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Fig. 1. Streaming simplification performed on a tetrahedral mesh ordered from bottom to top. The portion of the mesh that is in-core at
each step is shown in green.

tetrahedral simplification.

• We provide a new solver for quadric-based simplifi-
cation that improves stability and speed of existing
algorithms. We also provide both stability and error
analysis of the results generated using this tech-
nique.

• We show that our streaming algorithm can suc-
cessfully simplify a data set consisting of over
one billion tetrahedra on a commodity PC with
negligible error.

The remainder of this paper is organized as follows.
We summarize related work in Section I-A. In Sec-
tion II, we describe our algorithm for arranging the
data in a coherent, streaming mesh. Section III provides
details on our out-of-core simplification, Section IV
contains our stability and error analysis followed by
performance measures, Section V discusses the benefits
of our approach over previous algorithms, and Section VI
provides final remarks and directions for future work.

A. Related Work
A common result from scientific computations is a

scalar field f in R3. This scalar field f can be represented
over a domain D as a tetrahedral mesh. When it is
not possible to achieve interactive visualization of f ,
it is common to find a tetrahedral mesh with fewer
elements and an associated scalar field f ⇤ such that
the approximation error ⌅ f ⇤ � f⌅ is minimized. Many
algorithms have been proposed in an attempt to compute
f ⇤ quickly and with little error.

Trotts et al. [1], [2] developed a technique that
collapses one edge at a time, deciding which edge to
collapse next based on an error bound calculated at each
step. They provide a bound on the maximum deviation
of the field data in the simplified mesh from the original.

Several techniques for simplification have recently
been proposed that act on the vertices. Van Gelder et
al. [3] remove vertices based on mass and data error
metrics. Uesu et al. [4] provide a fast point-based
method which works directly on the underlying scalar

field. These techniques are more memory efficient than
edge collapse methods, but require the addition of Steiner
points to handle non-convex meshes. This requirement
makes them difficult to modify for streaming algorithms.

The idea of a progressive mesh for surface level
of detail control was proposed by Hoppe [5] and
later extended to simplicial complexes by Popović and
Hoppe [6]. Staadt and Gross [7] define appropriate cost
functions to account for volume preservation, gradient
estimation, and scalar data with progressive tetrahedral
meshes. Chopra and Meyer [8] propose a fast progressive
mesh decimation scheme that is based on the scalar field
of the mesh.

Many algorithms have been developed that use differ-
ent error metrics to perform the simplification via edge
collapses. Cignoni et al. [9] use domain and field (i.e.,
range) error metrics to approximate the original mesh.
The use of a quadric error metric for surface simpli-
fication was introduced by Garland and Heckbert [10].
Their method uses iterative contractions on vertex pairs
and calculates the error approximations using quadric
matrices. Natarajan and Edelsbrunner [11] extend the
quadric error metric to preserve topological features.
Garland and Zhou [12] recently generalized the quadric
error metric for simplifying simplicial elements in any
dimension.

As model size has continued to increase faster than
main memory size in commodity PCs, techniques have
been developed to simplify these data sets out-of-core.
Lindstrom [13] proposed an algorithm that simplifies
triangle meshes of arbitrary size. This algorithm im-
proves upon Rossignac and Borel’s [14] vertex-clustering
method by using the quadric error metric. The mesh is
stored as a redundant list of three vertex positions per
triangle. This “triangle soup” is read one triangle at a
time and a simplified mesh is constructed incrementally
and kept in-core. Lindstrom and Silva [15] improve upon
the quality of this algorithm while making the method
more memory efficient by storing the simplified mesh
out-of-core during processing. They handle boundaries
separately to preserve the overall shape of the mesh.

www.vistrails.org
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LOD (Camera C, Node R, PriorityFunction P, int MaxTri)
PriorityQueue Q;
R.Selected = true;
Q.Push(P(C,R),R);
Total = 0;
while !(Q.Empty())

Node N = Q.Pop();
if N.HasChildren

TC = the total number of triangles in N’s children
if (Total�N.NumberO f Triangles+TC) < MaxTri

Total = Total�N.NumberO f Triangles+TC;
N.Selected = false;
for i = 0 to 7

if N.Children[i] is not empty or culled
N.Children[i].Selected = true;
Q.Push(P(C,N.Children[i]),N.Children[i]);

SORT (Camera C, Node R, List SortedNodes)
if R is not culled

if R.Selected
SortedNodes.Push(R);

else if R.HasChildren
SC = R’s children sorted ascendingly by distances to C
for each node N in SC

SORT(C, N, SortedNodes);

Figure 3: Pseudo-code for the octree traversal algorithm.

cial care needs to be taken when rendering multiple octree nodes
to ensure proper compositing. At each frame, our algorithm re-
solves the compositing issue by sorting the active set of octree
nodes that are in memory in visibility order (front-to-back). When
octree nodes of different sizes are in the active set, we sort by the
largest common parent of the nodes. The original HAVS algorithm
has also been modified to iterate over the active set of nodes in vis-
ibility order and perform the object-space and image-space sort on
each piece. To ensure a smooth transition between octree nodes, the
k-buffer is not flushed until the last node is rendered.

