
ERMS : An Elastic Replication Management System for HDFS

Zhendong Cheng, Zhongzhi Luan,
You Meng, Yijing Xu, Depei Qian
Sino-German Joint Software Institute
Beihang University, Beijing, China
{zhendong.cheng, zhongzhi.luan,
you.meng, yijing.xu depei.qian}

@jsi.buaa.edu.cn

Alain Roy
Computer Sciences Department

University of Wisconsin-Madison
Madison, USA

roy@cs.wisc.edu

Ning Zhang, Gang Guan
Tencent Research
Shenzhen, China

{ningzhang, gangguan}
@tencent.com

Abstract—The Hadoop Distributed File System (HDFS) is a
distributed storage system that stores large-scale data sets
reliably and streams those data sets to applications at high
bandwidth. HDFS provides high performance, reliability and
availability by replicating data, typically three copies of every
data. The data in HDFS changes in popularity over time. To
get better performance and higher disk utilization, the
replication policy of HDFS should be elastic and adapt to data
popularity. In this paper, we describe ERMS, an elastic
replication management system for HDFS. ERMS provides an
active/standby storage model for HDFS. It utilizes a complex
event processing engine to distinguish real-time data types, and
then dynamically increases extra replicas for hot data, cleans
up these extra replicas when the data cool down, and uses
erasure codes for cold data. ERMS also introduces a replica
placement strategy for the extra replicas of hot data and
erasure coding parities. The experiments show that ERMS
effectively improves the reliability and performance of HDFS
and reduce storage overhead.

Keywords: HDFS; Elastic; Replication Management

I. INTRODUCTION
The storage demands of cloud computing have been

growing exponentially year after year. Rather than relying on
traditional central large storage arrays, the storage system for
cloud computing consolidates large numbers of distributed
commodity computers into a single storage pool, and
provides a large capacity and high performance storage
service in an unreliable and dynamic network environment at
low cost. To build such a cloud storage system, an increasing
number of companies and academic institutions have started
to rely on the Hadoop Distributed File System (HDFS) [1].
HDFS provides reliable storage and high throughput access
to application data. It is suitable for applications that have
large data sets, typically the Map/Reduce programming
framework [2] for data-intensive computing. HDFS has been
widely used and become a common storage appliance for
cloud computing.

Based on data access patterns and data popularity, the
data in HDFS could be classified into four types: hot data,
cooled data, cold data and normal data. Hot data is the
popular data, which means the data receives not only a large
number of concurrent accesses, but also a high intensity of
access. Cooled data is the no longer heavily accessed hot
data. The unpopular data that is rarely accessible is cold data.

The rest belongs to normal data. Normally, data changes in
popularity over time, so the data types also change
dynamically. Their popularity spikes when the data is
freshest and decays as time goes by. The typical lifecycle of
a data is as follows: After being created, the data becomes
hot data because there are many requests for it. When the
requests are completed, it becomes cooled. And then, the
data is normal data. If they are rare accessed, the data turns
cold.

Placing data as close as possible to computation is a
common practice of data-intensive systems, which is called
data locality. Data replication has been widely used as a
means of providing high performance, reliability and
availability of large-scale cloud storage systems, where
failure is the norm rather than the exception. The
management of replicas is critical to HDFS reliability and
performance of HDFS.

HDFS uses an uniform triplication policy (i.e. three
replicas for each file) to improve data locality and ensure
data availability and fault tolerance in the event of data and
disk failures. This policy could also achieve load balancing
by distributing work across the replicas. For the common
case, the triplication policy in HDFS works well in term of
high reliability and high performance. However, there are
two problems with this policy.

First, in a large and busy HDFS cluster, the hot data
could be requested by many distributed clients concurrently.
Replicating the hot data only on three different nodes is not
enough to avoid contention for the datanodes which store hot
data. If the number of jobs concurrently accessing hot data
exceeds the number of replicas, some of these jobs may have
to access data remotely and compete for the same replica.

Second, the triplication policy comes with a high
overhead cost in terms of management for the cold data. Too
many replicas may not significantly improve availability, but
bring unnecessary expenditure instead. The management cost,
including storage and network bandwidth, will significantly
increase with the high number of replica.

Therefore the hot data should be assigned with a larger
number of replicas to improve data locality of concurrent
accesses. The additional copies may be used to improve not
only availability, but also provide load balanceing and
improve overall performance if replicas and data accessing
requests are reasonably distributed. On the other hand, the
overheads of cold data lead us to reconsider erasure codes as

2012 IEEE International Conference on Cluster Computing Workshops

978-0-7695-4844-9/12 $26.00 © 2012 IEEE

DOI 10.1109/ClusterW.2012.25

32

an alternative for the cold data. Erasure code, which is a
form of software RAID, aims to provide a highly reliable
storage with lower disk cost. The performance and
management cost tradeoffs between replication and erasure
coding are well understood and have been evaluated in many
environments. Erasure codes could be used in HDFS to
provide potential storage and network savings to replication.

