
Suggested line of text (optional): 

WE START WITH YES.

February 4, 2020

I/O Performance Addicts

erhtjhtyhy

Shane Snyder
Argonne National Laboratory

ECP Annual Meeting ’20
Houston, TX



Why are we here?

❖ Modern scientific computing applications 
access increasingly large and complex 
datasets to enable productive insights

❖ To support the diverse I/O needs of these 
applications, HPC systems are embracing 
deeper storage hierarchies and more 
elaborate layers of I/O libraries

❖ I/O analysis tools are of great help for 
navigating the complexity of HPC storage 
systems

Because I/O performance is addicting!

2
IBM Summit (OLCF)

Visualization of entropy in Terascale 
Supernova Initiative application. Image 

from Kwan-Liu Ma (UC Davis)



Suggested closing statement (optional): 

WE START WITH YES.
AND END WITH THANK YOU.

DO YOU HAVE ANY BIG QUESTIONS?

Darshan: An application I/O
characterization tool for HPC



❖ Darshan is a lightweight I/O characterization tool that captures concise views 
of HPC application I/O behavior
➢ Produces a summary of I/O activity for each instrumented job

■ Counters, histograms, timers, & statistics
■ Full I/O traces (if requested)

❖ Widely available
➢ Deployed (and typically enabled by default!) at many HPC facilities relevant to ECP

❖ Easy to use
➢ No code changes required to integrate Darshan instrumentation
➢ Negligible performance impact; just “leave it on”

❖ Modular
➢ Adding instrumentation for new I/O interfaces or storage components is straightforward

What is Darshan?

4



How does Darshan work?

❖ Darshan inserts application I/O instrumentation at link-time (for static 
executables) or at runtime (for dynamic executables)
➢ Darshan instrumentation traditionally only compatible with MPI programs*

❖ As app executes, Darshan records file access statistics for each process
➢ Per-process memory usage is bounded to limit runtime overheads

❖ At app shutdown, collect, aggregate, compress, and write log data
➢ Lean on MPI to reduce shared file records to a single record and to collectively write log data

❖ With a log generated, Darshan offers command line analysis tools for 
inspecting log data
➢ darshan-job-summary - provides a summary PDF characterizing application I/O behavior
➢ darshan-parser - provides complete text-format dump of all counters in a log file

5

* More on this later



Suggested closing statement (optional): 

WE START WITH YES.
AND END WITH THANK YOU.

DO YOU HAVE ANY BIG QUESTIONS?

Using Darshan on ECP platforms



Using Darshan on Theta (ALCF)

7

Use ‘module list’ to confirm 
Darshan is actually loaded

❖ Theta is a Cray XC40 system that uses static linking by default*
➢ Static instrumentation enabled using Cray software module that injects linker options when 

compiling application

* More on this shortly

Darshan 3.1.5 current default 
version available on Theta

If Darshan not loaded,
you can load manually using 

‘module load’



Using Darshan on Theta (ALCF)

❖ OK, Darshan is loaded...now what?
➢ Just compile and run your application!
➢ Darshan inserts instrumentation directly into executable

❖ After the application terminates, look for your 
log files:

8

Darshan logs stored in a central 
directory -- check site 

documentation for details.

Logs further indexed using 
‘year/month/day’ the job 

executed. Pay attention to 
time zones to ensure you’re 

looking in the right spot.

Log file name starts with the 
following pattern: 

‘username_exename_jobid…’



Using Darshan on Cori (NERSC)

9

Use ‘module list’ to confirm 
Darshan is actually loaded

❖ Cori is also a Cray XC40 that has traditionally used static linking by default*
➢ Using Darshan on Cori is essentially identical to to the process used on Theta

Darshan 3.1.7 current default 
version available on Cori

* More on this shortly



Using Darshan on Cori (NERSC)

❖ After compiling and running your application, look for your log files:

10



Using Darshan on Summit (OLCF)

❖ Summit is an IBM Power9-based system that uses dynamic linking by default
➢ LD_PRELOAD mechanism used to interpose Darshan instrumentation libraries at runtime
➢ Like Cori/Theta, software modules used to enable Darshan instrumentation

11

Summit also provides ‘module 
list’ command

Darshan 3.1.7 is the default 
version on Summit.

