnyder\_mpi-io-test\_id40245367\_3-4-50083-35177430817874

ssnyder@cori07:.../4> cd ~/tmp-analysis/

ssnyder@cori07:~/tmp-analysis> darshan-parser ssnyder\_mpi-io-test\_id40245367\_3-4 -50083-3517743081787486417\_1614894884.darshan



Invoke darshan-parser (already in PATH on Cori) to get detailed counters

Modules use a common format for printing counters, indicating the module, rank, record ID, counter name, counter value, filename, etc. -- here sample counters are shown for both POSIX and MPI-IO modules



| # <modul< th=""><th>e&gt;</th><th><rank></rank></th><th><record id=""></record></th><th><counter></counter></th><th><value></value></th><th><file na<="" th=""><th>ame&gt;</th></file></th></modul<> | e> | <rank></rank> | <record id=""></record> | <counter></counter> | <value></value> | <file na<="" th=""><th>ame&gt;</th></file> | ame>    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---------------|-------------------------|---------------------|-----------------|--------------------------------------------|---------|
| POSIX                                                                                                                                                                                                | -1 | 4212256       | 932904785913            | POSIX_OPENS         | 16              | /global,                                   | /csci / |
| POSIX                                                                                                                                                                                                | -1 | 4212256       | 932904785913            | POSIX_FILENOS       | Θ               | /global,                                   | /csci   |
| POSIX                                                                                                                                                                                                | -1 | 4212256       | 932904785913            | POSIX_DUPS          | 0               | /global,                                   | /csci   |
| POSIX                                                                                                                                                                                                | -1 | 4212256       | 932904785913            | POSIX_READS         | 4               | /global,                                   | /csci   |
|                                                                                                                                                                                                      |    |               |                         |                     |                 |                                            |         |
| MPI-IO                                                                                                                                                                                               | -1 | 4212256       | 932904785913            | MPIIO_INDEP_OPE     | ٧S              | 8                                          | /gla    |
| MPI-IO                                                                                                                                                                                               | -1 | 4212256       | 932904785913            | MPIIO_COLL_OPEN     | S               | 0                                          | /gla    |
| MPI-IO                                                                                                                                                                                               | -1 | 4212256       | 932904785913            | MPIIO_INDEP_REA     | DS              | 4                                          | /gla    |
| MPI-IO                                                                                                                                                                                               | -1 | 4212256       | 932904785913            | MPIIO_INDEP_WRI     | TES             | 4                                          | /glo    |





- But, darshan-parser output isn't so accessible for most users... use darshan-job-summary tool to produce summary PDF of app I/O behavior
  - Due to LaTeX and Perl dependencies, it may be easier just to copy Darshan logs to a personal workstation for analysis

Invoke darshan-job-summary on log file to produce PDF

shane@shane-x1-carbon ~/tmp-analysis \$ darshan-job-summary.pl ssnyder\_mpi-io-test\_i d40245367\_3-4-50083-3517743081787486417\_1614894884.darshan

shane@shane-x1-carbon ~/tmp-analysis \$ shane@shane-x1-carbon ~/tmp-analysis \$ ls

ssnyder\_mpi-io-test\_id40245367\_3-4-50083-3517743081787486417\_1614894884.darshan ssnyder\_mpi-io-test\_id40245367\_3-4-5008<u>3</u>-3517743081787486417\_1614894884.darshan.pdf

> Output PDF file name based on Darshan log file name





jobid: 403177 uid: 31074 nprocs: 4 runtime: 2 seconds

> I/O performance estimate (at the MPI-IO layer): transferred 642 MiB at 266.40 MiB/s I/O performance estimate (at the STDIO layer): transferred 0.0 MiB at 2.08 MiB/s



Result is a multi-page PDF containing graphs, tables, and performance estimates characterizing the I/O workload of the application

We will summarize some of the highlights in the following slides



| Most Co   | mmon Access       | Sizes      | (estimate        | ed by POSIX I/O a | iccess offset | ts)      |
|-----------|-------------------|------------|------------------|-------------------|---------------|----------|
| (PO       | SIX or MPI-IC     | )          | type             | number of files   | avg. size     | max size |
|           | access size       | count      | total opened     | 2                 | 33M           | 64M      |
| POSIX     | 16777216          | 8          | read-only files  | 0                 | 0             | 0        |
| MPI-IO ‡  | 16777216          | 8          | write-only files | 1                 | 642           | 642      |
| ‡ NOTE: M | PI-IO accesses ar | e given in | created files    | 2                 | 33M           | 64M      |

Eile Count Cummon

terms of aggregate datatype size.

