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Abstract—When astronomers analyze sky images, they need to 
identify the newly observed celestial objects in the catalog of 
known objects. We have developed a technique for indexing 
catalogs, which supports fast retrieval of closely matching 
catalog objects for every object in new images. It allows 
processing of a sky image in less than a second, and it scales to 
catalogs with billions of objects. 
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I.  INTRODUCTION 
When astronomers analyze telescope images, they check 

whether the newly observed objects are listed in catalogs of 
known objects. Due to atmospheric and optical distortions, 
the positions of celestial objects in a telescope image may 
change slightly from observation to observation. Thus, 
retrieval of exact catalog matches would be inadequate. 
Astronomers need to retrieve not only exact catalog matches 
but also close approximate matches. 

The modern astronomical catalogs contain hundreds of 
millions of objects. For example, the Sloan Digital Sky 
Survey includes more than 300 million objects [1], and the 
Guide Star Catalog II (GSC-II) contains almost one billion 
objects [7]. Straightforward matching algorithms, such as a 
linear search through a catalog, are too slow for analyzing a 
stream of newly incoming imaging data. 

We have developed a new technique for indexing 
massive catalogs and matching newly observed objects. On 
a standard desktop computer, it takes less than a second to 
match all objects in an image to a catalog with two billions 
objects.  

II. PROBLEM 
We assume that we have a catalog of known celestial 

objects and new images. Typically, each image covers a 
square region of the sky, whose area is several square 
degrees. For example, the area of each image in the Sloan 
Digital Sky Survey is 1.5 square degrees. An image may 
contain from a few hundred to a few hundred thousand 
objects, depending on the image size and the telescope 
resolution. 

The position of each object is represented by two values, 
called right ascension and declination, which define its 
equatorial coordinates (Fig. 1). The right ascension, which is 
the celestial equivalent of longitude, ranges from 0.0 to 
360.0 degrees; the declination, the celestial equivalent of 

latitude, ranges from �90.0 degrees (which represents the 
South Pole) to 90.0 degrees (the North Pole). We ignore the 
third spatial coordinate, that is, the distance from Earth to 
the object, since it is not directly observable and usually 
unknown during the initial stages of the image processing. 

 
Figure 1.  The representation of a celestial object in spherical coordinates. 

Furthermore, astronomers also record the apparent 
magnitude of each object, which is the logarithm of its 
brightness. The apparent magnitude value serves as the 
“third coordinate”, which is used to identify the object along 
with its two spherical coordinates. 

We assume that the edges of the image are parallel to the 
directions of right ascension and declination (Fig. 2). We 
need to find the matches for all image objects. Specifically, 
for each object p in the image, we are looking for an object 
q in the catalog such that: 

• Among all objects in the image, p is the nearest 
to q. 

• Among all objects in the catalog, q is the nearest 
to p. 

• The distance between p and q in the two-
dimensional spherical coordinates is at most 1 
arc second, which is 1/3600 of a degree. The value 
of 1 arc second reflects the maximal possible 
observation error due to atmospheric and optical 
distortions. 

• The difference between the apparent magnitudes of 
p and q is smaller than a given constant C. 
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Figure 2.  An example of the matching problem. There are two objects in 
the image, both of which have catalog matches. 

If the catalog contains an object q that satisfies all these 
constrains, we call it the match for p. 

III. INDEXING 
The sizes of modern astronomical catalogs exceed the 

memory of desktop computers. For example, suppose that 
each celestial object is stored as a 14�byte record: 4 bytes 
for its right ascension, 4 bytes for its declination, 2 bytes for 
its apparent magnitude, and 4 bytes with a pointer to the 
respective record with more information about the object in 
an external database. Then a catalog with one billion objects 
takes 14 Gigabytes, which would not fit the memory of a 
regular desktop. We therefore store the catalog on disk and 
load only parts relevant to processing a given image. 

We first describe the organization of the catalog on disk. 
We then present the retrieval procedure that identifies the 
relevant part of the catalog and loads it into memory. 
Finally, we explain the in-memory matching. 