3.3 Out-of-Core Dataset Traversal

iRun uses an out-of-core traversal algorithm that has been exten-
sively optimized for volume rendering (Figure 1). For each camera
received from the user interface, we apply frustum-culling on the
octree to find all nodes that are visible in this view and mark them
as visible nodes. Depending on whether or not the user is interact-
ing with iRun, the LOD will decide which nodes are to be rendered
next. Next, everything is passed to the visibility sorter and only
those that have been cached in the geometry cache are sent to HAVS
for rendering while the others are put onto the fetching queue. iRun
also does camera prediction for each frame by linearly extrapolat-
ing previous camera parameters. All of the nodes selected in the
predicted camera will also be put on the fetching queue.

The LOD management of iRun is a top-down approach work-
ing in a priority-driven manner. Given a priority function P(C,N)
which assigns priority for every node N of the octree with respect to
the camera C, the LOD process starts by adding the root R to a pri-
ority queue with the key of P(C,R). Next, iterations of replacing the
highest priority node of the queue with its children are repeatedly
executed until such refinement will exceed a predefined number of
triangles (Figure 3).

In our experiments, we use two different priority functions
to control the LOD of iRun. The first is a Bread-First-Search
(BFS) based function that is used during user’s interactions:

Figure 4: A snapshot of iRun refining the LOD: The image on the left is
rendered as the user would see it from the current camera position. On
the right is a bird’s-eye view of the same set of visible nodes. Different colors
indicate different levels-of-detail. The geometry cache is limited to only 64MB
of RAM in this case.

PBFS(C,N) =< l,d >, where l is the depth of N and d is the dis-
tance of the bounding box of N to the camera C. In this case, each
node’s priority is primarily determined by how far it is from the
root and subsequently by its distance to the camera when the nodes
are on the same level. Briefly, our goal is to evenly distribute data
of the octree on the screen to improve the overall visualization of
the dataset. While interacting with iRun, the target frame rate can
be achieved by setting a limit on the maximum number of triangles
rendered in the current frame. This number is calculated based on
the number of triangles that were rendered, and the rendering time,
for the previous frame.

For increased image quality at a given view, iRun will automat-
ically adjust itself to increase the LOD using as much memory as
possible when interaction stops. Since we want to cover as much
of the screen as possible, a priority function reflecting the projected
screen area is necessary for the LOD. We define Parea(C,N) = A,
where A is the projected area of the bounding box of N onto the
screen. However, this function can be easily replaced by any other
heuristic approaches, such as those reflecting nodes scalar ranges,
transfer functions, etc., to achieve the best image quality. The maxi-
mum number of triangles to be rendered at this higher image quality
is limited to the amount of memory that has been dedicated to the
geometry cache.

This approach, however, could raise a problem when the user
begins interaction again and the geometry cache is already full. Our
next frame would be displayed incompletely since a lower LOD is
not available and the higher LOD is too large to be rendered at an
interactive rate. To overcome this problem, before increasing the
LOD, the current data on the screen will be locked; i.e., it will not
be flushed by the geometry cache while fetching new data from
disk. When the camera is changed, the previous locked nodes will
be unlocked. The trade-off in image quality is insignificant because
the amount of memory used by this data is usually very small (e.g.,
1%) when compared to the total memory of the geometry cache.

