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Abstract— The primary mechanism for overcoming faults in 
modern storage systems is to introduce redundancy in the form 
of replication and/or error correcting codes. The costs of such 
redundancy in hardware, system availability and overall 
complexity can be substantial, depending on the number and 
pattern of faults that are handled. In this paper, we describe a 
system that seeks to use disk failure avoidance to reduce the need 
for costly redundancy by using adaptive heuristics that predict 
such failures. While a number of predictive factors such as hard 
drive utilization rate, age, SMART errors, and model can be 
used, the initial work we present here focuses on SMART errors. 
Our approach can predict where near term disk failures are more 
likely to occur, enabling proactive movement/replication of at-
risk data, thus maintaining data integrity and availability. Our 
strategy can reduce costs due to redundant storage without 
compromising these important requirements. 

Keywords-component; hard drives; logistical networking; 
SMART errors 

I.  INTRODUCTION 
The amount of data in the world is exponentially increasing 
every year and magnetic hard disk storage has become the 
preferred medium for preserving and accessing data.  While 
the storage capacity of hard disks has been following 
Kyder’s Law such that disk areal storage density increases 
40% annually, the reliability factor and IO bandwidth of 
disks have not been keeping pace making it significantly 
more difficult to preserve and maintain data. The ever-
increasing amount of data introduces a huge management 
problem [1-3].  

Combining big data with many distributed 
users/resources creates severe problems for the scientific 
community.  As the amount of data increases traditional 
techniques are not scaling well and are economically 
infeasible to work with [2, 3]. In the past, the scientific 
community has relied on constant hardware improvements to 
keep pace with their data processing requirements, but we 
are entering a critical intersection of Kyder’s and Moore’s 
Laws. 

While we may have sufficient space to store data, it is 
going to take a herculean effort to maintain and use the data 
effectively.  Scientific data must be managed constantly and 
replicated to protect against loss while at the same time being 
available for processing by users across the globe.   Both of 
these goals require significant processing power and IO 

bandwidth and these are resources that the scientific 
community cannot afford to waste.   

This paper examines how adaptive data replication and 
placement heuristics based on hard drive health prediction 
can improve the resilience of data in Logistical Networking. 
Utilizing adaptive replication heuristics based on hard drive 
SMART errors, greater survivability of data can be achieved 
than with traditional multisite/multisystem replication 
techniques.  

Adaptive replication can make better economic use of 
hard drives by anticipating when drive failures are likely to 
occur.   Adaptive replication can match perceived reliability 
of hard drive storage with the criticality of data. Currently 
drives are replaced when they reach a certain predefined 
criteria (age, utilization, errors).  Adaptive replication can 
predict which data needs to be migrated to other disks while 
using the less reliable disk to store less essential or more 
replicated data.  Therefore making it possible to use hard 
drives until they have complete failure. 

II. DISK FAILURE 
We have reviewed the literature over the past decade and 

a half in an effort to understand what important factors these 
studies have uncovered [4-13].   Despite the importance of 
the hard disk drive there has been very little large-scale work 
analyzing their failure trends.  Among the factors found to 
influence reliability are age, utilization, temperature, vintage, 
failure correlation and SMART errors.  While no one has 
been able to make a perfect predictor of drive failure, we 
tested whether the prediction of hard drive health based on 
SMART errors is sufficient to reduce data loss via intelligent 
data placement and replication.  

In recent years some meaningful data and trends have 
begun to arise from large populations sets.  Large-scale user 
studies are rare because of the number of hard drives that 
would be required combined with the time and ability to 
analyze the data. Also users often worry about disclosing 
data that could be used due to non-disclosure agreements 
with vendors. The largest study to date was performed by 
Google and published in “Failure Trends in a Large Disk 
Population” [9].  Our work is based on the observations in 
this paper.  

In the paper, over 100,000 hard drives were studied using 
hardware logs that spanned 5 years and 9 months of study on 
the effects of SMART errors.  It was a diverse population of 
serial and parallel ATA hard drives ranging from 80 to 400 
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GB in capacity and included several different manufactures 
and models. 

Of particular interest to us were the findings concerning 
SMART errors which we will summarize.  Of all of the error 
types; scan errors, reallocation counts, offline reallocation 
and probational counts have the largest impact on failure. 

