
Interpreting Darshan Logs

Phil Carns, Kevin Harms, Rob Latham, Rob Ross, Shane Snyder
Argonne National Laboratory

ECP Annual Meeting

April 15, 2021

2

Purpose of this session

• In yesterday’s BoF, we covered background on the Darshan I/O characterization
tool and basics on how to use it on HPC systems

• Today, we focus primarily on how to interpret Darshan log data to help equip users
with tools and best practices for understanding application I/O behavior
– Traditional Darshan analysis tools, developed mostly using Darshan’s C-based

darshan-util library
– PyDarshan, a recently developed Python interface to Darshan log files that allows

for simpler development of Darshan log file analysis tools

• We have given attendees the option to provide Darshan logs of interest to our team
so that we can analyze them in this session
– We also have a few examples we can present that demonstrate how Darshan can

be used to enable different I/O insights

3

Session materials

• We have assembled materials for this session in a repo that may be of use to attendees:
– Darshan-3.3.0-pre1 pre-release, containing up-to-date source code for Darshan software and

PyDarshan log analysis package
– Darshan log file analysis examples, including background details, job submission scripts, etc.
– Jupyter notebooks demonstrating usage of PyDarshan for analyzing Darshan log files

https://github.com/darshan-hpc/ecpam-21-materials.git

https://github.com/darshan-hpc/ecpam-21-materials.git

4

Installing darshan-util and traditional Darshan
log analysis utilities

Manual installation of darshan-util and log
utilities:
(0a.) tar -xzvf darshan-3.3.0-pre1.tar.gz
(0b.) git clone -b darshan-3.3.0-pre1
https://xgitlab.cels.anl.gov/darshan/dars
han.git darshan-3.3.0-pre1
1. cd darshan-3.3.0-pre1/darshan-util
2. ./configure --enable-shared

--prefix=<install_prefix>
3. make install

Spack installation of darshan-util and log
utilities:
(0.) Make sure Spack repo is up-to-date
1. spack install

darshan-util@darshan-3.3.0-pre1
2. spack load -r

darshan-util@darshan-3.3.0-pre1

darshan-util library and
corresponding binaries installed at

given install prefix

Darshan-util library and corresponding
binaries installed at ‘spack location -i
darshan-util’, corresponding env vars

set (PATH, LD_LIBRARY_PATH, etc.)

5

Installing PyDarshan log analysis package

Finding libdarshan-util.so:
• Python package must be able to find
libdarshan-util.so

1. module load darshan
2. export

LD_LIBRARY_PATH=<install_prefix>/lib
3. export

PKG_CONFIG_PATH=<install_prefix>/lib/
pkgconfig

PyPI installation of PyDarshan:
● Can install from PyPI repository,

https://pypi.org/project/darshan/

1. pip3 install --user darshan

Manual installation of PyDarshan
using setup.py:

● Run the following from the
darshan-3.3.0-pre1 top-level
directory

1. cd darshan-util/pydarshan
2. pip3 install -r

requirements.txt
3. python3 setup.py install

--user

Not necessary for PyPI wheel
distributions

Traditional Darshan
analysis tools

7

Overview

• “Traditional Darshan analysis tools” refers to the command utilities that have always been available
in the darshan-util package
– They produce static pdf summaries and column-oriented text statistics

• These are tried and true tools, but there is no interactive exploration unless you are comfortable
manipulating text data yourself

• Step 1 (actually this probably applies to any analysis method): find your log
– The logs themselves are not machine-dependent: copy them wherever you want for analysis
– Sometimes it is easiest to analyze them on your own laptop
– Darshan analysis utilities are backwards compatible for old logs

8

Finding your log file

The “darshan-config –log-path” command will
show you where to look for logs on your
system.

NOTE: it may report the name of an
environment variable (e.g. $HOME)
depending on your installation.

user
name

executable
name

job ID

System installs usually
have a year/month/day
hierarchy in the log
directory

In this example, I want to copy
all of my logs (prefixed with
username) for a specific day.

NOTE: the log
date will be
determined by
the compute
node time zone,
not your time
zone!