The node visibility sorter ensures everything is in the correct or-
der before compositing in HAVS. In fact, it only takes a single pass
through the whole octree to sort all of these nodes (see Figure 3).

iRun separates the fetching from the building of sets of visible
nodes. If the fetching queue is empty, the fetching thread will wait
until new requests arrive. Otherwise, it will read the requested node
from disk and move it to the geometry cache. If the geometry cache
is full, the least recently used node will be flushed to provide space
for the new request. It also ensures that nodes currently being dis-
played will not be flushed. As a result, the target frame rate of iRun
is guaranteed to stay the same throughout user-interaction since the
rendering process will never stall while waiting for nodes to be read
in from disk. This improves interaction and does not introduce
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Big Urban Data: Understanding Cities

• City components interact in complex 
ways 

• Need to look at the city data exhaust 
to understand these interactions 

• Processes occur over time and 
space
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Exploring Urban Data: NYC Taxis

• Taxis are sensors that can provide unprecedented insight into city life: 
economic activity, human behavior, mobility patterns, … 
“How the taxi fleet activity varies during weekdays?’’ 
“What is the average trip time from Midtown to the airports during 
weekdays?'’  
“How was activity in Midtown affected during a presidential visit?'’ 
“How did the movement patterns change during Sandy?” 
“Where are the popular night spots?”



Exploring Urban Data: NYC Taxis
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Major Trends
AI

   Deep learning
   Machine learning

Natural language
Automatic analysis
Anomaly detection

Data management
Linking analysis and data
Provenance
Collaborative support
Lots of simultaneous datasets
Lots of visualizations
Lots of images

GUI 
Desktop
Touch-enabled interfaces
Large Displays
VR/AR
General versus problem specific

System support/architecture
Cloud environments
Interactive support/programming 
Progressive Visualization
Client-server support
Parallelism
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General versus problem specific

https://github.com/ViDA-NYU/TaxiVis

Ferreira et al, 2013
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Fig. 2. A screenshot of ParaView (left) with the provenance captured by VisTrails and
displayed as a version tree in a separate window (right). This preliminary prototype
taps into ParaView undo/redo mechanism to capture the exploration process.

version of the Provenance Explorer captures all of the changes to the pipeline.
However, some changes of state are not related to the pipeline and ParaView
does not store these in the undo stack. For example, the position of the camera
is not stored there. In fact, it is quite common for 3D applications to not store
navigation in the undo/redo stack (just like word processors typically do not
store which page the user is looking at in undo stacks). In this sense, it would
arguably be incorrect to interpret view changes as actions that generate new
versions.

If, however, capturing these interactions is really required, more sophisticated
approaches are necessary. The latest version of ParaView introduced “Look-
marks”, which capture the complete underlying pipeline of a visualization. Unlike
in VisTrails, however, Lookmarks need to be manually set by the user during the
exploration process. Lookmarks can be serialized, allowing a visualization to be
reproduced at a later time. This mechanism for capturing the pipeline and state
of the application exposes a wider class of actions for our Provenance Explorer.
We are currently implementing a version of the infrastructure that combines the
undo/redo stack inspection with Lookmark information, in order to capture this
potentially missing information.

5 Discussion

In the VisTrails system, provenance is used for more than version tracking and
persistence. Specifically, there are some operations on particular version that
can be cast as operations over the set of stored actions. For example, VisTrails

Callahan et al, 2008
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Urbane: A 3D Framework to Support Data Driven

Decision Making in Urban Development

Nivan Ferreira⇤
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Figure 1: Urbane provides architects, developers, and planners with a new, data and analysis rich way of reading the city with the goal of

improving decision making in urban development. Users can explore properties of neighborhoods and buildings using the data exploration view

to identify underdeveloped sites for potential development. Then, using the visual interface together with the map view, they can simulate the

impact of such development. For example, the views of the freedom tower (highlighted in green) from the buildings highlighted in red would be

adversely impacted (positively impacted buildings are highlighted in blue) if the new constructions (colored yellow) are built. The supplemental

video shows the different features and visualizations supported by Urbane.

ABSTRACT

Architects working with developers and city planners typically rely
on experience, precedent and data analyzed in isolation when mak-
ing decisions that impact the character of a city. These decisions
are critical in enabling vibrant, sustainable environments but must
also negotiate a range of complex political and social forces. This
requires those shaping the built environment to balance maximiz-
ing the value of a new development with its impact on the character
of a neighborhood. As a result architects are focused on two issues
throughout the decision making process: a) what defines the charac-
ter of a neighborhood? and b) how will a new development change
its neighborhood? In the first, character can be influenced by a
variety of factors and understanding the interplay between diverse
data sets is crucial; including safety, transportation access, school
quality and access to entertainment. In the second, the impact of a
new development is measured, for example, by how it impacts the
view from the buildings that surround it. In this paper, we work
in collaboration with architects to design Urbane, a 3-dimensional