Note: darshan-runtime and 
darshan-util are separate 

modules, with only 
darshan-runtime loaded by 

default



Using Darshan on Summit (OLCF)

❖ Since Summit uses LD_PRELOAD, there is no need to re-compile your 
application -- just run it and then look for your logs:

12



Note about dynamic linking on Cori/Theta

❖ In recent changes to the Cray programming environment, the default linking 
method was changed to dynamic
➢ Cori adopted at the beginning of the year
➢ Theta will be adopting soon

❖ We are working with ALCF and NERSC to accommodate these changes, 
focusing on a couple of options:
➢ Use an LD_PRELOAD mechanism similar to that used on Summit
➢ Use rpath mechanism to embed Darshan library path in dynamically-linked executable

❖ Goal is to rely on software modules on these systems to transparently 
enable/disable Darshan instrumentation regardless of the link method
➢ In the meantime, may be necessary to use LD_PRELOAD manually to interpose Darshan

13



Suggested closing statement (optional): 

WE START WITH YES.
AND END WITH THANK YOU.

DO YOU HAVE ANY BIG QUESTIONS?

Analyzing Darshan logs



Analyzing Darshan logs

15

❖ After generating and locating your log, use Darshan analysis tools to inspect 
log file data:

Copy the log file somewhere else 
for analysis

Invoke darshan-parser (already 
in PATH on Theta) to get detailed 

counters

Modules use a common format for 
printing counters, indicating the 

corresponding module, rank, 
filename, etc. -- here sample 

counters are shown for both POSIX 
and MPI-IO modules



Analyzing Darshan logs

16

❖ But, darshan-parser output isn’t so accessible for most users… use 
darshan-job-summary tool to produce summary PDF of app I/O behavior

On Theta, texlive module is 
needed for generating PDF 

summaries -- may not be needed 
on other systems

Invoke darshan-job-summary on 
log file to produce PDF

A few simple statistics (total I/O 
time and volume) are output on 

command line

Output PDF file name based on 
Darshan log file name



Analyzing Darshan logs

17

Result is a multi-page PDF 
containing graphs, tables, 

and performance estimates 
characterizing the I/O 

workload of the application

We will summarize some of 
the highlights in the following 

slides



Analyzing Darshan logs

18

PDF header contains some high-level 
information on the job execution

I/O performance estimates (and total I/O 
volumes) provided for MPI-IO/POSIX and 

STDIO interfaces



Analyzing Darshan logs

19

Across main I/O interfaces, how much time was 
spent reading, writing, doing metadata, or 

computing?

If mostly compute, limited opportunities for I/O tuning

What were the relative totals of different I/O 
operations across key interfaces?

Lots of metadata operations (open, stat, seek, 
etc.) could be a sign of poorly performing I/O



Analyzing Darshan logs

20

Histograms of POSIX and MPI-IO access sizes are 
provided to better understand general access 

patterns

In general, larger access sizes perform better with 
most storage systems

Table indicating total number of files of 
different types (opened, created, 

read-only, etc.) recorded by Darshan



Analyzing Darshan logs

21

Darshan can also provide 
basic timing bounds for 

read/write activity, both for 
independent file access 

patterns (illustrated) or for 
shared file access patterns

reads

writes



Suggested closing statement (optional): 

WE START WITH YES.
AND END WITH THANK YOU.

DO YOU HAVE ANY BIG QUESTIONS?

What if we want more details?



Focusing analysis on individual files

23

❖ If we want to focus Darshan analysis tools on a specific file, Darshan offers a 
couple of different options
➢ darshan-convert utility can be used to create a new Darshan log file containing a specified 

file record ID (obtainable from darshan-parser output)
■ e.g., ‘darshan-convert --file RECORD_ID input_log.darshan output_log.darshan’
■ New log file can be ran through existing log utilities we have already covered

➢ darshan-summary-per-file tool can be used to generate separate job summary PDFs for 
every file in a given Darshan log

■ Do not use if your application opens a lot of files!