COMPLITING







I/O performance *estimate* (at the MPI-IO layer): transferred 642 MiB at 266.40 MiB/s I/O performance *estimate* (at the STDIO layer): transferred 0.0 MiB at 2.08 MiB/s

# I/O performance estimates (and total I/O volumes) provided for MPI-IO/POSIX and STDIO interfaces





Average I/O cost per process 100 80 Percentage of run time 60 40 20 0 20st MR1.10 STOIO Other (including application compute) I/O Operation Counts 16 14 Ops (Total, All Processes) 2 Read Write Open Stat Seek Mmap Fsync MPI-IO Coll. POSIX MPI-IO Indep. STDIO



Across main I/O interfaces, how much time was spent reading, writing, doing metadata, or computing?

If mostly compute, limited opportunities for I/O tuning

What were the relative totals of different I/O operations across key interfaces?

Lots of metadata operations (open, stat, seek, etc.) could be a sign of poorly performing I/O





File Count Summary (estimated by POSIX I/O access offsets) number of files avg. size max size type 64M total opened 33M 2 read-only files 0 0 0 642 write-only files 642 read/write files 64M 64M created files 2 33M 64M



Histograms of POSIX and MPI-IO access sizes are provided to better understand general access patterns

In general, larger access sizes perform better with most storage systems

Table indicating total number of files of different types (opened, created, read-only, etc.) recorded by Darshan



32

00:00:00

00:00:00

00:00:01





Darshan can also provide basic timing bounds for read/write activity, both for independent file access patterns (illustrated) or for shared file access patterns

00:00:02

hours:minutes:seconds

00:00:02

00:00:03

£0:00:00

00:00:04

00:00:01





## Obtaining finer-grained details with Darshan





## Focusing analysis on individual files



- If we want to focus Darshan analysis tools on a specific file, Darshan offers a couple of different options
  - darshan-convert utility can be used to create a new Darshan log file containing a specified file record ID (obtainable from *darshan-parser* output)
    - e.g., 'darshan-convert --file RECORD\_ID input\_log.darshan output\_log.darshan'
    - New log file can be ran through existing log utilities we have already covered
  - darshan-summary-per-file tool can be used to generate separate job summary PDFs for every file in a given Darshan log
    - Do not use if your application opens a lot of files!





## Disabling reductions of shared records



You may notice that Darshan is unable to provide more detailed access information for shared file workloads, as illustrated here

For shared files, information from each rank is combined into a single record to save space





## Disabling reductions of shared records



Setting the 'DARSHAN DISABLE SHARED REDUCTION' environment variable will force 00:00:04 00:00:05 00:00:06 00:00:07 hours:minutes:seconds Darshan to skip the shared file Timespan from first to last write access on independent files (POSIX and STDIO) reduction step, retaining each process's independent view of access information

> This results in larger log files, but may be useful in better understanding underlying access patterns in collective workloads













## Obtaining fine-grained traces with DXT



- Darshan's DXT module can be enabled at runtime for users wishing to capture detailed I/O traces for MPI-IO and POSIX interfaces
  - Fine-grained trace data comes at cost of larger per-process memory overheads
  - Set the DXT\_ENABLE\_IO\_TRACE environment variable to enable
- darshan-dxt-parser can be then be used to dump text-format trace data:

| # | ********  | *****  | ******  | *******    | ******           | ***          |                |             |         |
|---|-----------|--------|---------|------------|------------------|--------------|----------------|-------------|---------|
| # | DXT POSIX | modul  | e data  |            |                  |              |                |             |         |
| # | ********  | *****  | ******  | *******    | ******           | ***          |                |             |         |
|   |           |        |         |            |                  |              |                |             |         |
| # | DXT, file | id: 1  | 1542722 | 4795316990 | 73, file name: / | global/cscra | tch1/sd/pcarns | /ior/ior.da | t-summa |
| # | DXT, rank | :0,h   | ostname | : nid00511 |                  |              |                |             |         |
| # | DXT, writ | e coun | t: 16,  | read count | : 16             |              |                |             |         |
| # | DXT, mnt_ | pt:/g  | lobal/c | scratch1,  | fs_type: lustre  |              |                |             |         |
| # | DXT, Lust | re str | ipe_siz | e: 1048576 | , Lustre stripe  | count: 24    |                |             |         |
| # | DXT, Lust | re OST | obdidx  | : 49 185 1 | 15 7 135 3 57 95 | 43 27 191 1  | 163 51 15 153  | 187 55 151  | 239 79  |
| 2 | 5 137 47  |        |         |            |                  |              |                |             |         |
| # | Module    | Rank   | Wt/Rd   | Segment    | 0ffset           | Length       | Start(s)       | End(s)      | [0ST]   |
|   | X_POSIX   | 0      | write   | Θ          | 0                | 1048576      | 0.7895         | 0.8267      | [ 49]   |
|   | X_POSIX   | 0      | write   | 1          | 1048576          | 1048576      | 0.8267         | 0.9843      | [185]   |
|   | X_POSIX   | 0      | write   | 2          | 2097152          | 1048576      | 0.9843         | 1.0189      | [115]   |





## Obtaining fine-grained traces with DXT

- dxt\_analyzer Python script installed with darshan-util can be used to help visualize read/write trace activity:

Provides details on each I/O operation issued by each rank, providing a complete picture of which ranks are performing I/O and how long they are spending on I/O







#### New and upcoming Darshan features: HDF5 instrumentation





Available in Darshan 3.2.0+



- HDF5 offers a convenient abstraction for large data collections, but it can be difficult to understand how it interacts with lower layers of the I/O stack that most impact performance
- To help better understand HDF5 usage and performance, we have developed Darshan instrumentation modules for HDF5 file (H5F) and dataset (H5D) APIs
  - What are file and dataset properties?
  - How are datasets accessed?
  - How are datasets organized within files?
  - Do HDF5 accesses decompose efficiently to lower-level (i.e., MPI-IO and POSIX) accesses? If not, do any optimizations make sense?







#### Available in Darshan 3.2.0+

- H5F instrumentation highlights:
  - Operation counts
    - open/create
    - flush
  - MPI-IO usage
  - Metadata timing

| ‡ <modu< th=""><th>le&gt;</th><th><rank></rank></th><th><record i<="" th=""><th>.d&gt; <cou< th=""><th>inter&gt;</th><th><value< th=""><th>e&gt; <file na<="" th=""></file></th></value<></th></cou<></th></record></th></modu<> | le> | <rank></rank> | <record i<="" th=""><th>.d&gt; <cou< th=""><th>inter&gt;</th><th><value< th=""><th>e&gt; <file na<="" th=""></file></th></value<></th></cou<></th></record> | .d> <cou< th=""><th>inter&gt;</th><th><value< th=""><th>e&gt; <file na<="" th=""></file></th></value<></th></cou<> | inter>   | <value< th=""><th>e&gt; <file na<="" th=""></file></th></value<> | e> <file na<="" th=""></file> |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------|------------------------------------------------------------------|-------------------------------|
| 15F -1                                                                                                                                                                                                                           | 11  | 831850109     | 748558379                                                                                                                                                   | H5F_                                                                                                               | OPENS    | 8 /1                                                             | nome/shane                    |
| −145F                                                                                                                                                                                                                            | 11  | 831850109     | 748558379                                                                                                                                                   | H5F                                                                                                                | FLUSHES  | 0 /1                                                             | nome/shane                    |
| 15F -1                                                                                                                                                                                                                           | 11  | 831850109     | 748558379                                                                                                                                                   | H5F_                                                                                                               | USE_MPII | 0 1                                                              | /home/sl                      |
| 15F -1                                                                                                                                                                                                                           | 11  | 831850109     | 748558379                                                                                                                                                   | H5F_                                                                                                               | F_OPEN_S | START_1                                                          | TIMESTAMP                     |
| 15F -1                                                                                                                                                                                                                           | 11  | 831850109     | 748558379                                                                                                                                                   | H5F_                                                                                                               | F_CLOSE_ | START_                                                           | TIMESTAMP                     |
| 15F -1                                                                                                                                                                                                                           | 11  | 831850109     | 748558379                                                                                                                                                   | H5F_                                                                                                               | F_OPEN_E | IND_TIM                                                          | <b>1ESTAMP</b>                |
| 15F -1                                                                                                                                                                                                                           | 11  | 831850109     | 748558379                                                                                                                                                   | H5F_                                                                                                               | F_CLOSE  | END_T                                                            | IMESTAMP                      |
| 15F -1                                                                                                                                                                                                                           | 11  | 831850109     | 748558379                                                                                                                                                   | H5F_                                                                                                               | F_META_T | IME 0.                                                           | .019466                       |
|                                                                                                                                                                                                                                  |     |               |                                                                                                                                                             |                                                                                                                    |          |                                                                  |                               |