⇤e-mail:nivan.ferreira@nyu.edu
†e-mail:mlage@ic.uff.br
‡e-mail:harishd@nyu.edu
§e-mail:huy.vo@nyu.edu
¶e-mail:{lwilson,hwerner,mpark}@kpf.com
ke-mail:csilva@nyu.edu

multi-resolution framework that enables a data-driven approach for
decision making in the design of new urban development. This is
accomplished by integrating multiple data layers and impact analy-
sis techniques facilitating architects to explore and assess the effect
of these attributes on the character and value of a neighborhood.
Several of these data layers, as well as impact analysis, involve
working in 3-dimensions and operating in real time. Efficient com-
putation and visualization is accomplished through the use of tech-
niques from computer graphics. We demonstrate the effectiveness
of Urbane through a case study of development in Manhattan de-
picting how a data-driven understanding of the value and impact of
speculative buildings can benefit the design-development process
between architects, planners and developers.

Keywords: Urban data analysis; GIS; impact analysis; visual an-
alytics; architecture; city development

1 INTRODUCTION

Why do two neighborhoods feel similar? Or different? Why does
a new building change the quality of a neighborhood and another
doesn’t? While the experience of a city is inherently subjective, the
characteristics that shape the quality of it are not. These characteris-
tics can be difficult to obtain, measure or analyze by those shaping
the future of a city. Architects working with developers and city
planners typically rely on experience, precedent and data analyzed
in isolation when making decisions that impact the character of a
city. These decisions, while being critical in enabling vibrant and
sustainable environments, must also negotiate a range of complex
political and social forces. This requires those shaping the built
environment to balance maximizing the value of new development

Ferreira et al, 2015
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ARIES: Enabling Visual Exploration and
Organization of Art Image Collections

Lhaylla Crissaff, Louisa Ruby, Samantha Deutch, Luke DuBois, Jean-Daniel Fekete, Senior Member,
IEEE, Juliana Freire, Member, IEEE, Cláudio T. Silva, Fellow, IEEE

Abstract—Art historians have traditionally used physical light boxes to prepare exhibits or curate collections. On a light box, they can
place slides or printed images, move the images around at will, group them as desired, and visually compare them. The transition to
digital images has rendered this workflow obsolete. Now, art historians lack well-designed, unified interactive software tools that
effectively support the operations they perform with physical light boxes. To address this problem, we designed ARIES (ARt Image
Exploration Space), an interactive image manipulation system that enables the exploration and organization of fine digital art. The
system allows images to be compared in multiple ways, offering dynamic overlays analogous to a physical light box, and supporting
advanced image comparisons and feature-matching functions, available through computational image processing. We demonstrate the
effectiveness of our system to support art historians’ tasks through real use cases.

Index Terms—User Experience, User Interaction, Art History, Image Collections, Lightbox

F

1 INTRODUCTION

The field of Art History expanded rapidly with the advent
of photography in the 19th century. For the first time, art
historians had permanent access to images of works of art
which they could use as reference tools for their writing and
thinking on art. With the release in the past fifteen years
of millions of images online, the field is once again experi-
encing a major transformation. Although a large number of
works of art or even existing photographs of works of art in
the world have yet to be digitized, having digital images has
revolutionized the way art historians function. Rather than
having to rely on analog photographs of varying quality,
available only as part of either a personal slide or image
library, art historians now have instant online access to a
large number of high quality images.

Art historians study artistic artifacts: paintings, draw-
ings, sculptures and architectures for various purposes such
as defining their meaning, style, value and historical context
in which they were created. For an art historian, images are
the foundation of all research; they are the examples, use
cases, test cases, subjects, objects, and purpose behind all
of their work. Before the digital age, art historians used
reproducible physical media such as prints (etchings or
lithographs), photographs, or slides as memory aids for
works of art they had seen and wanted to discuss. These
physical objects can be moved around on tables or light
boxes (Fig. 1) and organized into different piles and group-
ings for further examination.

Today, art historians mostly work with digital images,
but their needs have not been adequately met: there are no
software tools that support the organization, editing, use,
and flow of images needed to support their work method-
ology. As a result, working with digital images is time-
consuming, tedious, and requires ad-hoc configurations of
software tools to perform the basic tasks required in their
field.

To address this problem, we have designed ARIES (ARt
Image Exploration Space), a new interactive system that bet-
ter supports art historians in their daily workflow. ARIES
was developed as part of a collaboration with professional
art historians from the Frick Collection, one of the richest
privately-held art collections in the United States and a
prestigious art museum in New York City. The system sim-
plifies the exploration, analysis, and organization of digital
image collections by allowing experts to easily manipulate
digital images like they used to manipulate printed images,
and combining this functionality with advanced tools for
comparing images and matching features.