Disabling reductions of shared records

You may notice that Darshan is unable to 
provide more detailed access information 

for shared file workloads, as illustrated 
here

 
This is as a result of Darshan’s decision to 
aggregate shared file records into a single 

file record representing all processes’ 
access information

24



Disabling reductions of shared records

Setting the 
‘DARSHAN_DISABLE_SHARED_REDUCTION’ 

environment variable will force Darshan to 
skip the shared file reduction step, 

retaining each process’s independent view 
of access information 

This results in larger log files, but may be 
useful in better understanding underlying 
access patterns in collective workloads

25



Obtaining fine-grained traces with DXT

❖ Darshan’s DXT module can be enabled at runtime for users wishing to 
capture detailed I/O traces for MPI-IO and POSIX interfaces
➢ Fine-grained trace data comes at cost of larger per-process memory overheads
➢ Set the DXT_ENABLE_IO_TRACE environment variable to enable

❖ darshan-dxt-parser can be then be used to dump text-format trace data:

26



Obtaining fine-grained traces with DXT

❖ dxt_analyzer Python script installed with darshan-util can be used to help 
visualize read/write trace activity:

27

Provides details on each I/O 
operation issued by each rank, 
providing a complete picture of 
which ranks are performing I/O 
and how long they are spending 

on I/O



Suggested closing statement (optional): 

WE START WITH YES.
AND END WITH THANK YOU.

DO YOU HAVE ANY BIG QUESTIONS?

What’s new with Darshan?



DXT trace triggers

❖ DXT traces can enable fine-grained insights into application I/O behavior, 
but at the cost of increased memory overheads

❖ To address this, we have integrated “trace triggers” into DXT to provide 
users with more control over which files Darshan will trace at runtime
➢ Static trace triggers: use regex matching on static information related to file access to 

control whether a file is traced:
■ File name matching
■ Process rank matching

➢ Dynamic trace triggers: use internal file access statistics gathered by Darshan to control 
whether a file is traced:

■ Frequent small I/O accesses
■ Frequent unaligned I/O accesses

Available in Darshan 3.1.8

29



DXT trace triggers

❖ Users inform Darshan about their desired trace triggers using a text file, 
which can specify 1 or more triggers to be used at runtime:

Available in Darshan 3.1.8

30

Set this environment 
variable to inform 

Darshan about the 
trace triggers file

Text-based descriptions of each 
trigger, one per-line



DXT trace triggers

❖ Users inform Darshan about their desired trace triggers using a text file, 
which can specify 1 or more triggers to be used at runtime:

Available in Darshan 3.1.8

31

Only trace files ending in prefix 
‘.h5’ or with path prefix ‘/scratch’



DXT trace triggers

❖ Users inform Darshan about their desired trace triggers using a text file, 
which can specify 1 or more triggers to be used at runtime:

Available in Darshan 3.1.8

32

Only trace files accessed by ranks 1-2



DXT trace triggers

❖ Users inform Darshan about their desired trace triggers using a text file, 
which can specify 1 or more triggers to be used at runtime:

Available in Darshan 3.1.8

33

Only trace files that had greater 
than 50% small I/O accesses or 
greater than 50% unaligned I/O 

accesses



Non-MPI instrumentation support

❖ To support an evolving HPC software landscape, 
we have broken Darshan’s dependence on MPI to 
allow instrumentation in new contexts:
➢ non-MPI computing frameworks (e.g., Spark, TensorFlow)
➢ Inter- and intra-site file transfer utilities (e.g., Globus, cp)
➢ General serial applications

❖ This required significant modifications to Darshan:
➢ Build logic for detecting whether a compiler supports MPI
➢ Refactoring of Darshan core functionality to make MPI 

optional
➢ Definition of shared library constructor/destructor attributes 

to handle initialization/shutdown of the Darshan library*

WIP-ish (experimental version available in 3.2.0-pre1)

34

* Side effect: this instrumentation method only 
works for dynamically linked executables