Scan errors were witnessed in roughly 2% of the 
population and resulted in disks with a 10 times higher 
annualized failure rate (AFR), 30% failure rate within 8 
months of first scan error, and 39 times more likely to fail 
within 60 days. Younger drives tended to fail more 
frequently after this error in the first month than older drives. 
Drives with more than one scan error were also more likely 
to fail than drives with just one.  

Over the 9 months, 9% of the population suffered 
allocation errors.  While not as severe as scan errors, these 
drives did have 3 to 6 times higher AFR, a 15% failure in the 
following 8 month period and 14 times higher chance of 
failure in the first 2 months. It also appeared to be more 
lethal towards drives in the 10 to 60 month age group. A 
special subset of these errors called offline allocation errors 
showed a more substantial impact.  There was 21 times 
greater chance of failure in the first 60 days, but was found 
in only 4% of the population. 

The final SMART error of note was probational count 
that was detected in 2% of the population over the period of 
study.  Drives were 16 times more likely to fail within 60 
days of one of these errors. 

For each of these error types, the paper included a set of 
survival CDF graphs of the 9-month period following the 
errors.  The graphs include a breakdown of the survival 
curve by disk age groups and by the number of each type of 
error.  

While these SMART errors are potentially useful, the 
authors of the paper admit these SMART errors are not 
enough to positively predict all the disk failures. There was a 
lack of predictive SMART errors in a large portion of the 
population. Only 56% of failed drives had any of these errors 
in the months prior to failure.  Furthermore not all SMART 
errors result in a disk failure meaning that prediction could 
generate a large number of false positives.  As a result, our 
approach attempts to estimate the health of disks and 
calculate the likelihood of per data object loss, using data 
movement and replication to keep it above a minimum 
threshold.   Instead of removing or not using disks at risk, we 
can adaptively continue to use them until failure does occur 
without endangering data.  By incorporating the use of 
SMART errors, we can achieve this with less redundancy 
than simple replication schemes. 

III. LOGISTICAL NETWORKING 
Logistical networking is concerned with the time related 

positioning of data resources [14], [15].  Simply put how can 
one arrange things so that required data will be where it 
needs to be when you need it. When data become large 
relative to network bandwidth and application timetable, the 
data’s physicality does become a significant problem since 
computing performance is tethered to data availability. 
Researchers all over the world need to analyze data too large 

to be moved much and often. Therefore it becomes necessary 
to stage data intelligently at desired locations, according to 
policy and automatically reducing the burden of the end 
users.  It is the imperative of logistical networking to be able 
to transfer data quickly, efficiently, reliability and easily.   

The Logistical Computing and Internetwork research 
group (LoCI) at the University of Tennessee has been 
tackling issues concerning logistical networking for over 10 
years. LoCI has researched the problems found in traditional 
storage technologies and applied the lessons from the 
development of the modern IP networking stack in 
developing solutions for data logistics.  Logistical 
networking methodology focuses on being cleanly layered, 
generic and end-to-end for its services.    

In addition to introducing a unique approach for how data 
should be handled, LoCI has created a layered framework of 
tools and libraries that we believe can address the issues we 
have raised in this paper. The layering and simplicity of the 
logistical networking stack makes it easy to utilize and 
extend. The lower layers are very generic and are designed to 
scale with the number of servers, users and data sets.  The 
logistical networking tools are fast, enabling multi-server 
stripping and multiple data streaming transfers from multiple 
block level replicas. Intelligent algorithms allow end clients 
and middleware to transparently handle server and network 
loads and errors.   

These layers are described in the following sections. 

A. IBP 
The Internet Backplane Protocol (IBP) is the fundamental 

core of logistical networking forming  “the narrow waist” of 
the stack [16].  It is a very generic and lightweight block 
level transfer and storage service in order to give application 
as much freedom as possible.  Middleware storage servers, 
called depots, are deployed as part of the network 
infrastructure.  These depots allow end points to allocate 
temporary storage space.  For each allocation, the allocating 
client is given access role keys to the allocation called 
capabilities that grant the client certain abilities over the 
allocation.  These capabilities contain both the address 
information to identify the allocation and the rights to 
perform actions on the allocation.  There are 3 types of 
capabilities for each allocation: a read capability to read the 
data on the allocation, a write capability to write data on the 
allocation and a manage capability to manipulate and retrieve 
the properties of the allocation.   

