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Abstract—The Hadoop Distributed File System (HDFS) is a 
distributed storage system that stores large-scale data sets 
reliably and streams those data sets to applications at high 
bandwidth. HDFS provides high performance, reliability and 
availability by replicating data, typically three copies of every 
data. The data in HDFS changes in popularity over time. To 
get better performance and higher disk utilization, the 
replication policy of HDFS should be elastic and adapt to data 
popularity. In this paper, we describe ERMS, an elastic 
replication management system for HDFS. ERMS provides an 
active/standby storage model for HDFS. It utilizes a complex 
event processing engine to distinguish real-time data types, and 
then dynamically increases extra replicas for hot data, cleans 
up these extra replicas when the data cool down, and uses 
erasure codes for cold data. ERMS also introduces a replica 
placement strategy for the extra replicas of hot data and 
erasure coding parities. The experiments show that ERMS 
effectively improves the reliability and performance of HDFS 
and reduce storage overhead. 
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I. INTRODUCTION 
The storage demands of cloud computing have been 

growing exponentially year after year. Rather than relying on 
traditional central large storage arrays, the storage system for 
cloud computing consolidates large numbers of distributed 
commodity computers into a single storage pool, and 
provides a large capacity and high performance storage 
service in an unreliable and dynamic network environment at 
low cost. To build such a cloud storage system, an increasing 
number of companies and academic institutions have started 
to rely on the Hadoop Distributed File System (HDFS) [1]. 
HDFS provides reliable storage and high throughput access 
to application data. It is suitable for applications that have 
large data sets, typically the Map/Reduce programming 
framework [2] for data-intensive computing. HDFS has been 
widely used and become a common storage appliance for 
cloud computing. 

Based on data access patterns and data popularity, the 
data in HDFS could be classified into four types: hot data, 
cooled data, cold data and normal data. Hot data is the 
popular data, which means the data receives not only a large 
number of concurrent accesses, but also a high intensity of 
access. Cooled data is the no longer heavily accessed hot 
data. The unpopular data that is rarely accessible is cold data. 

The rest belongs to normal data. Normally, data changes in 
popularity over time, so the data types also change 
dynamically. Their popularity spikes when the data is 
freshest and decays as time goes by. The typical lifecycle of 
a data is as follows: After being created, the data becomes 
hot data because there are many requests for it. When the 
requests are completed, it becomes cooled. And then, the 
data is normal data. If they are rare accessed, the data turns 
cold. 

Placing data as close as possible to computation is a 
common practice of data-intensive systems, which is called 
data locality. Data replication has been widely used as a 
means of providing high performance, reliability and 
availability of large-scale cloud storage systems, where 
failure is the norm rather than the exception. The 
management of replicas is critical to HDFS reliability and 
performance of HDFS. 

HDFS uses an uniform triplication policy (i.e. three 
replicas for each file) to improve data locality and ensure 
data availability and fault tolerance in the event of data and 
disk failures. This policy could also achieve load balancing 
by distributing work across the replicas. For the common 
case, the triplication policy in HDFS works well in term of 
high reliability and high performance. However, there are 
two problems with this policy. 

First, in a large and busy HDFS cluster, the hot data 
could be requested by many distributed clients concurrently. 
Replicating the hot data only on three different nodes is not 
enough to avoid contention for the datanodes which store hot 
data. If the number of jobs concurrently accessing hot data 
exceeds the number of replicas, some of these jobs may have 
to access data remotely and compete for the same replica.  

Second, the triplication policy comes with a high 
overhead cost in terms of management for the cold data. Too 
many replicas may not significantly improve availability, but 
bring unnecessary expenditure instead. The management cost, 
including storage and network bandwidth, will significantly 
increase with the high number of replica.  

Therefore the hot data should be assigned with a larger 
number of replicas to improve data locality of concurrent 
accesses. The additional copies may be used to improve not 
only availability, but also provide load balanceing and 
improve overall performance if replicas and data accessing 
requests are reasonably distributed. On the other hand, the 
overheads of cold data lead us to reconsider erasure codes as 
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an alternative for the cold data. Erasure code, which is a 
form of software RAID, aims to provide a highly reliable 
storage with lower disk cost. The performance and 
management cost tradeoffs between replication and erasure 
coding are well understood and have been evaluated in many 
environments. Erasure codes could be used in HDFS to 
provide potential storage and network savings to replication. 