Darshan
instrumentation



Non-MPI instrumentation support
WIP-ish (experimental version available in 3.2.0-pre1)

35

▪ To build Darshan with a non-MPI compiler (e.g., gcc), use the following 
arguments when configuring: ‘--without-mpi CC=gcc’

– Other compilers (e.g., clang, llvm) possible, but gcc is recommended

▪ When running your app, you must set the DARSHAN_ENABLE_NONMPI 
environment variable (in addition to LD_PRELOAD):



Non-MPI instrumentation support
WIP-ish (experimental version available in 3.2.0-pre1)

36

This simple Spark 
example generated a lot 

of logs!



Non-MPI instrumentation support
WIP-ish (experimental version available in 3.2.0-pre1)

37

Focusing analysis on the 
Java executable that does 

all of the I/O for this 
example



Detailed HDF5 instrumentation module

❖ Darshan has traditionally offered very little in the ways of HDF5 
instrumentation, providing only basic statistics about HDF5 file open calls

❖ But, understanding and improving the I/O behavior of HDF5 workloads is 
critical to the performance of many current HPC applications
➢ HDF5 provides a convenient abstract data model for scientific data, but it obscures how 

HDF5 storage constructs interact with lower layers of the I/O software stack (i.e., MPI-IO 
and POSIX levels)

❖ We have developed a new implementation of the HDF5 module that allows 
for better understanding of HDF5 I/O behavior from file- and dataset-level 
perspectives

WIP-ish (available in branch dev-detailed-hdf5-mod, include in 3.2.0)

38



Detailed HDF5 instrumentation module

❖ We split the original HDF5 module into two instrumentation modules: H5F 
(for HDF5 files) and H5D (for HDF5 datasets), each independently recording 
instrumentation records

❖ H5F module highlights:
➢ Operation counts

■ open/create
■ flush

➢ MPI-IO usage
➢ Metadata timing

WIP-ish (awaiting merge, will include in 3.2.0)

39



Detailed HDF5 instrumentation module

❖ H5D module highlights:
➢ Operation counts:

■ open/create
■ read/write
■ flush

➢ Total bytes read/written
➢ Access size histograms
➢ Dataspace selection types

■ Points
■ Regular hyperslab
■ Irregular hyperslab

➢ Dataspace total dimensions, points
➢ MPI-IO collective usage
➢ Deprecated function usage
➢ Read, write, and metadata timing

WIP-ish (awaiting merge, will include in 3.2.0)

40



darshan-util Python bindings

❖ The only existing interface to Darshan logs is via the darshan-util C library
➢ Non-C log file analysis tools require a costly conversion to text format (using 

darshan-parser) which the tool must then find a way to ingest

❖ To address this, we are developing Python bindings for the darshan-util 
library that simplify the interfacing of Darshan analysis tools with log data
➢ Use Python CFFI module to provide Python bindings to the native darshan-utils C API
➢ Organize Darshan log data using native Python constructs (e.g., dictionaries) to allow 

simple and efficient access to log data

❖ We are hopeful this will lead to more productive Darshan log file analysis 
tools that can be distributed with Darshan

WIP (tentatively planning to include in 3.2.0)

41



Wrapping up

❖ We’ve covered a lot of ground in a short amount of time, but don’t be 
overwhelmed...
➢ No one is expected to be an expert at the end of this session!
➢ Instead, we just want to equip you with resources you can consult to 

start to think about understanding and improving I/O performance using 
Darshan

➢ Don’t hesitate to reach out to us if you have questions, comments, or 
suggestions

❖ Darshan website: https://www.mcs.anl.gov/research/projects/darshan/ 
❖ Darshan-users mailing list: darshan-users@lists.mcs.anl.gov 
❖ Source code, issue tracking: https://xgitlab.cels.anl.gov/darshan/darshan 

42

https://www.mcs.anl.gov/research/projects/darshan/
mailto:darshan-users@lists.mcs.anl.gov
https://xgitlab.cels.anl.gov/darshan/darshan


Thanks to all for attending!

All comments/questions are welcome!