Clients or other depots at the behest of a higher 
architectural layer can transfer data to and from depots.  Data 
transfer is done per allocation/block basis and is “best effort” 
only.  Additionally the allocations are themselves a form of 
“best effort” storage where they are time limited meaning 
that at any time data can expire can be “lost” on a depot.   
Forms of reliability and service quality can be achieved via 
higher layers through techniques like replication and data 
encoding.  

In many ways, logistical networking’s IBP is similar to 
network IP.  Both form the common interface that 
architectural layers above and beneath can understand and 
adhere.  These protocols are best effort only services for data 
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transfer relying on additional layers for stronger guarantees.   
Also IP is a datagram with fragmentation protocol similar to 
how IBP deals with data blocks instead of higher concepts of 
files and data sets. Higher layers can use IBP and depots to 
store and forward data across networks in unicast or 
multicast mode just like IP.  In fact, IBP depots are very 
similar to IP routers in that allocations are treated as being 
put on a queue where data can be dropped if it has not been 
moved to the next destination in sufficient time.  

The key difference between IP and IBP is the matter of 
the time scale involved.  IP routers focus on the forwarding 
operation of data as opposed to the storing with data 
retention lifetime being in the milliseconds on the queue.   
IBP depots measure data lifetime in weeks and months by 
comparison with less emphasis on immediate forwarding.    
This can enable clients to route and transfer data more 
reliability and avoid frequent end-to-end retransmissions of 
packets found in the current IP network. 

B. Exnode 
Since the IBP protocol has no notion of a file at the block 

level or any formalism for stating a relationship between 
different allocations, a higher service is required to represent 
files and complex datasets. A file system is capable of 
presenting files to the user using a data structure called the 
inode.   An inode can be used to provide a mapping between 
the physical blocks on disks and the logical file 
representation.  Building on the inode concept, LoCI 
developed the Exnode service and API [14]. An exnode 
provides the information necessary to reconstruct a file from 
set of allocations even where the file has been split up, 
stripped and replicated multiple times in the wide area on 
remote depots. 

An Exnode is a metadata container mapping byte-level 
allocations to the logical address space of a file.  Every 
Exnode consists of a series of mappings with each mapping 
containing the IBP capabilities for that allocation, the 
physical offset and length within the allocation and the 
logical offset and length within the file.   

Furthermore the Exnode has several advantages over 
inodes and related techniques that are important in dealing 
with wide area data.  Unlike the inode, the Exnode directly 
exposes the structure of the file and allocations to the user. 
By exposing this information it allows the user to better 
optimize for his needs. For instance, the Exnode reveals the 
locality of the data needed by the user. This information can 
used so that data is retrieved from relatively nearby, high 
availability or high bandwidth depots.  

C. LoDN 
With the ability to represent files and datasets, an 

important problem arose with the management of the 
exnodes.  Simply storing them on a local file system made it 
difficult to for user to keep track of them, share them with 
collaborators and create understandable relationships 
between exnodes.  Additionally, manually renewing, 
replacing and controlling for a collection of exnodes is a very 
tedious task and can be daunting to do reliability and 
efficiently enough to meet the needs of uses. This lead to the 

development a Logistical Distribution/Data Network for 
users and applications to work not only with the data but the 
metadata associated with IBP.    

LoDN, the Logistical Distribution/Data Network, is in 
part a policy and Exnode metadata repository that offers a 
hierarchical directory service. Through one of the several 
LoDN interfaces and APIs a user has a standard POSIX-like 
control of directory service.  Directories and “files” can be 
created, renamed, moved and removed at will.   

D.  Implementation and Deployment 
The LN software stack has been under development for 

over 10 years by University of Tennessee, Vanderbilt and the 
private company Nevoa.  It is being actively used by several 
large organizations including the Compact Muon Solenoid 
group at CERN, LSST, USGS and TVNA. The largest open 
deployment of LN is REDDnet consisting of depots at 
University of California at Santa Barbara, CALTECH, 
Stephen F. Austin State University, Vanderbilt, University of 
Florida, University of Michigan and CERN in Switzerland. 
CMS also maintains a private collection of depots at 
Vanderbilt consisting of over a petabyte and a half of 
storage. LN has been deployed through NSF-funded 
infrastructure projects including the National Logistical 
Networking Testbed and a PlanetLab-based deployment.   
Additionally, Nevoa has been deploying depots and related 
services through Brazil for several years.  