In view of these issues, we design and implement ERMS, 
an elastic replica management system for HDFS. ERMS 
introduces an active/standby storage model, takes advantage 
of a high-performance complex event processing (CEP) [3] 
engine to distinguish the real-time data types, and provides 
an elastic replication policy for the different types of data. 
ERMS uses Condor [4] to increase the replication number 
for hot data in standby nodes, and to remove the extra 
replicas after the data cooling down. The erasure codes could 
be used to save storage space and network bandwidth when 
the data becomes cold. 

The contributions of this paper are: (1) introducing an 
Active/Standby storage model for data storage in HDFS 
cluster; (2) bringing in a new method, complex event 
processing, to distinguish data types in real-time; (3) 
presenting the replica placement strategy which is more 
useful than the original one; (4) based on these method, 
designing, implementing, and evaluating an elastic replica 
management system to manage the replica in HDFS. 

The remainder of this paper is organized as follows. 
Section II provides an overview of background and discusses 
related work. The design of Elastic Replication Management 
System for HDFS (ERMS) is presented in Section III. We 
evaluate system matrices of HDFS and experiment ERMS in 
Section IV. Conclusions and possible future work are 
summarized in Section V. 

II. BACKGROUND AND RELATED WORK 
HDFS is designed for reliably storing very large files 

across distributed commodity machines in a large cluster. [5] 
It stores each file as a sequence of blocks; all blocks in a file 
are of the same size, except the last one. The blocks of a file 
are replicated for reading performance and fault tolerance. 
HDFS introduces a simple but highly effective triplication 
policy to allocate replicas for a block. The default replica 
placement policy of HDFS is to put one replica on one node 
in the local rack; another on a node in a remote rack; and the 
last on a different node in the same remote rack. This replica 
placement policy cuts the inter-rack write traffic, which 
generally improves writing performance. The purpose of the 
rack-aware replica placement strategy is to improve data 
reliability, availability, and network bandwidth utilization. 
Administrators of HDFS clusters can specify the default 
replication factor (number of replicas) or the replication 
factor for single data. They can also implement their own 
replica placement strategy for HDFS. 

Replication factor and replica placement are key issues of 
replication management. The issue of dynamic replication 
management strategy for HDFS has drawn considerable 
attention. 

CDRM [6] is a cost-effective dynamic replication 
management scheme for large-scale cloud storage system. It 

builds up a cost model to capture the relationship between 
availability and replication factor. Based on this model, 
lower bound on replica reference number to satisfy 
availability requirement can be determined. CDRM further 
places replicas among distribute nodes to minimize blocking 
probability, so as to improve load balance and overall 
performance. 

Scarlett [7] is an off-line system that replicates blocks 
based on the observed probability in a previous epoch. 
Scarlett computes a replication factor for each file and 
creates budget-limited replicas distributed among the cluster, 
with the goal of minimizing hotspots. Replicas are aged to 
reserve space for new replicas. 

DARE [8] is an adaptive data replication mechanism for 
HDFS. It uses probabilistic sampling and a competitive 
aging algorithm independently at each node to determine the 
number of replicas to allocate to each file and the location to 
each replica. DARE takes advantage of existing remote data 
retrievals and selects a subset of the data to be inserted into 
the file system, hence creating a replica without consuming 
extra network and computation resources.  

There also has been some work on erasure codes for 
HDFS. 

DiskReduce [9] is a modification of the HDFS that 
enables asynchronous encoding of triple replicated data and 
provides RAID-class redundancy overheads. In addition to 
increasing a cluster's storage capacity as seen by its users 
with up to three factors, DiskReduce can delay encoding 
long enough to deliver the performance benefits of multiple 
data copies. 

Khan et al. [10] presents an algorithm that finds the 
optimal number of codeword symbols needed for recovery 
for any XOR-based erasure code and produces recovery 
schedules that use a minimum amount of data. This 
algorithm improves I/O performance in practice for the large 
block sizes used in cloud file systems, such as HDFS.  

CDRM, Scarlett and DARE try to figure out suitable 
replication factor for every file and place them in reasonable 
datanodes according to the current workload and node 
capacity. However, they do not consider the availability of 
data that has low replica factors. DiskReduce introduces a 
RAID policy for seldom used data, but does not point out 
how to judge the cold data. In ERMS, we use different 
replica policies for different data. For hot data it increases 
replication number to improve performance. For cold data it 
uses RAID to save storage space. For normal data it uses the 
default triplication policy. We also describe a specific replica 
placement strategy for the extra replicas of hot data and 
RAID parity. 