Fig. 1. In the physical world, art historians work with photographs and
slides that can be moved around on tables (left) or light boxes (right).

Our main contributions can be summarized as follows:

• We present the tasks and requirements that influenced
the design of ARIES and discuss how we addressed
them.

• We describe the ARIES integrated environment and its
components, including the virtual lightbox and a set of
tools that support grouping, organization, annotation
and comparison of images.

• We report on the use of ARIES by art historians and
discuss a set of use cases that demonstrate the effective-
ness of the system.

4

Fig. 2. The ARIES interface includes a toolbar (a) and four views: image menu (b), metadata (c), lightbox canvas (d) and group menu (e). Image
menu, metadata and group menu are retractable, enlarging the lightbox canvas. Works of art on the lightbox canvas are displayed in relative size.

user to remove images from all views, enlarge images to
fit the entire viewport occluding other images on the light-
box canvas view, and hide/show the three views (image
menu, metadata, group menu) to allow for more space to
work on the lightbox canvas view.

4.2 Workspace Management

The different views in ARIES allow users to organize and
compare images. Any image on the user’s hard drive can be
uploaded, making it available as a thumbnail in the image
menu to be explored immediately.

The current state of the application can be saved as a
project as soon as the user begins to interact with the system.
Saved projects are kept in individual folders and the user
has the option of returning the system state to what it was at
the moment the project was saved by using the Open Project
option. A JSON file is used to store the state of the four
views of a project as well as a copies of all images uploaded
to ARIES.

Once a project is saved, it is also ready to be shared
with other users. To share, the system uploads a saved
project to an account on the Dropbox file hosting service.
After being prompted to login with a Dropbox account, a
directory is created in the user’s Dropbox file system and all
images present in their project are uploaded to this directory.
Images are located at the root along with the JSON file
defining the ARIES project. This folder can be shared with
other Dropbox users, and the system can download a project
folder from Dropbox and load the project back into ARIES.

4.3 Image Exploration

An important goal for ARIES is to allow users to organize,
compare and annotate art images. Unlike physical light
boxes, whose main function is to bring together images for

comparison by the human eye, ARIES can leverage digital
image processing to manipulate images by size, color, and
background. Image comparison consists of two key steps:
detecting the similarity or difference among images and
interpreting what was detected. In the first step, fine fea-
tures are automatically or interactively detected. However,
interpreting the complex visual details must be driven by a
human taking the requirements of the task and context into
account. Thus, in ARIES we integrate computing capabilities
to detect important details so that the system can guide
experts in their analyses.

Interpretation is central to art historians’ core task of
analyzing works of art images. An art historian analyz-
ing an image is able to make subjective assumptions that
would otherwise be difficult to make solely by purely-
computational techniques. For instance, a computational
tool can detect that two paintings captured at different
occasions by any device (camera or scanner) have differ-
ences, but it cannot identify if these differences are due
to deterioration of materials used in the original painting
over the years or if images are from different paintings.
Art experts can use not only their experience, but also
their understanding of artistic practice to understand image
relationships.

Typical comparative strategies include juxtaposition and
superimposition [14]. ARIES implements these strategies to
simplify the identification of similarities between different
images and interpret complex visual details according a
particular task. Images can then be annotated to record new
discoveries.

Dynamic overlays: With the dynamic overlay function
supported by the lightbox canvas view, images can be
placed on top of each other in a single environment. Image
opacity is dynamically altered when layered, a function
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FlowSense: A Natural Language Interface for Visual Data

Exploration with Data Flow
Bowen Yu and Cláudio T. Silva Fellow, IEEE
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Fig. 1. Applying FlowSense to study the speed reduction in New York City. The important steps in the analysis and their natural
language queries are shown in order. (A) FlowSense visualizes the overall speed reduction trend for streets of different speed limit.
Step 4 shows the FlowSense dialog for typing queries. (B) A comparative study on the street speed changes between the West Village
slow zone (blue) and the Alphabet City slow zone (red).

Abstract— Developing natural language interface for data visualization has been a challenge due to the complex nature of natural
language, as well as the difficulty of finding insightful visual representations of the data. Existing natural language interfaces mostly
output a single visualization for a user query. However, the single-view visualization design often cannot address the flexibility required
by visual data exploration. In this work, we propose FlowSense, a novel approach that utilizes the state-of-the-art natural language
processing technique to assist data flow diagram construction in the VisFlow framework. FlowSense employs semantic parsing to
interpret diagram editing commands in natural language, while taking full advantage of the subset flow model behind VisFlow in building
interactive visualizations for visual data exploration. With FlowSense the user can expand and adjust the flow diagram with ease via
plain English, and efficiently generate flexible multi-view linked visualizations for different analyses. FlowSense largely enhances the
usability of VisFlow by reducing the learning and interaction overhead in using a data flow system. We demonstrate by case studies the
capability of FlowSense in helping analysts interactively explore the data in real-world data analysis scenarios.