The complete LN software stack is available freely from 
both the University of Tennessee and Vanderbilt.  LN 
currently features 3 different interoperable implementations 
of the depot server include a Java based implementation 
from Nevoa. Vanderbilt has also been working on an 
enterprise level solution called LStore that fulfills some the 
same functionality as LoDN but targeted for local corporate 
infrastructures.    

IV. METHODOLOGY 

A. LoDN Simulator 
Logistical Networking and hard drives are very complex 

and modeling them through Markov Models would prove 
intractably difficult. Additionally, Markov Models are 
“memory-less” in that future events are solely dependent on 
the current state of the model. In the case of modeling a set 
of disks, any failure or repair transitions wipe out concurrent 
repair operations and reset the likelihood of failure.  Given 
the cost and time involved in conducting a multiyear study to 
collect such information it is not possible to conduct an 
empirical study. Therefore, the results of this paper shall use 
a simulator to determine if and to what degree hard disk 
drive health prediction can improve data longevity, 
accessibility and resource utilization within Logistical 
Networking.  Monte Carlo based simulation will provide the 
greatest flexibility in working with different failure 
behaviors and developing proactively adaptive data 
replication heuristics for LoDN.    

When this study began there was no simulator available 
suitable for studying Logistical Networking for this purpose, 
therefore we developed our own discrete event based 
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Logistical Networking simulator. This simulator has the 
ability to simulate several different key elements and allow 
for enough flexibility for the behavior of hard disks and 
different adaptive heuristics we are developing for LoDN’s 
data dispatcher. 

The simulator is driven via an event queue with events 
arriving from different components of the simulation 
including hard drives, depots, buses, network links, LoDN 
and the simulation environment.  The simulator will take as 
input a configuration file that specifies information about the 
depots, the local and wide area networks, hard drives and 
their failure behavior, data arrival patterns and the source 
clients. 

Depots act as separate autonomous units that are 
interconnected via a set of topological network links.   The 
depots are organized into physical sites much like in the real 
world where they are connected via a local area network and 
then have an external link to the outside global network.  
Each IBP depot contains a set of hard drives for data storage 
and buses that link the hard drives together and to the 
external network interface.  The depots implement a subset 
of the IBP protocol including allocation, store, deletion and 
resource query as outlined in the IBP protocol.  Depot and 
resource query will be extended to allow for further data 
acquisition than outlined in the IBP protocol.   This will 
include information on the age, manufacturer, model, 
utilization and any SMART errors that may have occurred 
for the hard drives so LoDN will be able to analyze the 
expected reliability of the drive.  Depots can be configured to 
join the Logistical Networking infrastructure at various times 
within a simulation to indicate real growth of the 
infrastructure over time.  A simplifying assumption about 
depots in the simulation is that they do not fail or provide 
false data to the rest of the simulation.  

Hard drives are individually configurable including their 
capacity, bandwidth, manufacturer, model, utilization and 
failure behavior.  The drives maintain their current status 
including what data currently resides on them, the currently 
used and free space and the information necessary to 
calculate their failure time based on the failure model 
assigned to them at their arrival time in the simulation. The 
simulator makes two key assumptions regarding hard drives: 
that there will be no bit rot of data and the drives will operate 
in fail-stop mode.  We believe that these are very reasonable 
assumptions in that Elerath [6] suggests that bit rot is really 
not an issue and other failure modes over shadow it. 
Additionally there are error-correcting codes and methods 
for disk scrubbing that can mitigate this phenomenon at the 
disk level. Since we are working from the end users’ 
perspective of disk failure, fail-stop while not accurate does 
often represent the behavior of users utilization of disks.  
Once performance or reliability degrade below a certain 
point, users tend to “junk” the drives and replace them, often 
without realizing that data recovery is still possible. 