A. Indexing 
The indexing procedure arranges the catalog objects on 

disk, with the purpose to minimize the number of disk 
accesses during the retrieval of objects relevant to 
processing a given image. 

We split the celestial sphere into multiple longitudinal 
strips, which are parallel to the direction of right ascension; 
each strip is exactly one degree wide (Fig. 3). In Section 5, 
we will further discuss the choice of the specific strip width 
and the reason for setting it to one degree in the current 
system. 

The objects within a strip are stored as a separate file, 
where the elements in the file are in sorted order by their 
right ascension. 

Since the whole catalog usually does not fit in memory, 
we cannot process all data in one pass. The described 
procedure is implemented indirectly in two passes. During 
the first pass, we read all catalog objects, and put them to 
the corresponding files without sorting. In the second pass, 
we load each file into memory, sort its objects, and store the 
file in sorted order. 

 
 

 

 
Figure 3.  Indexing procedure. Top: The celestial sphere is divided into 
one-degree-wide strips. Bottom: We assume that there are seven objects in 
the catalog in this example, which are distributed among three strips. For 
each strip, the objects within the strip are sorted by their right ascension, 
and stored as a separate file. 

B. Retrieval 
If we split the celestial sphere into S strips, and N 

catalog objects are about uniformly distributed among those 
strips, then the time complexity of this procedure is 
O(N · lg(N/S)), and the number of disk accesses during its 
execution is O(N). 

Given an image, we need to retrieve the catalog objects 
that may potentially match the image objects. Since a 
matching catalog object must be within 1 arc second from a 
newly observed object, possible matches must be located at 
most 1 arc second away from the image area. We determine 
the axis-aligned minimum bounding box of the image, 
which is the smallest rectangle that covers all image objects, 
with sides parallel to the directions of right ascension and 
declination. We then extend it by one arc second on all 
sides. 

We retrieve all catalog objects inside the extended 
bounding box from the catalog files, which is done in three 
steps. The first step is to locate the strips that overlap the 
extended bounding box; the second is binary search within 
each respective file, which identifies all catalog objects 
whose right ascension value falls inside the extended 
bounding box; the third is to load all the related objects into 
memory. 

To analyze the time complexity of the retrieval 
procedure, we again assume that the celestial sphere is split 
into S strips, and N catalog objects are about uniformly 
distributed among those strips. We further assume that the 
cost of each disk access is c1 in average, and the cost of 
loading each object from disk to memory is c2. If the 
extended bounding box of image covers s strips and contains 
n catalog objects, then it takes O(s · lg(N/S) · c1) to use 
binary search to locate the extended bounding box of image 
on the catalog,  and O(n · c2) to load related catalog objects 
to memory. 
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Figure 4.  Retrieval procedure. Given an image, its axis-aligned minimum bounding box is calculated and extended by 1 arc second on all sides. Then, the 
part of the catalog that covers the extended bounding box of the image (that is, the retrieved strip segments) is loaded into memory.

C. Matching 
The last step is to identify matches among the objects 

loaded into memory. If the image contains M objects, and L 
objects are extracted from the catalog in the retrieval 
procedure, a naive matching algorithm would take O(M · L) 
time, which is impractically slow for real-time matching of 
images against large-scale catalogs. We next provide a more 
efficient technique. 

The developed approach is similar to the “strip” idea 
used in the indexing procedure. Specifically, we further 
subdivide the retrieved strips into thinner substrips. These 
substrips are also parallel to the direction of right ascension, 
and each substrip is exactly one arc second wide. The 
objects within each substrip are sorted by their right 
ascension, which allows the use of binary search for 
identifying close catalog objects for each image object. 

For each image object, since its match can be at most 
one arc second away, we consider only the catalog objects 
in its three nearby substrips, that is, its own substrip and the 
two adjacent substrips. We illustrate the matching procedure 
in Fig. 5 and give pseudocode in Fig. 6. 