In view of these issues, we design and implement ERMS,
an elastic replica management system for HDFS. ERMS
introduces an active/standby storage model, takes advantage
of a high-performance complex event processing (CEP) [3]
engine to distinguish the real-time data types, and provides
an elastic replication policy for the different types of data.
ERMS uses Condor [4] to increase the replication number
for hot data in standby nodes, and to remove the extra
replicas after the data cooling down. The erasure codes could
be used to save storage space and network bandwidth when
the data becomes cold.

The contributions of this paper are: (1) introducing an
Active/Standby storage model for data storage in HDFS
cluster; (2) bringing in a new method, complex event
processing, to distinguish data types in real-time; (3)
presenting the replica placement strategy which is more
useful than the original one; (4) based on these method,
designing, implementing, and evaluating an elastic replica
management system to manage the replica in HDFS.

The remainder of this paper is organized as follows.
Section II provides an overview of background and discusses
related work. The design of Elastic Replication Management
System for HDFS (ERMS) is presented in Section III. We
evaluate system matrices of HDFS and experiment ERMS in
Section IV. Conclusions and possible future work are
summarized in Section V.

II. BACKGROUND AND RELATED WORK
HDFS is designed for reliably storing very large files

across distributed commodity machines in a large cluster. [5]
It stores each file as a sequence of blocks; all blocks in a file
are of the same size, except the last one. The blocks of a file
are replicated for reading performance and fault tolerance.
HDFS introduces a simple but highly effective triplication
policy to allocate replicas for a block. The default replica
placement policy of HDFS is to put one replica on one node
in the local rack; another on a node in a remote rack; and the
last on a different node in the same remote rack. This replica
placement policy cuts the inter-rack write traffic, which
generally improves writing performance. The purpose of the
rack-aware replica placement strategy is to improve data
reliability, availability, and network bandwidth utilization.
Administrators of HDFS clusters can specify the default
replication factor (number of replicas) or the replication
factor for single data. They can also implement their own
replica placement strategy for HDFS.

Replication factor and replica placement are key issues of
replication management. The issue of dynamic replication
management strategy for HDFS has drawn considerable
attention.

CDRM [6] is a cost-effective dynamic replication
management scheme for large-scale cloud storage system. It

builds up a cost model to capture the relationship between
availability and replication factor. Based on this model,
lower bound on replica reference number to satisfy
availability requirement can be determined. CDRM further
places replicas among distribute nodes to minimize blocking
probability, so as to improve load balance and overall
performance.

Scarlett [7] is an off-line system that replicates blocks
based on the observed probability in a previous epoch.
Scarlett computes a replication factor for each file and
creates budget-limited replicas distributed among the cluster,
with the goal of minimizing hotspots. Replicas are aged to
reserve space for new replicas.

DARE [8] is an adaptive data replication mechanism for
HDFS. It uses probabilistic sampling and a competitive
aging algorithm independently at each node to determine the
number of replicas to allocate to each file and the location to
each replica. DARE takes advantage of existing remote data
retrievals and selects a subset of the data to be inserted into
the file system, hence creating a replica without consuming
extra network and computation resources.

There also has been some work on erasure codes for
HDFS.

DiskReduce [9] is a modification of the HDFS that
enables asynchronous encoding of triple replicated data and
provides RAID-class redundancy overheads. In addition to
increasing a cluster's storage capacity as seen by its users
with up to three factors, DiskReduce can delay encoding
long enough to deliver the performance benefits of multiple
data copies.

Khan et al. [10] presents an algorithm that finds the
optimal number of codeword symbols needed for recovery
for any XOR-based erasure code and produces recovery
schedules that use a minimum amount of data. This
algorithm improves I/O performance in practice for the large
block sizes used in cloud file systems, such as HDFS.

CDRM, Scarlett and DARE try to figure out suitable
replication factor for every file and place them in reasonable
datanodes according to the current workload and node
capacity. However, they do not consider the availability of
data that has low replica factors. DiskReduce introduces a
RAID policy for seldom used data, but does not point out
how to judge the cold data. In ERMS, we use different
replica policies for different data. For hot data it increases
replication number to improve performance. For cold data it
uses RAID to save storage space. For normal data it uses the
default triplication policy. We also describe a specific replica
placement strategy for the extra replicas of hot data and
RAID parity.