III. ELASTIC REPLICATION MANAGEMENT SYSTEM 
The purpose of this paper is to design an elastic replica 

management system for HDFS that seeks to increase data 
locality by replicating the hot data while keeping a minimum 
number of replicas for the cold data and encoding them. 
Additionally, ERMS dynamically adaptes to the changes in 
data access patterns and data popularity. In this section, we 
first describe the architecture of ERMS, and then we 
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introduce the active/standby storage model, data judging 
policy and replica placement strategy used by ERMS. 

A. System Architecture 
The architecture of ERMS is shown in Fig. 1. It 

automatically manages the replication number and replica 
placement strategy in HDFS clusters. HDFS is the basic 
storage appliance. The Data Judge Module obtains system 
metrics from HDFS clusters and uses CEP to distinguish 
current data types in real-time. According to the different 
types of data, the manager of ERMS could schedule 
replication manager tool and erasure coding tool to manage 
the replicas of data. Condor is an appropriate choice because 
it implements flexible scheduling system for distributing 
computing. 

 
Figure 1.  System Architecture of ERMS 

The CEP engine delivers high-speed processing of the 
different events, identifies the most meaningful events from 
event clouds, analyzes their correlation, and takes action in 
real time. [3] It has increasingly become a choice for 
applications that require high-volume, low-latency and 
complex event correlation processing. The sliding window, 
typically the time window and length window, is one of the 
major features of CEP systems. The length window instructs 
the system to only keep the last N events. The time window 
enables us to limit the number of events within a specified 
time interval. ERMS makes use of CEP to analyze HDFS 
audit logs and distinguish real-time data types in HDFS. 

Condor, which provides mechanisms and policies that 
support High Throughput Computing on large collections of 
distributed computing resources, can be used to manage the 
replication management system. Condor ClassAds is a 
flexible mechanism for representing the characteristics and 
constraints of nodes and replicas. The ClassAds mechanism 
is used in ERMS to detect when datanodes are commissioned 
or decommissioned in the cluster, and to judge whether the 
replicas are added or removed successfully. In addition, 
Condor is a well-functioning scheduling system. It schedules 
the increasing replication tasks and erasure decoding tasks 
immediately, while run the decreasing replication tasks and 
erasure encoding tasks when the HDFS cluster is idle. 

To enhance the reliability of ERMS, the Condor log 
mechanism is used to record all replication manager tasks 
and erasure coding tasks. If these tasks failed, they could 
rollback automatically. We can replay all operations and 
analyze them. 

B. Active/Standby Storage Model 
ERMS introduces an active/standby storage model for 

HDFS cluster, as shown in Fig. 2. This model classifies the 
storage nodes into two types: active nodes and standby nodes. 
By keeping all nodes active, the additional nodes may be 
used to improve not only availability, but also provide load 
balancing and improve overall performance. However, the 
availability and performance increases were limited. In 
addition, this causes increased energy consumption, a 
significant problem for data centers. Therefore we use an 
active/standby storage model instead of keeping all nodes 
active. 

 
Figure 2.  Active/Standby Storage Model 

In HDFS clusters, nodes are placed in different racks. In 
the Active/Standby Storage Model, the active nodes and 
standby nodes are both distributed in different racks to make 
full use of data locations. 

In a large and busy HDFS cluster, active nodes could be 
busy. In order to handle suddenly increasing access requests 
for hot data, ERMS commissions standby nodes and place 
the extra replicas at these nodes. Standby nodes might be 
better than active nodes when the active nodes are heavily 
used. 

In addition, when decreasing the extra replicas of hot 
data, ERMS does not need to rebalance the replicas if they 
are located in standby nodes. This is because the data 
statuses of running nodes are not changing. It is desirable to 
avoid rebalancing because it takes considerable time and 
bandwidth. After all data in a standby node are removed, 
ERMS could shut down that node for energy saving. 

C. Data Judge 
Replication factor is a key issue of replication 

management in HDFS. The Data Judge Module utilizes CEP 
to distinguish real-time data types, and then determine the 
optimize replication factor for every data. 

In a HDFS cluster, there are p active datanodes (DNA1, 
DNA2, … , DNAp) and q standby datanodes (DNS1, DNS2, …, 
DNSq). The block size of HDFS is SB and the default 
replication factor is rD (0 < rD < p). 