Using the analysis work mentioned in the literature 
review on SMART errors in relation to hard drive failure, we 
are developing a series of models of disk reliability behavior 
for the simulator.  These models will be implemented and 
used by the hard drives to present at what time they should 

stop functioning. When a drive fails all of the data on the 
disk will be lost and data counters for the simulator will 
reflect this.  However, none of the components of the 
simulation will be aware of the failure until the drive is used 
or probed by LoDN. Only at that time will LoDN be able to 
take action to handle the failure event.  

Data transfer within the simulation relies on use of data 
buses within the depots and a topology of network links 
connecting the depots.  Each bus and network link is a 
separate simulated component that transfers data using data 
pulling and a round robin fair queuing between sources.  At 
one second intervals those buses and networks with data 
packets are allowed to forward data to the next link within 
the limits of the bandwidth and queue restrictions of the next 
component.  In the case of network links every path between 
two depots is a series of one or more network links and each 
network link can have multiple source and next hop links.  
The configuration file specifies the topology of the network 
and the characteristics of each link and a static routing table 
is calculated for each link based on the this information. Data 
travels through the network of links in data packets similar to 
the functionality of IP packets in the real world.  The data 
packets include their destination address and the IBP 
allocation on the depot to which the data is to be written.  At 
each link a data packet can be fragmented into smaller 
chunks to meet the fair share bandwidth and queue limits of 
the next link in the path. The data buses and links are 
simplified in that there is no failure requiring re-routing and 
retransmission of data.   

Data objects are represented via a unique id within the 
simulation with each data object’s details being recorded into 
a database including their current viable hard drive locations. 
When a data object no longer has a replica the information 
pertaining to the loss is also noted including information 
about the size, duration of time in the simulation and time of 
the loss.   All of this information is invisible to LoDN but 
recorded for post analysis.  The configuration file specifies 
the number, sizes and arrival time of data objects.  This 
information can be static or dynamically driven with 
distributions like Poisson and bursty so that a wide range of 
possibilities could be tested. When data arrives in the system, 
it appears on a source client.   The source client sends a 
request to LoDN that returns an IBP allocation for the source 
to send the data object to.  Once the data object has arrived 
on depot, it is then in the hands of the Logistical Networking 
infrastructure to maintain it for the specified operating time 
frame. 

The final component of the simulator is LoDN and in 
particular the data dispatcher. LoDN will keep track of 
virtual exnodes that store the locations of data objects on the 
depots.  Each data object will have an associated replication 
policy file stating at what sites replicas need to exist.  It is the 
job of the data dispatcher within LoDN to replicate and 
maintain allocation at the specified sites using heuristics that 
we will develop and study. The resource manager for LoDN 
periodically probes the depots and the hard drives collecting 
information for the data dispatcher to evaluate the estimated 
reliability of the disks.   It is also through this method that 
LoDN will detect when a disk has failed.  This information 
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will be used by LoDN to determine the potential for data loss 
of each data object in the system and then take whatever 
reactive and proactive actions are necessary to preserve the 
data.   

B. Using the Simulator 
Using this simulator, the benefits of adaptive hard drive 

aware data placement for data longevity and accessibility 
under a range of possible hard drive failure behaviors can be 
analyzed. The simulation will be run in three modes for the 
data dispatcher: the first that does traditional, reactive data 
replication induced by failure; the second with proactive data 
replication and the third with enhanced proactive data 
replication with the intelligent, hard drive aware heuristics. 
The first mode represents how LoDN currently performs 
replication and responses to failure. The second is another 
common strategy found in systems like Tempo and Glacier 
that replicate as much as possible in the background within 
the constraints of specified resource limits [17]. The final 
mode represents the set of algorithms under our research.  

The simulations will involve a myriad of possible 
combinations of topologies, depot setups, hard drive 
characteristics, data arrival distributions and mission times.  
It would clearly be impossible to exhaustively study the 
whole range of possibilities.  Therefore we plan on 
developing a few representative configurations. The first 
among these would be to a setup similar to the current 
REDDnet infrastructure but extrapolated out to several 
hundred thousand disks and many petabytes worth of data. 
This will require a large number of Monte Carlo simulations 
for meaningful analysis.  