III. ELASTIC REPLICATION MANAGEMENT SYSTEM
The purpose of this paper is to design an elastic replica

management system for HDFS that seeks to increase data
locality by replicating the hot data while keeping a minimum
number of replicas for the cold data and encoding them.
Additionally, ERMS dynamically adaptes to the changes in
data access patterns and data popularity. In this section, we
first describe the architecture of ERMS, and then we

33

introduce the active/standby storage model, data judging
policy and replica placement strategy used by ERMS.

A. System Architecture
The architecture of ERMS is shown in Fig. 1. It

automatically manages the replication number and replica
placement strategy in HDFS clusters. HDFS is the basic
storage appliance. The Data Judge Module obtains system
metrics from HDFS clusters and uses CEP to distinguish
current data types in real-time. According to the different
types of data, the manager of ERMS could schedule
replication manager tool and erasure coding tool to manage
the replicas of data. Condor is an appropriate choice because
it implements flexible scheduling system for distributing
computing.

Figure 1. System Architecture of ERMS

The CEP engine delivers high-speed processing of the
different events, identifies the most meaningful events from
event clouds, analyzes their correlation, and takes action in
real time. [3] It has increasingly become a choice for
applications that require high-volume, low-latency and
complex event correlation processing. The sliding window,
typically the time window and length window, is one of the
major features of CEP systems. The length window instructs
the system to only keep the last N events. The time window
enables us to limit the number of events within a specified
time interval. ERMS makes use of CEP to analyze HDFS
audit logs and distinguish real-time data types in HDFS.

Condor, which provides mechanisms and policies that
support High Throughput Computing on large collections of
distributed computing resources, can be used to manage the
replication management system. Condor ClassAds is a
flexible mechanism for representing the characteristics and
constraints of nodes and replicas. The ClassAds mechanism
is used in ERMS to detect when datanodes are commissioned
or decommissioned in the cluster, and to judge whether the
replicas are added or removed successfully. In addition,
Condor is a well-functioning scheduling system. It schedules
the increasing replication tasks and erasure decoding tasks
immediately, while run the decreasing replication tasks and
erasure encoding tasks when the HDFS cluster is idle.

To enhance the reliability of ERMS, the Condor log
mechanism is used to record all replication manager tasks
and erasure coding tasks. If these tasks failed, they could
rollback automatically. We can replay all operations and
analyze them.

B. Active/Standby Storage Model
ERMS introduces an active/standby storage model for

HDFS cluster, as shown in Fig. 2. This model classifies the
storage nodes into two types: active nodes and standby nodes.
By keeping all nodes active, the additional nodes may be
used to improve not only availability, but also provide load
balancing and improve overall performance. However, the
availability and performance increases were limited. In
addition, this causes increased energy consumption, a
significant problem for data centers. Therefore we use an
active/standby storage model instead of keeping all nodes
active.

Figure 2. Active/Standby Storage Model

In HDFS clusters, nodes are placed in different racks. In
the Active/Standby Storage Model, the active nodes and
standby nodes are both distributed in different racks to make
full use of data locations.

In a large and busy HDFS cluster, active nodes could be
busy. In order to handle suddenly increasing access requests
for hot data, ERMS commissions standby nodes and place
the extra replicas at these nodes. Standby nodes might be
better than active nodes when the active nodes are heavily
used.

In addition, when decreasing the extra replicas of hot
data, ERMS does not need to rebalance the replicas if they
are located in standby nodes. This is because the data
statuses of running nodes are not changing. It is desirable to
avoid rebalancing because it takes considerable time and
bandwidth. After all data in a standby node are removed,
ERMS could shut down that node for energy saving.

C. Data Judge
Replication factor is a key issue of replication

management in HDFS. The Data Judge Module utilizes CEP
to distinguish real-time data types, and then determine the
optimize replication factor for every data.

In a HDFS cluster, there are p active datanodes (DNA1,
DNA2, … , DNAp) and q standby datanodes (DNS1, DNS2, …,
DNSq). The block size of HDFS is SB and the default
replication factor is rD (0 < rD < p).

For the data D, the data size is Sd. So the block number nd
equals Sd/SB (BD1, BD2, … , BDnd). The current replication
factor of D is r (0 < r < p+q).