For the data D, the data size is Sd. So the block number nd 
equals Sd/SB (BD1, BD2, … , BDnd). The current replication 
factor of D is r (0 < r < p+q). 
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We developed a log parser to analyze the HDFS audit 
logs and translate the logs records into events for CEP 
system. A feature of CEP system is the ability to processing 
large volumes of messages and reacting in real-time to 
conditions that occur. It makes CEP suitable for analyzing 
the audit logs of HDFS, which are always very large and 
increase quickly. Usually, CEP system uses an SQL-
standard-based continuous query language to express the 
query demands. Taking advantage of the time window tw of 
CEP, ERMS could obtain concurrent access number of every 
data and block within the time tw. We use Nd and Nb to 
represent the access number of data D and block B. 

The experiments show that the number of concurrent 
access is a sufficient metric to capture the current type of 
data. 

Hot data is the data that receives not only a large number 
of accesses, but also a high intensity of access. Three aspects 
could reveal that the data is hot. First, if the average 
concurrent access requests on every replica are high, the data 
is sure to be hot data. As the Formula (1), Mτ  stands for the 
threshold, which is the largest access number one data 
replica could be hold. Second, data access could be locality. 
The access intensity of one block may be high while the 
concurrent access of the total data is regular (Formula (2)). 
MM is the maximum access number of one block. Third, the 
data is hot when there are suitable presences of blocks being 
intensely accessed. In the Formula (3), Mm is the suitable 
access number of one block (Mm < MM) and � is the optimal 
percentage to measure the hot data. 
                                  d MN r τ>                                      (1) 
                           ∃i ∈ 1,nd[ ], Nbi

r > M M                         (2) 

[ ] ( )1, ,
jd b m dj n count N r M n ε∀ ∈ > >   ( )0 1ε< <    (3) 

A datanode can simultaneously support a limited number 
of sessions due to capacity constraint, which is when the 
number of sessions has reached its upper bound, and the 
connection requests from application servers will be blocked, 
or rejected. For datanode DN, DN contains blocks B1, B2, 
… , and Bn. Formula (4) shows that the total number of data 

access on DN ( Nbi
rbi

i=0

n

� ) is larger than the threshold τ DN . 

In this case, ERMS could choose the data D that contributes 
the largest access to DN and increased the replication factor 
of D. 

                                 Nbi
rbi

i=0

n

� > τ DN                               (4) 

The method to distinguish between cooled data is simple. 
Cooled data is the lightly accessed hot data. So the number 
of concurrent accesses of them are low, as the Formula (5) 
shown. 
                                  Nd r < τ d                                       (5) 

Cold data is the rarely accessed data, which means the 
last access time of the data is oldand the access number is 
low. Formula (6) shows the feature of cold data 
(0< τ m

< τ d < τ M
), Tn stands for the current time and Ta 

stands for the last access time. 

                         Nd r < τ m & &Tn − Ta > t                      (6) 
The thresholds, MM, Mm, Mτ , mτ , dτ ,  and τ DN , are 

influenced by the HDFS cluster environments, which 
includes the types of disks, network bandwidth, CPU speed, 
etc. ERMS could dynamically change these thresholds based 
on system environments. 

Different replication strategy could be used for different 
type of data after the data type having been determined. For 
the hot data, the ERMS can start standby nodes and increase 
replicas on standby nodes. It could remove the extra replicas 
of cooled data and shut down standby nodes if necessary. 
After the data becoming cold data, erasure codes are used to 
save storage space. 

D. Replica Placement 
The replica placement is critical to reliability and 

performance of HDFS. Ford et al. [14] characterized the 
availability properties of cloud storage systems based on an 
extensive one year study of Google’s main storage 
infrastructure and presented statistical model. Their analysis 
concluded that data placement strategies need to be aware of 
failure groupings and failure bursts. The purpose of the 
default rack-aware replica placement strategy in HDFS is to 
improve data reliability, availability, and network bandwidth 
utilization.  

ERMS introduces an Active/Standby storage model and 
uses different replication strategies for different types of 
data. The extra replicas of hot data are mainly used for data 
availability and performance, while the erasure coding 
parities are created for data reliability. So it needs a special 
replica placement strategy to take full advantage of the 
Active/Standby storage model and the features of data. 