Index Terms—Natural language interface, data flow, visualization framework.

1 INTRODUCTION

Visual data analysis requires tools that have both desired analytical
flexibility and good usability. While domain-specific applications are
capable of solving the targeted problems, their flexibility is often lim-
ited by the domain-specific design. Therefore data flow systems have
been proposed [14, 26, 37, 49, 52] as general visualization toolkits to

• Bowen Yu is with New York University. E-mail: bowen.yu@nyu.edu.
• Cláudio T. Silva is with New York University. E-mail: csilva@nyu.edu.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

achieve larger analytical flexibility. Data flow systems allow the user to
draw a data flow diagram that consists of nodes and edges to specify
system functionality. Nodes correspond to system modules for data
processing, filtering, and visualization, while edges define how data
are transmitted across the nodes. It has been shown that data flow
systems are particularly effective in constructing flexible visual data
analysis environment that adapt to different domains [26, 52]. Despite
its flexibility, a data flow system often has higher learning overhead,
as the user must be proficient with the underlying system modules to
effectively use it.

On the other hand, natural language interfaces for data visualiza-
tions [23, 43] seek visualization solutions that excel in usability. Those
systems allow the user to specify the queries directly via natural lan-
guage, without much prerequisite on the system usage. These visu-
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Fig. 2. Variation of the number of taxi trips in NYC over time (top) and its
relationship with precipitation (bottom).

Urban data is unique in that it captures the behavior of the different
components of a city: its residents, existing infrastructure (physical
and policies), and the environment (e.g., weather, air quality). While
the analysis of a single data set can uncover interesting patterns, by
examining a collection of data sets we can find explanation for these
patterns – we can use data to explain data. Consider the top plot in
Figure 2, which shows the number of daily taxi trips in New York
City (NYC) in 2011. While the distribution of trips tends to follow a
pattern over time, we observe some atypical drops in August. A natural
question that arises is what might have caused these drastic reductions.
By examining precipitation data (bottom plot in Figure 2), we discover
that these drops occur on days with unusually high precipitation levels:
the first two peaks are related to heavy rainfalls that disrupted traffic in
the city,1 and the last one was caused by hurricane Irene.

The discovery and analysis of relationships between disparate data
can lead to new hypotheses that explain phenomena represented in the
data. In the previous example, the hypothesis would be that atypically
heavy rainfall leads to significant reduction in the number of taxi trips.
Besides enabling hypothesis generation, the discovery of relationships
among data sets can also help with hypothesis testing. For instance, the
Vision Zero program in NYC,2 in effect since 2014, was created with
the goal of reducing the number of traffic fatalities. The plan included,
among other actions, a speed limit reduction. To verify the effectiveness
of such action and test the hypothesis that lower speed limits reduce
traffic deaths, one could analyze the relationship between traffic speed
and number of traffic fatalities, and compare the time periods before
and after the program was implemented. This type of analysis can be
used to assess the effectiveness of different policies implemented over
the years.

As the above examples illustrate, by exploring a city’s data exhaust,
we can obtain insights into how its components interact over space
and time. In recent work, we proposed the Data Polygamy frame-
work [4] (DP), which takes a first step towards addressing the problem
of relationship discovery between spatio-temporal data sets. The DP
approach introduced the notion of topology-based relationships, where
two data sets are related if there is a relationship between the salient
topological features of the data (e.g., the atypical drops and peaks in
Figure 2). A user can generate hypotheses to explain an interesting
pattern found in a data set D by querying for all relationships that
involve D. To test a hypothesis that involves two data sets, the user
can query for all relationships between these data sets. We have shown
through an experimental evaluation and case studies that DP is scalable
and effective at identifying interesting relationships

Analogous to a search engine, by providing appropriate constraints,
users can query for potentially interesting relationships. This is ac-
complished through a command line interface, where users specify
SQL-like queries. However, manually specifying these queries is out
of reach for domain expers and exploring their results is challenging
for domain experts and computer scientists alike. Because a given data