34

We developed a log parser to analyze the HDFS audit
logs and translate the logs records into events for CEP
system. A feature of CEP system is the ability to processing
large volumes of messages and reacting in real-time to
conditions that occur. It makes CEP suitable for analyzing
the audit logs of HDFS, which are always very large and
increase quickly. Usually, CEP system uses an SQL-
standard-based continuous query language to express the
query demands. Taking advantage of the time window tw of
CEP, ERMS could obtain concurrent access number of every
data and block within the time tw. We use Nd and Nb to
represent the access number of data D and block B.

The experiments show that the number of concurrent
access is a sufficient metric to capture the current type of
data.

Hot data is the data that receives not only a large number
of accesses, but also a high intensity of access. Three aspects
could reveal that the data is hot. First, if the average
concurrent access requests on every replica are high, the data
is sure to be hot data. As the Formula (1), Mτ stands for the
threshold, which is the largest access number one data
replica could be hold. Second, data access could be locality.
The access intensity of one block may be high while the
concurrent access of the total data is regular (Formula (2)).
MM is the maximum access number of one block. Third, the
data is hot when there are suitable presences of blocks being
intensely accessed. In the Formula (3), Mm is the suitable
access number of one block (Mm < MM) and � is the optimal
percentage to measure the hot data.
 d MN r τ> (1)
 ∃i ∈ 1,nd[], Nbi

r > M M (2)

[] ()1, ,
jd b m dj n count N r M n ε∀ ∈ > > ()0 1ε< < (3)

A datanode can simultaneously support a limited number
of sessions due to capacity constraint, which is when the
number of sessions has reached its upper bound, and the
connection requests from application servers will be blocked,
or rejected. For datanode DN, DN contains blocks B1, B2,
… , and Bn. Formula (4) shows that the total number of data

access on DN (Nbi
rbi

i=0

n

�) is larger than the threshold τ DN .

In this case, ERMS could choose the data D that contributes
the largest access to DN and increased the replication factor
of D.

 Nbi
rbi

i=0

n

� > τ DN (4)

The method to distinguish between cooled data is simple.
Cooled data is the lightly accessed hot data. So the number
of concurrent accesses of them are low, as the Formula (5)
shown.
 Nd r < τ d (5)

Cold data is the rarely accessed data, which means the
last access time of the data is oldand the access number is
low. Formula (6) shows the feature of cold data
(0< τ m

< τ d < τ M
), Tn stands for the current time and Ta

stands for the last access time.

 Nd r < τ m & &Tn − Ta > t (6)
The thresholds, MM, Mm, Mτ , mτ , dτ , and τ DN , are

influenced by the HDFS cluster environments, which
includes the types of disks, network bandwidth, CPU speed,
etc. ERMS could dynamically change these thresholds based
on system environments.

Different replication strategy could be used for different
type of data after the data type having been determined. For
the hot data, the ERMS can start standby nodes and increase
replicas on standby nodes. It could remove the extra replicas
of cooled data and shut down standby nodes if necessary.
After the data becoming cold data, erasure codes are used to
save storage space.

D. Replica Placement
The replica placement is critical to reliability and

performance of HDFS. Ford et al. [14] characterized the
availability properties of cloud storage systems based on an
extensive one year study of Google’s main storage
infrastructure and presented statistical model. Their analysis
concluded that data placement strategies need to be aware of
failure groupings and failure bursts. The purpose of the
default rack-aware replica placement strategy in HDFS is to
improve data reliability, availability, and network bandwidth
utilization.

ERMS introduces an Active/Standby storage model and
uses different replication strategies for different types of
data. The extra replicas of hot data are mainly used for data
availability and performance, while the erasure coding
parities are created for data reliability. So it needs a special
replica placement strategy to take full advantage of the
Active/Standby storage model and the features of data.

Algorithm 1: The Replica Placement Algorithm of ERMS
1 Active Datanodes DNA�{DNA1, DNA2, … , DNAp}
2 Standby Datanodes DNS�{DNS1, DNS2, …, DNSq}
3 Default replication factor rD (0 < rD < p)
4 Current replica number r (0 < r < p+q)
5 Block B ∈ Data D

6 Choose Datanode DN to place B
7 if B = Coding Block
8 for DNAi in DNA
9 if DNAi contains the smallest number of D’s blocks
10 DN � DNAi
11 return DN
12 end if
13 end for
14 else if B = Data Block
15 if r < rD
16 for DNAi in DNA
17 if DNAi is suitable for the default replica placement

strategy
18 DN � DNAi

35

19 return DN
20 end if
21 end for
22 else if r >= rD
23 for DNSi in DNS
24 if DNSi doesn’t contain B
25 DN � DNSi
26 return DN
27 end if
28 end for
29 if DN = NULL
30 for DNAi in DNA
31 if DNAi doesn’t contain B
32 DN � DNAi
33 return DN
34 end if
35 end for
36 end if
37 end if
38 end if