 
Algorithm 1: The Replica Placement Algorithm of ERMS 
1 Active Datanodes DNA�{DNA1, DNA2, … , DNAp} 
2 Standby Datanodes DNS�{DNS1, DNS2, …, DNSq} 
3 Default replication factor rD (0 < rD < p) 
4 Current replica number r (0 < r < p+q) 
5 Block B ∈ Data D 
 
6 Choose Datanode DN to place B 
7 if B = Coding Block 
8   for DNAi in DNA 
9     if DNAi contains the smallest number of D’s blocks 
10       DN � DNAi 
11       return DN 
12       end if 
13   end for 
14 else if B = Data Block 
15   if r < rD 
16     for DNAi in DNA 
17       if DNAi is suitable for the default replica placement 

strategy 
18         DN � DNAi 
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19         return DN 
20       end if 
21     end for 
22   else if r >= rD 
23     for DNSi in DNS 
24       if DNSi doesn’t contain B 
25         DN � DNSi 
26         return DN 
27       end if 
28     end for 
29     if DN = NULL 
30       for DNAi in DNA 
31         if DNAi doesn’t contain B 
32           DN � DNAi 
33           return DN 
34         end if 
35       end for 
36     end if 
37   end if 
38 end if 
 
39 Choose Datanode DN to delete B 
40 for DNSi in DNS 
41   if DNSi contains B 
42     DN = DNSi 
43     Return DN 
44   end if 
45 end for 
46 for DNAi in DNA 
47   if DNAi contains B 
48     DN = DNAi 
49     return DN 
50   end if 
51 end for 
 

In light of this problem, we implement a pluggable 
replica placement strategy for HDFS, as shown in Algorithm 
1. There are two types of block in ERMS: the data block and 
erasure codes parities. The block is an extra block of hot data 
if the replica factor of the block is no less than default replica 
factor. When choosing a datanode for data block, ERMS 
prefers to choose a standby node that is placed in the same 
racks with the other replica of the block for the extra block. 
It would use the default replica placement strategy for the 
normal data block. For the erasure codes parity, it could 
select the active node that contains the minimum number of 
data block of the same data. When deleting blocks, ERMS 
could prefer to delete them from standby nodes. In this 
replica placement strategy, it does not need to re-balance 
when increasing and decreasing the replication factor. If the 
erasure codes parities are located in the same nodes with the 

original data, the data will be lost and could not be recovered 
if these nodes are crashed. This strategy enhances the data 
availability. 

IV. EXPERIMENTAL TESTING AND ANALYSIS 

A. Experiment Environment 
We evaluated ERMS in a private cluster with one 

namenode and eighteen datanodes, all commodity computers. 
The namenode has two Intel Xeon E5520 CPUs of 2.26GHz, 
12GB memory, 250GB SATA disk. The operating system is 
CentOS 5.5 with kernel 2.6.18-194.el5. The datanodes have 
an Intel Xeon E5420 CPU of 2.50GHz, 8GB memory, 60GB 
or 250GB SATA disk. The operating system is CentOS 5.4 
with kernel 2.6.18-194.32.1.el5. The Java version is 1.6.0_24. 
These nodes locate in three different racks with Gigabit 
Ethernet network connecting. 

The log parser for HDFS audit logs is developed in Java 
and we use CEP engine to analyze these logs. The total code 
is 2186 lines. We implement the ERMS in Hadoop-20, 
which is Facebook's realtime distributed Hadoop based on 
Apache Hadoop 0.20-append [1]. We have to modify the 
replica placement mechanism and add configuration 
parameters (active/standby nodes) to suit the ERMS. 

B. Performance and Analysis 
We run jobs synthesized from the Statistical Workload 

Injector for MapReduce (SWIM) [17], which provides a one 
mouth job trace and replay scripts of a Facebook 3000-
machine production cluster trace. 

ERMS is scheduler independent, but different schedulers 
have different performance when running tasks. Therefore 
we evaluated it using FIFO scheduler and the Fair scheduler 
under different thresholds. 

Reading throughput and data locality are two critical 
metrics for performance of HDFS. Reading throughput 
directly reflects system performance of file system. Data 
locality could reduce pressure on the network fabric, which 
is desirable in data-intensive scenarios since network fabrics 
are frequently oversubscribed. Fig. 3(a) and Fig. 3(b) show 
that ERMS could effectively improve reading throughput 
and data locality. It improves 50% – 100% reading 
throughput and 5 – 8 times data locality for FIFO scheduler, 
and 40% – 100% reading throughput and 20% – 70% data 
locality for Fair scheduler. The Fair scheduler is able to 
increase data locality at the cost of a small delay for tasks. 
Even in this case ERMS is able to increase locality. 