#### Available in Darshan 3.2.0+

- H5D instrumentation highlights:
  - Operation counts:
    - open/create
    - read/write
    - flush
  - Total bytes read/written
  - Access size histograms
  - Dataspace selection types
    - Regular hyperslab
    - Irregular hyperslab
    - Points
  - Dataspace total dimensions, points
  - Chunking parameters
  - MPI-IO collective usage
  - Deprecated function usage
  - Read, write, and metadata timing



| # <m0< th=""><th>dule</th><th>&gt; &lt;</th><th>rank&gt;</th><th><recor< th=""><th>d id&gt;</th><th><counte< th=""><th>٢&gt;</th><th><value></value></th></counte<></th></recor<></th></m0<> | dule | > <   | rank>   | <recor< th=""><th>d id&gt;</th><th><counte< th=""><th>٢&gt;</th><th><value></value></th></counte<></th></recor<> | d id>  | <counte< th=""><th>٢&gt;</th><th><value></value></th></counte<> | ٢>    | <value></value> |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------|---------|------------------------------------------------------------------------------------------------------------------|--------|-----------------------------------------------------------------|-------|-----------------|
| H5D                                                                                                                                                                                          | -1   | 76001 | 381865  | 3161936                                                                                                          | 6 H5D  | <b>OPENS</b>                                                    | 8     | /home/sh        |
| H5D                                                                                                                                                                                          | -1   | 76001 | 381865  | 3161936                                                                                                          | 6 H5D  | READS                                                           | 16    | /home/sh        |
| H5D                                                                                                                                                                                          | -1   | 76001 | .381865 | 3161936                                                                                                          | 6 H5D  | WRITES                                                          | 16    | /home/sh        |
| H5D                                                                                                                                                                                          | - 1  | 76001 | .381865 | 3161936                                                                                                          | 6 H5D  | _FLUSHES                                                        | 0     | /home/sh        |
| H5D                                                                                                                                                                                          | -1   | 76001 | 381865  | 3161936                                                                                                          | 6 H5D  | _BYTES_R                                                        | EAD   | 4194304         |
| H5D                                                                                                                                                                                          | - 1  | 76001 | 381865  | 3161936                                                                                                          | 6 H5D  | _BYTES_W                                                        | RITT  | EN 4194         |
| H5D                                                                                                                                                                                          | -1   | 76001 | .381865 | 3161936                                                                                                          | 6 H5D  | _RW_SWIT                                                        | CHES  | 4 /hor          |
| H5D                                                                                                                                                                                          | - 1  | 76001 | .381865 | 3161936                                                                                                          | 6 H5D  | REGULAR                                                         | _HYPE | ERSLAB_SE       |
| xt4                                                                                                                                                                                          |      |       |         |                                                                                                                  |        |                                                                 |       |                 |
| H5D                                                                                                                                                                                          | - 1  | 76001 | .381865 | 3161936                                                                                                          | 6 H5D  | IRREGUL                                                         | AR_H  | PERSLAB         |
| xt4                                                                                                                                                                                          |      |       |         |                                                                                                                  |        |                                                                 |       |                 |
| H5D                                                                                                                                                                                          | - 1  | 76001 | 381865  | 3161936                                                                                                          | 6 H5D  | _POINT_S                                                        | ELEC  | rs o            |
| H5D                                                                                                                                                                                          | - 1  | 76001 | 381865  | 3161936                                                                                                          | 6 H5D  | MAX_REA                                                         | D_TIM | 1E_SIZE         |
| H5D                                                                                                                                                                                          | - 1  | 76001 | 381865  | 3161936                                                                                                          | 6 H5D  | MAX_WRI                                                         | TE_T  | IME_SIZE        |
| H5D                                                                                                                                                                                          | -1   | 76001 | 381865  | 3161936                                                                                                          | 6 H5D  | SIZE_RE                                                         | AD_A  | GG_0_100        |
|                                                                                                                                                                                              | 4    | 7004  | 204065  | 24 64 02 6                                                                                                       | C LIED | CTTE DE                                                         | 10 10 | C 400 41        |