1http://nyti.ms/2inOVJH
2http://www1.nyc.gov/site/visionzero/index.page

set can be related to multiple data sets through several attributes, the
number of relationships can be very large. Furthermore, since urban
data is available at multiple spatio-temporal resolutions, DP derives the
relationships over all possible resolutions. For instance, the weather
attributes are collected at hourly intervals (temporal resolution) for the
whole city (spatial resolution), while NYC taxi trips are associated
with GPS coordinates with time precision in seconds. Interesting re-
lationships between these data sets can materialize at hourly intervals
for different neighborhoods, or at daily intervals for the whole city.
Coupled with the sheer number of available data sets and attributes,
this can result in numerous many-to-many relationships. While DP
uses statistical significance tests to prune spurious relationships, users
are still left with many relationships to analyze. As a point of refer-
ence, after applying constraints and querying for relationships within
a single resolution for a collection of 9 urban data sets from NYC
(Section 6), approximately 100 potentially meaningful relationships are
returned, while there are around 10,000 relationships among 300 data
sets from NYC Open Data [4]. This number is much higher when other
spatio-temporal resolutions are considered.

Besides having to sort through a long list of results, users are also
faced with the challenge of understanding and assessing the valid-
ity of individual relationships. Since the relationships correspond to
the features in the data, it is crucial for users to understand the un-
derlying features together with their spatio-temporal properties. The
command-line query interface only returns the relationships together
with associated statistical properties (see Section 3.1 for details). No
explanation is given for the relationships. In particular, there is no infor-
mation about where and when (in space and time) these relationships
occur. For instance, with the framework, we can discover a relationship
between number of taxi trips and precipitation, but only by looking at
where and when this relationship occurs (Figure 2) we can derive an
explanation and verify its correctness.
Our Approach and Contributions. To address these challenges, we
propose the Data Polygamy ExploreR (DPER), a web-based visual
analytics system designed to help users analyze polygamous spatio-
temporal relationships. Visual analytics provide an effective means to
obtain insights from data: well-designed visualizations substitute per-
ception for cognition, freeing up limited cognitive/memory resources
for higher-level problems [28, 37, 38]. While several visual analyt-
ics systems have been proposed to analyze individual urban data
sets [1, 5, 9, 11, 26, 33, 40], none of them deals with the interactions
among multiple disparate urban data sets over space and time.

Our design is the result of a collaboration that involved visualization
researchers, the developers of the DP framework, and domain experts.
The requirements were derived by taking into account the analysis
needs of both domain experts interested in exploring relationships to
test and generate hypotheses in their domain, and data scientists that
develop relationship discovery techniques and need to debug and assess
the effectiveness of their methods. DPER has the following properties:

• It provides visual operations for querying and filtering relationships.
• It supports the visual exploration of relationships through multiple

coordinated views, each covering different properties of the relation-
ships.

• It allows users to further explore and understand the spatio-temporal
properties of the data corresponding to a relationship over different
resolutions. This is crucial for understanding the underlying reason
behind the relationship.

• It is light weight and runs out-of-the-box on modern web browsers.
The computational and memory burdens are handled by the server.

Using publicly-available data sets from NYC, we demonstrate the
utility of DPER through two sets of use cases. In the first, the developers
of the Data Polygamy framework used DPER to better understand the
results given by the framework, streamlining the development process
and even uncovering new research questions. In the second, architects
and urban designers (co-authors of the paper) from a leading firm in
NYC used DPER for the analyses these data sets.

2

Fig. 4. DPER overview: the three components of the system correspond to the different stages of the data analysis pipeline. First, users query for
interesting relationships (1); then, they can browse and filter the query results based on the relationships properties (2); finally, given a relationship,
users can further inspect the data behind it to assess its validity (3).

or not. The similarity of the terrains depends on the commonality
between the salient features: two features are considered to be related
if they occur at the same spatio-temporal region; they are positively
related if both features are positive or negative, and negatively related
otherwise. For instance, the features from precipitation and NYC
taxi trips corresponding to hurricane Irene (Figure 2) are negatively
related. Relationships are then evaluated for each of the spatio-temporal
resolutions based on the following measures:

• Relationship Score ttt: This measure captures the overall nature (po-
larity) of the relationship. Let P and N be the number of positive
and negative feature relations; t is defined as (P�N)/(P+N). Its
value ranges from �1 to +1: a value closer to +1 indicates that
the relationship is almost always positive (features are mostly posi-
tively related), while a value closer to �1 indicates a highly negative
relationship (features are mostly negatively related).