The thresholds, MM, �M, and τ DN , are important 
parameters for ERMS. It is a tradeoff between system 
performance and storage cost. We can get high performance 
with a high overhead cost if these thresholds are low. 
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Figure 3.  Reading Performance and Data Locality of ERMS 

The cumulative distribution function of the data at the 
time they are accessed is shown in Fig. 4. It shows the data 
access patterns of the HDFS cluster. Fig. 5 is system storage 
space utilization during the experiments. It matches the 
Cumulative Distribution Function (CDF) of data access 
number. ERMS increases replica number of hot data, so the 
storage space is larger than normal when data access is 
heavily. For the cold data, which concurrent accesses 
number � is lower than �m, ERMS uses Reed Solomon codes 
to encode it, with a replication factor of one and four coding 
parities. The results show that this erasure codes could 
significantly reduce storage overhead and doesn’t heart data 
reliability. 
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Figure 4.  The cumulative distribution function of data access 
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Figure 5.  Storage Space Utilization 

C. System Metrics 
Replication factor is a key issue of replication 

management in HDFS. It could obviously affect system 
performance. TestDFSIO evaluates the I/O performance of 
HDFS. It does this by using a MapReduce job as a 
convenient way to read or write files in parallel. Each file is 
read in a separate map task, and the output of the map is used 
for collecting statistics relating to the file just processed. The 
statistics are accumulated in the reduce task, to produce a 
summary.  

0 1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

700

800

900

1000

A
ve

ra
ge

 E
xe

cu
tio

n 
T

im
e 

(s
)

Replica Number

 70
 140
 210
 280
 350

 
Figure 6.  The Performance of TestDFSIO 

We evaluated TestDFSIO Reading under different 
replication factor, as shown in Fig. 6. We used different 
number of concurrent threads (from 70 to 350) to read the 
same data, and examined the average execution time of these 
jobs. The results show that high concurrent reading threads 
decrease the system performance, while high replication 
factor could increase system performance. The elastic 
replication management for HDFS is significantly valuable. 
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Figure 7.  Increasing Replica 

There are two ways to increase replicas: increasing the 
replica directly to the optimal one or increasing replica one 
by one. Fig. 7 shows the experiment of these two cases 
under different file sizes. It is clear that increasing the 
replica directly to the optimal one is a better choice. ERMS 
figures out optimal replica for hot data, and then increase the 
extra replicas directly. 
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Figure 8.  The Maximum Concurrent Access Number the Relicas Could 

Hold (The File Size is 1GB) 

The performances of Map/Reduce applications heavily 
depend on schedule policy and cluster configuration. To 
eliminate these effects, we directly read data from HDFS 
instead of by Map/Reduce framework. 

We examined the maximum concurrent access number 
the replicas could hold in two situations. The first is to keep 
all eighteen datanodes active, and the other is to keep ten 
datanodes active and eight datanodes standby. The results 
are shown in Fig. 8. The maximum concurrent access 
number of each replica could hold is 80-100, so the 
maximum of τ M

 in our environment 80. 
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(a) Reading Throughput 
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(b) Average Execution Time 

Figure 9.  Reading Throughput and Average Execution Time of Reading 
Benchmark (The File Size is 1GB) 

We also evaluated the reading throughput and average 
execution time when the concurrent access requests are 70. 
Fig. 9(a) and Fig. 9(b) show that the Active/Standby Model 
is better than keeping all nodes active. It also indicates that 
high replication factor could also increase system 
performance in these situations. 
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V. CONCLUSION AND FUTURE WORK 
Data replication is a technique commonly used to 

improve data availability and reading throughput in 
distributed file systems. Statistical results show that data 
access patterns in HDFS clusters are heavy-tailed. Some 
data are considerably more popular than others, while some 
are cold. The current replication mechanisms that replicate 
data a fixed number are inadequate for the varying data 
access patterns. 

In this paper, we present the design and implement of 
ERMS, an elastic replica management system for HDFS that 
seeks to increase data locality by replicating the hot data 
while keeping a minimum number of replicas for the cold 
data. ERMS dynamically adapt to changes in data access 
patterns and data popularity, and impose a low network 
overhead. The active/standby storage model and replica 
placement strategy used by ERMS would enhance the 
reliability and availability of data. 

In the future, we plan to investigate more effective 
solutions to detect and predict the real-time data types. We 
also prepare to evaluate ERMS in real cloud systems, which 
are provide by Tencent and HuaWei. 
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