#### Available in Darshan 3.2.0+

- Using the MACSio<sup>1</sup> HDF5 plugin, run a couple of simple examples demonstrating the types of insights HDF5 I/O instrumentation can enable
  - 60-process (5-node) single shared file, 3d mesh, write roughly 1 GiB of cumulative H5D data
  - Compare performance of collective and independent I/O configurations



#### 1. https://github.com/LLNL/MACSio

b/w: ~290 MB/sec

H5 and POSIX incur minimal overhead for this workload

MPI-IO collective I/O algorithm dominates







#### Available in Darshan 3.2.0+



- Using the MACSio<sup>1</sup> HDF5 plugin, run a couple of simple examples demonstrating the types of insights HDF5 I/O instrumentation can enable
  - 60-process (5-node) single shared file, 3d mesh, write roughly 1 GiB of cumulative H5D data
  - Compare performance of collective and independent I/O configurations



Number of elements accessed in each dataset dimension for the most common access for each MACSio configuration

Radar plots, or other methods, can be used to help visualize characteristics of HDF5 dataset accesses

Dataset access patterns could be used to help set/optimize chunking parameters to limit accesses to as few chunks as possible





### New and upcoming Darshan features: DAOS instrumentation





## **DAOS** instrumentation

#### Work in progress

- Intel's DAOS offers an exciting new storage paradigm for HPC apps, utilizing object-based storage interfaces over a combo of SCM and SSD devices
  - libdfs: DAOS's POSIX file system emulation API
  - libdaos: DAOS's native object (key-val) API
- Darshan will instrument libdaos and libdfs APIs to help provide insight into application and I/O middleware usage of DAOS
  - Legacy POSIX app usage and performance characteristics
  - Usage and performance characteristics of libdaos users (libdfs, HDF5 VOL, MPI-IO, etc.)





Figure courtesy of Intel





## **DAOS** instrumentation

#### Work in progress



- libdfs instrumentation highlights:
  - Operation counts:
    - open
    - read/write
    - punch
    - stat
  - Total bytes read/written
  - Access size histograms
  - File chunk size
  - DTX usage (strict consistency mode)
  - Corresponding DAOS object record ID
    - Necessary to link Darshan's DFS records with native DAOS records
  - Read, write, and metadata timing