39 Choose Datanode DN to delete B
40 for DNSi in DNS
41 if DNSi contains B
42 DN = DNSi
43 Return DN
44 end if
45 end for
46 for DNAi in DNA
47 if DNAi contains B
48 DN = DNAi
49 return DN
50 end if
51 end for

In light of this problem, we implement a pluggable
replica placement strategy for HDFS, as shown in Algorithm
1. There are two types of block in ERMS: the data block and
erasure codes parities. The block is an extra block of hot data
if the replica factor of the block is no less than default replica
factor. When choosing a datanode for data block, ERMS
prefers to choose a standby node that is placed in the same
racks with the other replica of the block for the extra block.
It would use the default replica placement strategy for the
normal data block. For the erasure codes parity, it could
select the active node that contains the minimum number of
data block of the same data. When deleting blocks, ERMS
could prefer to delete them from standby nodes. In this
replica placement strategy, it does not need to re-balance
when increasing and decreasing the replication factor. If the
erasure codes parities are located in the same nodes with the

original data, the data will be lost and could not be recovered
if these nodes are crashed. This strategy enhances the data
availability.

IV. EXPERIMENTAL TESTING AND ANALYSIS

A. Experiment Environment
We evaluated ERMS in a private cluster with one

namenode and eighteen datanodes, all commodity computers.
The namenode has two Intel Xeon E5520 CPUs of 2.26GHz,
12GB memory, 250GB SATA disk. The operating system is
CentOS 5.5 with kernel 2.6.18-194.el5. The datanodes have
an Intel Xeon E5420 CPU of 2.50GHz, 8GB memory, 60GB
or 250GB SATA disk. The operating system is CentOS 5.4
with kernel 2.6.18-194.32.1.el5. The Java version is 1.6.0_24.
These nodes locate in three different racks with Gigabit
Ethernet network connecting.

The log parser for HDFS audit logs is developed in Java
and we use CEP engine to analyze these logs. The total code
is 2186 lines. We implement the ERMS in Hadoop-20,
which is Facebook's realtime distributed Hadoop based on
Apache Hadoop 0.20-append [1]. We have to modify the
replica placement mechanism and add configuration
parameters (active/standby nodes) to suit the ERMS.

B. Performance and Analysis
We run jobs synthesized from the Statistical Workload

Injector for MapReduce (SWIM) [17], which provides a one
mouth job trace and replay scripts of a Facebook 3000-
machine production cluster trace.

ERMS is scheduler independent, but different schedulers
have different performance when running tasks. Therefore
we evaluated it using FIFO scheduler and the Fair scheduler
under different thresholds.

Reading throughput and data locality are two critical
metrics for performance of HDFS. Reading throughput
directly reflects system performance of file system. Data
locality could reduce pressure on the network fabric, which
is desirable in data-intensive scenarios since network fabrics
are frequently oversubscribed. Fig. 3(a) and Fig. 3(b) show
that ERMS could effectively improve reading throughput
and data locality. It improves 50% – 100% reading
throughput and 5 – 8 times data locality for FIFO scheduler,
and 40% – 100% reading throughput and 20% – 70% data
locality for Fair scheduler. The Fair scheduler is able to
increase data locality at the cost of a small delay for tasks.
Even in this case ERMS is able to increase locality.

The thresholds, MM, �M, and τ DN , are important
parameters for ERMS. It is a tradeoff between system
performance and storage cost. We can get high performance
with a high overhead cost if these thresholds are low.

36

FIFO Fair
0

20

40

60

80

100

120

 Vanilla Hadoop
 ERMS_τΜ=80

 ERMS_τΜ=60

 ERMS_τΜ=40

A
ve

ra
ge

 T
hr

ou
gh

pu
t (

M
B

/s
)

MapReduce Schedule
(a) Average Reading Throughput

FIFO Fair
0.0

0.2

0.4

0.6

0.8

1.0

D
at

a
L

oc
al

ity
 o

f J
ob

s

MapReduce Schedule

 Vanilla Hadoop
 ERMS_τΜ=80

 ERMS_τΜ=60

 ERMS_τΜ=40

(b) Data Locality

Figure 3. Reading Performance and Data Locality of ERMS

The cumulative distribution function of the data at the
time they are accessed is shown in Fig. 4. It shows the data
access patterns of the HDFS cluster. Fig. 5 is system storage
space utilization during the experiments. It matches the
Cumulative Distribution Function (CDF) of data access
number. ERMS increases replica number of hot data, so the
storage space is larger than normal when data access is
heavily. For the cold data, which concurrent accesses
number � is lower than �m, ERMS uses Reed Solomon codes
to encode it, with a replication factor of one and four coding
parities. The results show that this erasure codes could
significantly reduce storage overhead and doesn’t heart data
reliability.