 
Figure 5.  Illustration of the matching procedure. For each image object, 
we extract all catalog objects that are at most one arc second away, and 
then calculate their exact distances to the image object. 

 
Figure 6.  Matching algorithm. 
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Input: 
q1, q2, …, qM: Image objects. 
c1, c2, …, cL: Extracted catalog objects that are possible to 
match the image objects. This is the output of the retrieval 
procedure. 
Output: Possible match for each image object. 
 
BestI[1, 2, …, M] and DistanceI[1, 2, …, M]: BestI[i] stores 
the index of the closest catalog objects to qi. The distance 
between qi and cBestI[i] is stored in DistanceI[i]. 
BestC[1, 2, …, L] and DistanceC[1, 2, …, L]: BestC[j] stores 
the index of the closest image objects to cj. The distance 
between cj and qBestC[j] is stored in DistanceC[j]. 
for i = 1 to M do DistanceI[i] = MAX; BestI[i] = 0 
for j = 1 to L do DistanceC[j] = MAX, BestC[j] = 0 
Split the extracted catalog area into substrips, and sort the 
catalog objects in each substrip 
for i = 1 to M do 
    // Find possible match for qi 

Retrieve the nearby 3 substrips of qi, and conduct binary 
searches in the three substrips to retrieve the catalog objects 
r1, r2, …, rK that are at most 1 arc second away from qi, and 
with apparent magnitudes at most C from qi (Fig. 5). 

    for k = 1 to K do 
        //Assume rk = cj. Compute the distance between qi and cj 
        d = distance(qi, cj)  
        if d < DistanceI[i] then DistanceI[i] = d; BestI[i] = j 
        if d < DistanceC[j] then DistanceC[j] = d; BestC[j] = i 
for i = 1 to M do 
    // Output the possible match for qi 
    match = BestI[i] // cmatch is the closest catalog object to qi  

if match > 0 && BestC[match] == i then 
    // qi is also the closest to cmatch 

        Output_Match(qi, cmatch) 
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IV. EXPERIMENTS 
We have evaluated the running time of each procedure 

described in Section III: the indexing procedure, the 
retrieval procedure, and the matching procedure. We have 
used synthetic catalog data with a random uniform 
distribution of objects across the sky. 

We have run the experiments on a desktop computer 
with Pentium Xeon 2.8 GHz dual quad core, 16GB memory, 
and 7200 RPM 160 GB disk. The described algorithms are 
implemented in Java 1.6. All data points in the summary 
graphs are the mean of three runs with system caches 
�ushed between runs. 

A. Indexing 
We show the running time of the indexing procedure in 

Fig. 7. As discussed in Section 3.1, its time complexity is 
O(N · lg(N/S)) where N is the number of objects in the 
catalog and S is the number of strips, which matches the 
observed empirical results. Specifically, the running time is 
about 1.85 · 10–7 · N · lg (N/S) seconds. It takes about 6,000 
seconds (1.7 hours) to index a catalog of two billion objects. 
Note that this procedure has to be run only once for the 
given catalog, and occasionally rerun later after updates of 
the overall catalog. 

 

B. Retrieval 
The two main factors affecting the retrieval time are the 

number of objects in the catalog, and the area of the image. 
On the other hand, the number of objects in the image does 
not affect the retrieval time. 

We breakdown the retrieval time into three parts: the 
time to load image objects from a file (image loading), the 
aggregate time on binary search when we identify all the 
catalog objects falling in the bounding box of image (binary 
searches), and the time to load the catalog objects to 
memory (catalog loading). Specifically, using the notations 
in Section III B, the retrieval time is about 
0.0028 · lg(N/S)  · s  + 9 · 10–7 · n seconds. 

 

 
Figure 7.  Running time of the indexing procedure. 

 

The top graph in Fig. 8 shows the dependency of the 
retrieval time on the number of objects in the catalog. The 
bottom graph in Fig. 8 shows the relationship between the 
retrieval time and the length of the side of the square image. 
It takes about 0.5 second for a large image (3.5 × 3.5 
degrees) and a large catalog (2 billion objects). 