| # <mc< th=""><th>odule</th><th>e&gt; <rank> <recor< th=""><th>  id&gt; <counter></counter></th><th><value></value></th></recor<></rank></th></mc<> | odule | e> <rank> <recor< th=""><th>  id&gt; <counter></counter></th><th><value></value></th></recor<></rank> | id> <counter></counter> | <value></value> |
|----------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------|-------------------------|-----------------|
| DFS                                                                                                                                                | 0     | 849269818888932580                                                                                    | DFS_OPENS 0             | c3bcfc9a        |
| DFS                                                                                                                                                | 0     | 849269818888932580                                                                                    | DFS_GLOBAL_OPENS        | 5 0             |
| DFS                                                                                                                                                | 0     | 849269818888932580                                                                                    | DFS_LOOKUPS 1           | c3bcfc9a        |
| DFS                                                                                                                                                | 0     | 849269818888932580                                                                                    | DFS_DUPS 0              | c3bcfc9a        |
| DFS                                                                                                                                                | 0     | 849269818888932580                                                                                    | DFS_READS 0             | c3bcfc9a        |
| DFS                                                                                                                                                | 0     | 849269818888932580                                                                                    | DFS_READXS 0            | c3bcfc9a        |
| DFS                                                                                                                                                | 0     | 849269818888932580                                                                                    | DFS_WRITES 0            | c3bcfc9a        |
| DFS                                                                                                                                                | 0     | 849269818888932580                                                                                    | DFS_WRITEXS 0           | c3bcfc9a        |
| DFS                                                                                                                                                | 0     | 849269818888932580                                                                                    | DFS_NB_READS            | 0 c3bc          |
| DFS                                                                                                                                                | 0     | 849269818888932580                                                                                    | DFS_NB_WRITES           | 0 c3bc          |
| DFS                                                                                                                                                | 0     | 849269818888932580                                                                                    | DFS_GET_SIZES           | 0 c3bc          |
| DFS                                                                                                                                                | 0     | 849269818888932580                                                                                    | DFS_PUNCHES 0           | c3bcfc9a        |

**Note**: Unsurprisingly, Darshan's DFS instrumentation module closely follows the design of the POSIX module





## **DAOS** instrumentation

#### Work in progress

- libdaos instrumentation highlights:
  - Operation counts:
    - open
    - fetch (read) and update (write)
    - list (enumeration)
    - punch
  - Total bytes read/written
  - Access size histograms
  - Object class parameters
    - layout (static or dynamic striping)
    - redundancy (replication, erasure coding)
  - Container/pool UUIDs
  - Read, write, and metadata timing



Figure courtesy of Intel

**Note**: Each DAOS object is multi-level key-val store, creating challenges for deciding what can be instrumented using a fixed set of Darshan counters -- we are still investigating what characteristics about key access patterns to capture



DARSHAN



## New and upcoming Darshan features: PyDarshan





## PyDarshan log file analysis



Available for Darshan 3.3.0 (coming soon!)

- Darshan has traditionally offered only the C-based darshan-util library and a handful of corresponding utilities to users
  - Development of custom Darshan analysis utilities is cumbersome, requiring users to either:
    - Develop analysis tools in C using the low-level darshan-util library
    - Perform an inconvenient conversion from darshan-parser text output
- PyDarshan has been developed\* to simplify the interfacing of analysis tools with Darshan log data
  - Use Python CFFI module to provide Python bindings to the native darshan-utils C API
  - Expose Darshan log data as dictionaries, pandas dataframes, and numpy arrays
- We are hopeful PyDarshan will lead to a richer ecosystem for Darshan log analysis utilities

\* Thanks to Jakob Luettgau (DKRZ) for contributing most of the PyDarshan code, examples, and documentation



## PyDarshan log file analysis

#### Available for Darshan 3.3.0 (coming soon!)



 We've already found Jupyter notebooks to be an effective way of sharing PyDarshan analysis examples (code, documentation, visualizations) with users, collaborators, etc.