0 2 4 6 8 10 12 14 16 18 20 22 24
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
D

F

Time (h)

 CDF

Figure 4. The cumulative distribution function of data access

0 2 4 6 8 10 12 14 16 18 20 22 24
0

100

200

300

400

500

600

700

800

900

1000

St
or

ag
e

U
til

iz
at

io
n

(G
B

)

Time (h)

 Vanilla Hadoop
 ERMS

Figure 5. Storage Space Utilization

C. System Metrics
Replication factor is a key issue of replication

management in HDFS. It could obviously affect system
performance. TestDFSIO evaluates the I/O performance of
HDFS. It does this by using a MapReduce job as a
convenient way to read or write files in parallel. Each file is
read in a separate map task, and the output of the map is used
for collecting statistics relating to the file just processed. The
statistics are accumulated in the reduce task, to produce a
summary.

0 1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

700

800

900

1000

A
ve

ra
ge

 E
xe

cu
tio

n
T

im
e

(s
)

Replica Number

 70
 140
 210
 280
 350

Figure 6. The Performance of TestDFSIO

We evaluated TestDFSIO Reading under different
replication factor, as shown in Fig. 6. We used different
number of concurrent threads (from 70 to 350) to read the
same data, and examined the average execution time of these
jobs. The results show that high concurrent reading threads
decrease the system performance, while high replication
factor could increase system performance. The elastic
replication management for HDFS is significantly valuable.

37

3�4 3�5 3�6 3�7 3�8 3�9 3�10
0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38

T
im

e
(s

)

Replica

 Whole_64MB
 By One_64MB

3�4 3�5 3�6 3�7 3�8 3�9 3�10
0
4
8

12
16
20
24
28
32
36
40
44
48

T
im

e
(s

)

Replica

 Whole_128MB
 By One_128MB

3�4 3�5 3�6 3�7 3�8 3�9 3�10
0
4
8

12
16
20
24
28
32
36
40
44
48
52
56
60

T
im

e
(s

)

Replica

 Whole_256MB
 By One_256MB

3�4 3�5 3�6 3�7 3�8 3�9 3�10
0

8

16

24

32

40

48

56

64

72

T
im

e
(s

)

Replica

 Whole_512MB
 By One_512MB

3�4 3�5 3�6 3�7 3�8 3�9 3�10
0
8

16
24
32
40
48
56
64
72
80
88
96

104
112
120

T
im

e
(s

)

Replica

 Whole_1GB
 By One_1GB

3�4 3�5 3�6 3�7 3�8 3�9 3�10
0

10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180

T
im

e
(s

)

Replica

 Whole_2GB
 By One_2GB

3�4 3�5 3�6 3�7 3�8 3�9 3�10
0

20
40
60
80

100
120
140
160
180
200
220
240
260
280
300

T
im

e
(s

)

Replica

 Whole_4GB
 By One_4GB

3�4 3�5 3�6 3�7 3�8 3�9 3�10
0

32
64
96

128
160
192
224
256
288
320
352
384
416
448

T
im

e
(s

)

Replica

 Whole_8GB
 By One_8GB

Figure 7. Increasing Replica

There are two ways to increase replicas: increasing the
replica directly to the optimal one or increasing replica one
by one. Fig. 7 shows the experiment of these two cases
under different file sizes. It is clear that increasing the
replica directly to the optimal one is a better choice. ERMS
figures out optimal replica for hot data, and then increase the
extra replicas directly.

0 1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

700

800

900

M
ax

im
um

 C
on

cu
rr

en
t A

cc
es

s N
um

be
r

Replica Number

 All Active
 Active/Standby

Figure 8. The Maximum Concurrent Access Number the Relicas Could

Hold (The File Size is 1GB)

The performances of Map/Reduce applications heavily
depend on schedule policy and cluster configuration. To
eliminate these effects, we directly read data from HDFS
instead of by Map/Reduce framework.

We examined the maximum concurrent access number
the replicas could hold in two situations. The first is to keep
all eighteen datanodes active, and the other is to keep ten
datanodes active and eight datanodes standby. The results
are shown in Fig. 8. The maximum concurrent access
number of each replica could hold is 80-100, so the
maximum of τ M

 in our environment 80.