C. Matching 
We have evaluated the dependency of the matching time 

on three parameters: the number of objects in the image (top 
of Fig. 9), the side length of the image (middle of Fig. 9), 
and the number of objects in the catalog (bottom of Fig. 9). 
The running time is under 0.6 second in all cases. Most of 
the running time is spent on the substrip division and sorting. 

 

 

 
Figure 8.  Retrieval time. We use 2.5 × 2.5 degree images and a catalog 
with 2 billion objects as the baseline. We show the dependency of the 
running time on the catalog size for 2.5 × 2.5 degree images (top), and the 
dependency of the time on the side length of the square image for a catalog 
with 2 billion objects (bottom). 
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Figure 9.  Matching time. The baseline experiment is with a catalog of 2 
billion objects, and a 2.5 × 2.5 degree image with 100 thousands objects. 
We show the dependency of the matching time on the number of image 
objects (top), the side length of the image (middle), and the number of 
catalog objects (bottom). 

V. DISCUSSION 
We next discuss some issues related to the problem and 

the proposed approach. 

A. Indexing method 
We use a simple method of splitting the celestial sphere 

into strips. There are other standard ways to divide the 
sphere into multiple parts and index them, such as the 
Hierarchical Triangular Mesh [12], that some datasets may 
benefit from. 

B. Updating catalog 
We may need to perform occasional updates of the 

catalog to add newly discovered objects or delete some of the 
old objects. The described technique provides an efficient 
solution for such updates. To insert and delete celestial 
objects, we load each related strip into memory, make 
insertions and deletions, re-sort each strip, and store the 
updated strips on disk. 

C. Width of Strips 
We have set the strip width to one degree. We now 

explain the reason to this choice. 
The main related tradeoff is that, if the strips are too 

wide, we retrieve many catalog objects that do not match 
objects in the image; on the other side, if the strips are too 
narrow, we need to open many files to conduct binary 
search, thus incurring high disk-access costs. In Fig. 10, we 
show the dependency of the retrieval time on the strip width, 
which confirms that the use of 1-degree strips leads to the 
fastest retrieval of 2.5 × 2.5 degree images. 

 

 
Figure 10.  Impact of the strip width on the retrieval time for 2.5 × 2.5 
degree images.  

VI. RELATED WORK 
The described matching problem can be formulated as a 

range query: Find all catalog objects that are within 1 arc 
second from the image objects. Space-partitioning data 
structures, such as R-tree [6] and kd-tree [3] and others [13], 
can be used for such queries. However, the retrieval based 
on these structures is significantly slower than the described 
technique, especially when the catalog is too big for 
memory. 

Scientists from the database community have also 
developed several tools for organizing astronomical data 
[2]. Although traditional database technologies are difficult 
to use for efficient handling large astronomical databases 
[9], the emergence of new database technologies, namely, 
Object Data Management Systems, and Object-Relational 
Database Management Systems, now provides spatial 
indices for astronomical data, and already used by 
researchers [4]. 
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For example, two widely-used open source databases, 
MySQL [8] and PostgreSQL [5], support R-tree spatial 
indices [11, 10]. It is a promising direction since the 
database approach is straight-forward and easy to 
implement, and it provides more functions than a stand-
alone implementation. 

However, the scalability of current off-the-shelf 
solutions is limited. Our experiments show that it takes over 
two thousand seconds (33 minutes) to load 50 million 
objects into the database and create the spatial index.  
Furthermore, the database approach requires 5 GB to store 
those 50 million objects, while our solution takes only 600 
MB on the same dataset. 

VII. CONCLUSSION 
If we have a catalog with billions of objects, how do we 

index it to support fast matching operations? We have 
tackled this problem on a standard desktop computer. We 
propose a way to organize the catalog on disk and 
dynamically loading relevant parts of the catalog into 
memory, thus achieving very good performance. 
Experiments on a catalog with 2 billion objects show that 
building a catalog takes less than 2 hours, and the retrieval 
and matching for an astronomical image takes less than a 
second. 
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