| n [1]: | <pre>import darshan report = darshan report.info()</pre>                                                                                                                           | n.DarshanReport("example-logs/example.darshan", read_all=True)                                                                                                                                                                                                                                                                                                                                                                                                         | In [3]: | <pre># access histo plt = plot_acc plt.show() Summarizing</pre>                                                                                                       | ograms<br>cess_histogram(report, 'F<br>. iohist POSIX | POSIX')                                                                          |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------------------|
|        | Filename:<br>Times:<br>Executeable:<br>rs/glock/tokioal<br>Processes:<br>JobID:<br>UID:<br>Modules in Log:<br>Loaded Records:<br>Name Records:<br>Darshan/Hints:<br>DarshanReport: | <pre>example-logs/example.darshan<br/>2017-03-20 04:07:47 to 2017-03-20 04:09:43 (Duration 0:01:56)<br/>/global/project/projectdirs/m888/glock/tokio-abc-results/bin.edison/vpici<br/>bc-s.4478544/vpicio/vpicio.hdf5 32<br/>2048<br/>4478544<br/>69615<br/>['POSIX', 'MPI-I0', 'LUSTRE', 'STDIO']<br/>{'POSIX': 1, 'MPI-I0': 1, 'STDIO': 1, 'LUSTRE': 1}<br/>4<br/>{'lib_ver': '3.1.3', 'h': 'romio_no_indep_rw=true;cb_nodes=4'}<br/>id(140124449925824) (tmp)</pre> |         | 16000<br>14000<br>12000<br>5<br>8000<br>6000<br>4000<br>2000<br>0<br>0<br>4000<br>0<br>0<br>4000<br>0<br>0<br>4000<br>0<br>0<br>4000<br>0<br>0<br>4000<br>0<br>0<br>4 | Historgram of Access Sizes: Po                        | DSIX<br>16384<br>0.0.0.0.0<br>16384<br>16384<br>16384<br>16384<br>16384<br>16384 |

In just a few lines of code, users can read a Darshan log into memory and generate plots describing access patterns





## PyDarshan log file analysis

Available for Darshan 3.3.0 (coming soon!)



- The first stable version (3.3.0.0) of PyDarshan is currently available and ready for users to analyze Darshan logs with
  - Use 'pip install darshan' to install the PyDarshan module from PyPI on your system
  - Alternatively, PyDarshan can be installed directly from the Darshan source, by running 'python3 setup.py instal1 --user' from the 'darshan-util/pydarshan' directory

| darshan 3.3.0.                                                              | 0                                    |  |  |
|-----------------------------------------------------------------------------|--------------------------------------|--|--|
| pip install darshan                                                         | Č                                    |  |  |
|                                                                             |                                      |  |  |
| Python tools to interact with darsh                                         | nan log records of HPC applications. |  |  |
|                                                                             |                                      |  |  |
| Navigation                                                                  | Project description                  |  |  |
| ➡ Project description Python utilities to interact with Darshan log records |                                      |  |  |
| S Release history                                                           | or higher to be installed.           |  |  |
|                                                                             |                                      |  |  |





#### Darshan roadmap



- In addition to those covered today, the following features are also on the Darshan roadmap:
  - Autoperf instrumentation module (available in Darshan 3.3.0)
    - APMPI MPI communication counters
    - CrayXC compute and network counters for Cray XC systems
    - Thanks to Sudheer Chunduri (ALCF) for this contribution!
  - PnetCDF instrumentation module (work in progress)
    - Full instrumentation of PnetCDF blocking/nonblocking APIs
    - Thanks to Claire Lee (NWU) and Wei-keng Liao (NWU) for this contribution!
  - Fork handlers for non-MPI mode (work in progress, available in 'dev-fork-safe' branch)
    - Numerous updates to allow forked processes to generate their own Darshan logs
  - Enhanced analysis tools and report generation (???)
    - Building off of our pydarshan log utility bindings, we want to revamp our analysis tools and report generation using Python





## Wrapping up



- We've covered a lot of ground today, but hopefully there was helpful information for new Darshan users and experienced Darshan users alike
- Come to our breakout session tomorrow ("Interpreting Darshan Logs", 2:30-3:30 PM EST) to learn more about how to best interpret Darshan log data to gain meaningful insight into I/O behavior
  - Feel free to provide us logs you would like to see analyzed (or even job IDs on one of the systems we've covered), but we also have our own interesting examples we can share if nothing else
- Please reach out with any questions, comments, or feedback!
- Darshan website: <u>https://www.mcs.anl.gov/research/projects/darshan/</u>
- Darshan-users mailing list: <u>darshan-users@lists.mcs.anl.gov</u>
- Source code, issue tracking: <u>https://xgitlab.cels.anl.gov/darshan/darshan</u>





This research was supported by the Exascale Computing Project (17-SC-20-SC), a joint project of the U.S. Department of Energy's Office of Science and National Nuclear Security Administration, responsible for delivering a capable exascale ecosystem, including software, applications, and hardware technology, to support the nation's exascale computing imperative.