C. Failure Models 
For modeling failure trends with hard disks and the 

usefulness of SMART errors for estimating disk health, we 
used the “Abstract Failure Trends in a Large Disk Drive 
Population” [9]. To the best of our knowledge this is the 
most comprehensive study of disk failure and SMART errors 
ever published.  It comprised over 100,000 disks used by 
Google over 5 years and 9 months of SMART error 
examination and their impact on disk failure. While neither 
the raw or refined data is available for direct examination, 
we reconstructed as much data as possible from the paper as 
possible.  

From the data represented, two different failure models 
were created for the simulator.  The first model is based on 
the relationship between disk age and the type of SMART 
errors and the second is based the number and kind of 
SMART errors that occur within the given time frame.   Both 
models used the four strongest SMART error near-term 
failure indicators: scan error, reallocation count, offline 
reallocation count and probational count. The number of disk 
failures per year is calculated from the AFR’s listed over the 
course of the 5 years.   According to Google, 56% of all disk 
failures had no SMART errors within 8 months before 
failure, therefore for each year this percentage of disks that 
were selected to fail had no preceding SMART errors. The 
number of disks that suffer from SMART errors was 
calculated from annualizing the distribution percentages over 

the 9 months of SMART error recording.   Each year that 
many disks were selected to have SMART errors within the 
interval. 

For the disk age based SMART error model, the plots 
points for the survival CDF were recovered and used to 
create a spline function.  The inverse of this function was 
computed and used to create random failure generators for 
each type of error. SMART errors were then distributed 
randomly across the candidate disks each year and the 
random failure generator engines were applied using the age 
of the disk when the SMART error would occur.   Each disk 
profile recorded if and when it would fail as a result of the 
SMART error. SMART errors were added continually until 
there were enough SMART error induced failures for each 
year. In the edge case when the SMART error would occur 
in the previous year but the resulting failure would occur in 
the next year, the failure would count towards the number of 
required SMART error induced failures for the next year but 
the SMART error event was counted in the distribution for 
the pervious year. If a disk had a SMART error in the 
previous year, then that disk could be selected for a non-
SMART error induced failure in the next year after 8 months 
had passed from the time of the SMART errors.  It seems 
reasonable to assume that SMART errors no longer influence 
the chances of a disk failure after 8 months since each failure 
curve levels off after that period of time from the occurrence 
of the error.  

The error count based SMART error model was 
constructed similar to the previous model. SMART error 
random failure generators were created from the distribution 
curves where the input to the generator is type of SMART 
errors and number of errors within the time frame. The 
SMART errors were added in clusters to the candidate disks 
using a normal distribution around errors that were already 
on the disk in that time frame. SMART errors where 
continually, randomly added to achieve the specified failure 
counts per year. After each error was the generator would 
examine the disk to determine if and when the disk would 
failure.  This process resulted in a distribution of the four 
error types and their counts. 

Using these models, 100,000 disk profiles were generated 
at a time and as disks entered the simulation, they would be 
randomly assigned a profile to use.  Once the profiles were 
exhausted a new batch of disk profiles would be generated. 

Because of the lack of data available, certain assumptions 
had to be made for each model. There was no information 
about the impact and probability of a mixture of SMART 
errors so each type of error was treated mutually exclusively. 
Only the overall percentage of disks with each type of 
SMART error was provided. There were no details given 
about distribution of occurrences as relating to the age of 
disks. This required annualizing the percentages and having 
equal percentages per year. The number of errors and size of 
error clusters where not known therefore errors were added 
as required to meet the expected failures per year. In the case 
of the first model, SMART errors were added uniformly in 
each year. In the second model, a normal distribution was 
used to cluster errors for each year on a disk. No other 
factors including utilization, temperature, model and vintage 
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were included.  While model and vintage have been shown 
to be significant, this can be mitigated by assuming a mixed 
population of disks. Additionally utilization and temperature 
have been shown to be far less significant by the source 
paper.    