9

darshan-job-summary

• Darshan-job-summary is a typical starting point for understanding a Darshan log.
– It produces a PDF that you can save/print/email etc: a good conversation starter!
– Good for getting the general “feel” of what the I/O is like in an application

• Limitations:
– Presentation is static
– It requires a latex and gnuplot tool chain

10

darshan-job-summary example

11

darshan-parser

• This tool extracts everything* from a Darshan log and displays it in text format.
– Provides more information than you can find in job-summary, with per-file granularity
– You can grep/sort/awk through it in text format, or make your own analysis scripts

• Limitations:
– Parsing text isn’t very fast, especially if

you are mining many logs
– Text parsing is a little fragile, and

requires learning more details about
Darshan counters

* Well, pretty close anyway. We’ll learn
about traces in a minute.

12

darshan-dxt-parser

• What if you want more than just statistics, but an actual trace of each I/O operation?

• Re-run your job with “export DXT_ENABLE_IO_TRACE=1” in your job script
– This will capture the most detail possible with Darshan
– Includes access sizes, offsets, and start and end of each I/O operation

• Limitations:
– Not enabled by default (note in the above

example that it is enabled via explicit
runtime environment variable; this will make
Darshan produce larger log files than a
“normal” run)

– Not many command line tools to
visualize results

13

dxt_analyzer

• dxt_analyzer can be used to visualize trace data
– What ranks did I/O?
– When exactly (in the job’s run time) did they do it?

• Limitations:
– Does not show all information captured by the

trace (no offset information or individual response
times)
This example is boring!

It is a benchmark in which all 512 ranks wrote
one big chunk at the same time, and then the
program exited.

In a real application you would likely see
phases of I/O, or ranks doing things at different
times.

PyDarshan

15

PyDarshan

• Darshan python module included as part of future Darshan release 3.3.0

• Vision that pydarshan will enable more users to write analysis code
– No longer required to write in C
– No longer required to parse ASCII output from darshan-parser

• Python module that
– uses existing darshan-util code to load darshan log data similar to existing tools like darshan-parser
– provides a low-level wrapper around darshan-util code
– provides higher-level interface to access log data
– supports multiple data formats

• Initial python interface!
– Looking for feedback and experiences
– Open to suggestions for improvement

16

Try it

• python3
>>> import darshan
>>>

>>> import darshan
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "/home/ubuntu/.local/lib/python3.8/site-packages/darshan-0.0.6-py3.8.egg/darshan/__init__.py", line 14, in <module>
 from darshan.report import DarshanReport
 File "/home/ubuntu/.local/lib/python3.8/site-packages/darshan-0.0.6-py3.8.egg/darshan/report.py", line 10, in <module>
 import darshan.backend.cffi_backend as backend
 File "/home/ubuntu/.local/lib/python3.8/site-packages/darshan-0.0.6-py3.8.egg/darshan/backend/cffi_backend.py", line 24, in
<module>
 libdutil = find_utils(ffi, libdutil)
 File "/home/ubuntu/.local/lib/python3.8/site-packages/darshan-0.0.6-py3.8.egg/darshan/discover_darshan.py", line 200, in
find_utils
 raise RuntimeError('Could not find libdarshan-util.so! Is darshan-util installed? Please ensure one of the the following: 1)
export LD_LIBRARY_PATH=<path-to-libdarshan-util.so>, or 2) darshan-parser can found using the PATH variable, or 3)
pkg-config can resolve pkg-config --path darshan-util, or 4) install a wheel that includes darshan-utils via pip.')
RuntimeError: Could not find libdarshan-util.so! Is darshan-util installed? Please ensure one of the the following: 1) export
LD_LIBRARY_PATH=<path-to-libdarshan-util.so>, or 2) darshan-parser can found using the PATH variable, or 3) pkg-config
can resolve pkg-config --path darshan-util, or 4) install a wheel that includes darshan-utils via pip.