• Relationship Strength rrr: This measure captures how frequently
features in two functions f1 and f2 are related: the more frequently
the features are related, the stronger the relationship is. r is defined
as the F1 score between the frequency of the feature relations in each
function, and ranges from 0 to 1, where a value closer to 1 indicates
a strong relationship between the two functions, while a value closer
to 0 indicates a weak relationship.

• Statistical Significance: For each possible relationship, restricted
Monte Carlo permutation tests [15,27] that respect data dependencies
due to spatial and temporal proximity are performed. The p-values
from these tests are used to evaluate whether the relationship is
individually statistically significant or not.

When a user issues a relationship query, the Data Polygamy framework
evaluates all possible relationships between collections D1 and D2 at all
possible spatio-temporal resolutions, returning the set of relationships
that satisfy the user specified conditions in the query’s CLAUSE. These
conditions may consist of the range of values for score and strength,
and an upper bound for the p-value of interest.

3.2 Framework Data
All the components of DPER makes use of data generated from different
stages of the Data Polygamy framework. We now describe these data.
Scalar Functions. As mentioned earlier, a given data set is repre-
sented as a collection of scalar functions, where a scalar function
f : [S⇥T]! R maps points on a spatial domain S across time T onto
a real value. The spatio-temporal domain of f is represented in the
Data Polygamy framework using a graph G = (V,E) as follows. Let
S consist of n regions {s1,s2, . . . ,sn}, and T consist of m time steps
{t1, t2, . . . , tm}. For example, when using spatial and temporal resolu-
tions of neighborhood and hourly, respectively, each region corresponds
to a single neighborhood, while each time period corresponds to an
hourly interval. The vertex set V consists of vertices vx,z corresponding

to region sx at time tz. Thus, |V |= n⇥m. The edges E = ES
S

ET are
divided into two categories:
• spatial edges: ES = {(vx,z,vy,z) | sx adjacent to sy,8z 2 [1,m]}
• temporal edges: ET = {(vx,z,vx,z+1),8x 2 [1,n], z 2 [1,m)}
In other words, edges in ES connect adjacent regions of the space for
each time step, and edges in ET connect a region across adjacent time
steps. The function values are then defined on the vertices of this graph.
If we consider the function only along the temporal edges corresponding
to a single region, this essentially is a time series representing the data
for that region.
Topological Features. Recall that the topological features of a scalar
function correspond to spatio-temporal regions of the domain. They
are therefore a subgraph of G. In particular, the features are represent
by two collections of vertices S+ ✓V and S� ✓V , where S+ and S�

are respectively the positive and negative features of f .
Resolutions. Scalar functions (and, consequently, topological features)
are generated for every possible spatio-temporal resolution, since rela-
tionships are evaluated at all possible resolutions. Examples of spatial
resolutions are neighborhood and city, and examples of temporal reso-
lutions include hourly, daily, weekly, monthly, and yearly.
Relationship Properties. Given a pair of scalar functions, this data
consists of the score, strength, and p-values for each of the possible
spatio-temporal resolution.
Query Parameters. This data consists of the input data sets for re-
lationship queries (i.e., the data sets from the corpus D) as well as
the conditions that the user can specify in the query’s CLAUSE, which
include: the range of values for the absolute score and strength that
the user is interested in, an upper bound for p-value, and the spatio-
temporal resolution of interest. The latter is not a query condition in
the original implementation of the Data Polygamy framework, but we
make use of it for DPER.

4 SYSTEM OVERVIEW

In this section, we first briefly summarize the requirements of the
proposed system based on the use tasks, and then give an overview of
the system design.

4.1 Desiderata
Recall that our aim with DPER is to help both domain experts as well
as data scientists – enable domain experts to understand interactions
between their data; and assist data scientists to debug and assess the
effectiveness of their techniques. Based on the various challenges faced
by the users (see Section 1), we identified a set of tasks to meet their
requirements:

• T1. Visually querying relationships. Users should be able to visually
specify a relationship query. This includes the ability to choose the
data sets and query parameters (score, strength, p-value).

4
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Major trends - Summary
Artificial Intelligence

   Deep learning

Data management

User Interfaces

System architecture
Cloud environments
Interactive support/programming 

FOCUS ON THE USER!
— 
DO NOT BE AFRAID TO GO OFF THE BEATEN PATH,
DEVELOP NEW SYSTEMS,
IDEAS ARE MORE IMPORTANT THAN CODE,
AND TECHNOLOGY MOVES VERY FAST
— 
TRY NEW IDEAS!
RELEASE AS OPEN SOURCE!



Thank you!

csilva@nyu.edu
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