D. Measuring and Comparing Results 
There are several proposed metrics for estimating the 

time it would take a storage system to have an unrecoverable 
data loss event. For our research we feel that the best metric 
to use the Normalize Magnitude of Data Loss, NOMDLt 
instead of the more traditional MTTDL, Mean Time To Data 
Loss, approach. While MTTDL has been the standard 
reliability metric in most academic work, it suffers from a 
number of flaws.  It is based on Markov Model where each 
state is the number of working hard drives and transitioning 
from each state is governed by constant failure and repair 
rates.  It assumes that failure is an exponential distribution, 
which does not fit with the models we have constructed. 
MTTDL lacks the ability to cover a given duration of system 
operation.  Instead it states the MTTDL from the start of 
operation to infinity.  It is very unrealistic to assume that a 
storage system would continue forever. Furthermore, 
MTTDL only specifies a mean time of data loss but can not 
provide information as to the degree of that data loss.   While 
two storage systems might have the same MTTDL, the 
amount of data actually lost could be drastically different.   

NOMDLt address all of these issues and provides a better 
means of comparison by stating the expected amount of data 
loss for a given period of expected operation. This is a much 
more informative metric for understanding data loss as it 
makes comparison between different scenarios far easier and 
understandable. NOMDLt additionally has the advantage of 
being calculated via a series of Monte Carlo simulations. The 
fact that NOMDLt already presupposes simulation data 
makes it a very natural fit for our research.  

V. RESULTS 
We have found some preliminary results with complete 

results being available in the final paper.  For the three 
modes discussed (reactive, proactive and disk health aware 
proactive replication), disk health aware does perform as 
well as or better than the other two.   When there is enough 
storage space available, 3 or more copies provide enough 
resilience for all three modes.  However, when storage space 
relative to the amount data is small, disk health aware does 
perform better than the previous two methods.  In a non-
trivial percentage of the disk population when there was only 
enough room for 1 to 2 copies of data, the enhanced method 
was able to improve data resiliency.  

Based on Google’s study, we examined two different 
models of failure involving SMART errors.  The first model 
based on the age of the disks when SMART errors occurred 
and the second model based on the number of each kind of 
SMART error that occur in a given time frame.  Factoring in 
age and the number of errors, significantly improved disk 
usage and data resiliency.  

One drawback though to the results is that it was 
impossible to have a combined model of effects of disk age 

and SMART error counts since this information was not 
made available.  In the future, it might be worth examining 
several potential realistic models that combine these factors. 

Proactive replication performs better than reactive 
replication since proactive replication will utilize nearly all 
available space for replication while reactive simply attempts 
to maintain a static number of copies. Of course proactive 
storage degenerates to reactive storage when there is only 
enough space for a number of copies matching the static 
replication requirement of reactive storage.  

Disk health aware proactive replication saves significant 
bandwidth over the wide area.  Proactive replication wastes 
significant bandwidth making as many copies as possible. 
Because reactive replication waits on a failure, a full copy 
must be pulled across the wide area to replace the missing 
data.  Proactive disk health aware replication reduces the 
amount of wide area bandwidth utilized.   When a disk is 
suspected to fail in the near term, data replicates the data on 
the disk to another disk or disks to maintain the data’s health 
factor.  This replication can occur to other depots at the same 
site or even neighbor disks on the same bus.   While disk 
failure prediction has been shown to be imperfect, it still 
allows for this optimization in a number of cases. The most 
dangerous time in the existence of data is after the initial 
upload from the client.  At this point, there is only one copy 
of the data and if the disk on which the data resides fails, 
then the data is lost.  Further compounding the problem is 
that it may be some time before the client is made aware of 
the failure.  The client in the interim may have already 
removed the data locally assuming it to be safe.  All three 
schemes suffer from this problem; however, using disk 
aware health statistics allow for the initial upload to go what 
is believed to be a healthier disk.  This lessens the odds of 
suffering a disk failure before additional copies can be 
replicated.  

VI. CONCLUSIONS 
In this paper, we have described a system that seeks to 

use disk failure avoidance to reduce the need for costly 
redundancy by using adaptive heuristics that predict such 
failures. While a number of predictive factors such as hard 
drive utilization rate, age, SMART errors, and model can be 
used, our initial work has focused on SMART errors. We 
have described an approach that can predict where near term 
disk failures are more likely to occur, enabling proactive 
movement/replication of at-risk data, thus maintaining data 
integrity and availability. Our initial results demonstrate that 
this strategy can reduce costs due to redundant storage 
without compromising these important requirements. 
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