17

Structure

• Backend
– Vision we might have more than one backend, but currently only one based

on CFFI
– CFFI is a python module that has limited interop with C data types and

structures and C calling conventions
– Wraps existing libdarshan-util functions for extracting data from logs
– Probably don’t start here… this is just informational

• >>> backend = darshan.backend.cffi_backend
• >>> dir(backend)
• ['API_def_c', '__builtins__', '__cached__', '__doc__', '__file__', '__loader__', '__name__', '__package__', '__spec__',

'_log_get_lustre_record', '_structdefs', 'cffi', 'check_version', 'counter_names', 'ctypes', 'fcounter_names', 'ffi', 'find_utils',
'get_lib_version', 'libdutil', 'load_darshan_header', 'log_close', 'log_get_dxt_record', 'log_get_exe', 'log_get_generic_record',
'log_get_job', 'log_get_modules', 'log_get_mounts', 'log_get_name_records', 'log_get_record', 'log_lookup_name_records',
'log_open', 'logger', 'logging', 'np', 'pd']

• DarshanReport object
– Provides easier data access, more “pythonic”
– Loads entire log by default
– Represents data as either numpy (default), pandas, or python dictionary
– Convenience functions and data representations

18

Data Format

• Data is in the ‘records’ member of DarshanReport

• Records member is a dictionary of ‘DarshanRecordCollection’ objects,
one for each module
– Report.records[‘POSIX’] -> DarshanRecordCollection()
– Derived from collections.abc.MutableSequence
– [0] gives the first record which is dictionary-like

• ‘id’ -> darshan record hash
• ‘rank’ -> MPI rank the data is from or -1 if reduced from all ranks
• ‘counters’ -> integer counters
• ‘fcounters’ -> floating point counters

• counters and fcounters will be numpy arrays by default
– Pandas dataframe and python dictionary are options

19

Notebook

• Example walkthrough
– ecpam-21-materials/ecp-pydarshan-data-layout.ipynb

• This notebook walks through data layout to explain the basics of accessing
darshan data via pydarshan

• We won’t cover this today

– ecpam-21-materials/ecp-pydarshan-log-analysis.ipynb
• This notebook provides an initial basic analysis framework to look at what

happens within the application I/O
• Users can take the notebook and set the logfile to point to your own log and try it

out

20

Resources

• Documentation
– Darshan Webpage
– Darshan Util documentation

• Repos
– https://xgitlab.cels.anl.gov/darshan/darshan
– https://xgitlab.cels.anl.gov/darshan/darshan/-/tree/master/darshan-util/pydar

shan

• Training
– ATPESC videos

• Examples
– https://xgitlab.cels.anl.gov/darshan/darshan/-/tree/master/darshan-util/pydar

shan/examples

https://www.mcs.anl.gov/research/projects/darshan/developer-access/
https://www.mcs.anl.gov/research/projects/darshan/docs/darshan-util.html
https://xgitlab.cels.anl.gov/darshan/darshan
https://xgitlab.cels.anl.gov/darshan/darshan/-/tree/master/darshan-util/pydarshan
https://xgitlab.cels.anl.gov/darshan/darshan/-/tree/master/darshan-util/pydarshan
https://xgitlab.cels.anl.gov/darshan/darshan/-/tree/master/darshan-util/pydarshan/examples
https://xgitlab.cels.anl.gov/darshan/darshan/-/tree/master/darshan-util/pydarshan/examples

21

Now, for the interactive portion of the session...

• Do any attendees have any logs they would like to share for us to analyze live
during this session???

• If not, we have some prepared examples we can walkthrough to demonstrate
how users can interpret Darshan log data -- do any attendees feel strongly about
which examples we should prioritize?
– PyDarshan log file analysis examples using Jupyter notebooks
– Traditional Darshan analysis tools demonstrating interesting insights into example IOR

workloads
– Use of PyDarshan for analyzing a month’s worth of logs on ALCF Theta to better

understand MPI-IO behavior

22

This research was supported by the Exascale Computing Project
(17-SC-20-SC), a joint project of the U.S. Department of Energy’s
Office of Science and National Nuclear Security Administration,

responsible for delivering a capable exascale ecosystem, including
software, applications, and hardware technology, to support the

nation’s exascale computing imperative.