0 1 2 3 4 5 6 7 8 9 10
0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32

R
ea

di
ng

 T
hr

ou
gh

pu
t (

M
B

/s
)

Replica Number

 All Active
 Active/Standby

(a) Reading Throughput

0 1 2 3 4 5 6 7 8 9 10
0

20
40
60
80

100
120
140
160
180
200
220
240
260
280
300

A
ve

ra
ge

 E
xe

cu
tio

n
T

im
e

(s
)

Replica Number

 All Active
 Active/Standby

(b) Average Execution Time

Figure 9. Reading Throughput and Average Execution Time of Reading
Benchmark (The File Size is 1GB)

We also evaluated the reading throughput and average
execution time when the concurrent access requests are 70.
Fig. 9(a) and Fig. 9(b) show that the Active/Standby Model
is better than keeping all nodes active. It also indicates that
high replication factor could also increase system
performance in these situations.

38

V. CONCLUSION AND FUTURE WORK
Data replication is a technique commonly used to

improve data availability and reading throughput in
distributed file systems. Statistical results show that data
access patterns in HDFS clusters are heavy-tailed. Some
data are considerably more popular than others, while some
are cold. The current replication mechanisms that replicate
data a fixed number are inadequate for the varying data
access patterns.

In this paper, we present the design and implement of
ERMS, an elastic replica management system for HDFS that
seeks to increase data locality by replicating the hot data
while keeping a minimum number of replicas for the cold
data. ERMS dynamically adapt to changes in data access
patterns and data popularity, and impose a low network
overhead. The active/standby storage model and replica
placement strategy used by ERMS would enhance the
reliability and availability of data.

In the future, we plan to investigate more effective
solutions to detect and predict the real-time data types. We
also prepare to evaluate ERMS in real cloud systems, which
are provide by Tencent and HuaWei.

ACKNOWLEDGMENT
This work was partially supported by the National High

Technology Research and Development Program
("863"Program) of China under the grant
No.2011AA01A203, International Science & Technology
Cooperation Program of MOST under the grant
No.2009DFA12110, National Science Foundation of China
under the grant No. 61133004.

REFERENCES
[1] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The

Hadoop Distributed File System,” in Proceedings of the IEEE
26th Symposium on Mass Storage Systems and Technologies
(MSST 10), 2010, pp. 1-10.

[2] J. Dean and S. Ghemawat, “MapReduce: Simplied Data
Processing on Large Clusters,” in Proceedings of the 6th
conference on Symposium on Opearting Systems Design
Implementation, 2004.

[3] S. Cheng, Z. Cheng, Z. Luan, and D. Qian, “NEPnet: A
scalable monitoring system for anomaly detection of network
service,” in Proceedings of the 7th International Conference
on Network and Service Management (CNSM 11), 2011, pp.
1-5.

[4] Thain, T. Tannenbaum, and M. Livny, “Distributed
computing in practice: the Condor experience: Research
Articles,” Concurrency and Computation: Practice and
Experience, vol. 17, pp. 323-356, 2005.

[5] HDFS Architecture Guide
http://hadoop.apache.org/common/docs/stable/hdfs_design.ht
ml

[6] Q. Wei, B. Veeravalli, B. Gong, L. Zeng, and D. Feng,
“CDRM: A Cost-Effective Dynamic Replication
Management Scheme for Cloud Storage Cluster,” in
Proceedings of the IEEE International Conference on Cluster
Computing (CLUSTER 10), 2010, pp. 188-196.

[7] G. Ananthanarayanan, S. Agarwal, S. Kandula, A.
Greenberg, I. Stoica, D. Harlan, and E. Harris, “Scarlett:
coping with skewed content popularity in mapreduce

clusters,” presented at the Proceedings of the sixth conference
on Computer systems, EuroSys '11 Salzburg, Austria, 2011.

[8] L. Abad, Y. Lu, and R. H. Campbell, “DARE: Adaptive Data
Replication for Efficient Cluster Scheduling,” in Proceedings
of the IEEE International Conference on Cluster Computing
(CLUSTER 11), 2011, pp. 159-168.

[9] B. Fan, W. Tantisiriroj, L. Xiao, and G. Gibson,
"DiskReduce: RAID for data-intensive scalable computing,"
in Proceedings of the 4th Annual Workshop on Petascale
Data Storage, Portland, Oregon, 2009.

[10] O. Khan, R. Burns, J. Plank,W. Pierce and C. Huang,
“Rethinking Erasure Codes for Cloud File Systems:
Minimizing I/O for Recovery and Degraded Reads.”
Conference on File and Storage Technologies (FAST),
USENIX, 2012.

[11] D. Borthakur, J. Gray, J. S. Sarma, K. Muthukkaruppan, N.
Spiegelberg, H. Kuang, K. Ranganathan, D. Molkov, A.
Menon, S. Rash, R. Schmidt, and A. Aiyer, “Apache hadoop
goes realtime at Facebook,” in Proceedings of the 2011
international conference on Management of data, Athens,
Greece, 2011.

[12] H. C. Lim, S. Babu, and J. S. Chase, “Automated control for
elastic storage,” in Proceedings of the 7th international
conference on Autonomic computing, Washington, DC,
USA, 2010.

[13] F. Leibert, J. Mannix, J. Lin, and B. Hamadani, “Automatic
management of partitioned, replicated search services,” in
Proceedings of the 2nd ACM Symposium on Cloud
Computing, Cascais, Portugal, 2011.

[14] D. Ford, F. Labelle, F. I. Popovici, M. Stokely, V.-A. Truong,
L. Barroso, C. Grimes, and S. Quinlan, “Availability in
globally distributed storage systems,” in Proceedings of the
9th USENIX conference on Operating systems design and
implementation, Vancouver, BC, Canada, 2010.

[15] Y. Shi, X. Meng, J. Zhao, X. Hu, B. Liu, and H. Wang,
“Benchmarking cloud-based data management systems,” in
Proceedings of the 2nd international workshop on Cloud data
management, Toronto, ON, Canada, 2010.

[16] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E.
Gruber, “Bigtable: a distributed storage system for structured
data,” in Proceedings of the 7th symposium on Operating
systems design and implementation, Seattle, Washington,
2006.

[17] Y. Chen, A. Ganapathi, R. Griffith, and R. Katz, “The Case
for Evaluating MapReduce Performance Using Workload
Suites,” in Proceedings of the 2011 IEEE 19th Annual
International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems,
2011.

[18] Lakshman and P. Malik, “Cassandra: a decentralized
structured storage system,” SIGOPS Oper. Syst. Rev., vol.
44, pp. 35-40, 2010.

[19] M. Y. Eltabakh, Y. Tian, F. Ozcan, R. Gemulla, A. Krettek,
and J. McPherson, “CoHadoop: flexible data placement and
its exploitation in Hadoop,” Proc. VLDB Endow., vol. 4, pp.
575-585, 2011.

[20] Thusoo, Z. Shao, S. Anthony, D. Borthakur, N. Jain, J. S.
Sarma, R. Murthy, and H. Liu, “Data warehousing and
analytics infrastructure at facebook,” in Proceedings of the
2010 international conference on Management of data,
Indianapolis, Indiana, USA, 2010.

[21] M. K. McKusick and S. Quinlan, “GFS: Evolution on Fast-
forward,” Queue, vol. 7, pp. 10-20, 2009.

39

[22] S. Ghemawat, H. Gobioff, and S. T. Leung, “The Google file
system,” in Proceedings of the 9th ACM Symposium on
Operating Systems Principles (SOSP 03), Bolton Landing,
NY, USA, 2003.

[23] J. Shafer, S. Rixner, and A. L. Cox, “The Hadoop distributed
filesystem: Balancing portability and performance,” in
Proceedings of the IEEE International Symposium on
Performance Analysis of Systems & Software (ISPASS 10),
2010, pp. 122-133.

[24] E. Wu, Y. Diao, and S. Rizvi, “High-performance complex
event processing over streams," in Proceedings of the 2006
ACM SIGMOD international conference on Management of
data, Chicago, IL, USA, 2006.

[25] W. Tantisiriroj, S. W. Son, S. Patil, S. J. Lang, G. Gibson,
and R. B. Ross, “On the duality of data-intensive file system
design: reconciling HDFS and PVFS,” in Proceedings of the
2011 International Conference for High Performance

Computing, Networking, Storage and Analysis, Seattle,
Washington, 2011.

[26] Calder, J. Wang, A. Ogus, N. Nilakantan, A. Skjolsvold, S.
McKelvie, Y. Xu, S. Srivastav, J. Wu, H. Simitci, J. Haridas,
C. Uddaraju, H. Khatri, A. Edwards, V. Bedekar, S. Mainali,
R. Abbasi, A. Agarwal, M. F. u. Haq, M. I. u. Haq, D.
Bhardwaj, S. Dayanand, A. Adusumilli, M. McNett, S.
Sankaran, K. Manivannan, and L. Rigas, “Windows Azure
Storage: a highly available cloud storage service with strong
consistency,” in Proceedings of the Twenty-Third ACM
Symposium on Operating Systems Principles, Cascais,
Portugal, 2011.

40

