
Sedna: A Memory Based Key-Value Storage
System for Realtime Processing in Cloud

Dong Dai
Computer Science College

University of Science and

Technology of China

Suzhou Institution of USTC

daidong@mail.ustc.edu.cn

Xi Li
Computer Science College

University of Science and

Technology of China

Suzhou Institution of USTC

llxx@ustc.edu.cn

Chao Wang, Mingming Sun
Computer Science College

University of Science and

Technology of China

Suzhou Institution of USTC

saintwc,mmsun@mail.ustc.edu.cn

Xuehai Zhou
Computer Science College

University of Science and

Technology of China

Suzhou Institution of USTC

xhzhou@ustc.edu.cn

Abstract—Comparing with the traditional disk based dis-
tributed storage system, RAM based storage has been proven to
be an effective way to accelerate realtime applications processing
speed. In this paper, we propose a memory based distributed
Cloud storage system called Sedna. Managing ’big data’ across
lots of commodity servers, Sedna provides high scalability, simple
effective data access APIs with data consistency and persistency,
and a new trigger based APIs for realtime applications. To
guarantee the scalability with low latency, we design and imple-
ment a hierarchical structure to manage huge size data center
which is simple and effective. Except the high speed provided by
memory based storage, Sedna absorbs advantages from state-of-
art cloud programming frameworks, and gives programmers a
new way to write massive data realtime applications. These data
read/write triggers APIs are necessary but are missing parts of
modern distributed storage system. Experiments and examples
show Sedna achieve comparable speed to widely-used distributed
cache system, and provide a more efficient way to use distributed
storage.

I. INTRODUCTION

Realtime processing has been a new wave in cloud comput-

ing along with the rapid development of large scale Internet

service. The speed of data generation is much faster, and the

requirement for timely analysis is also more exigent. As the

world’s largest social network site, Facebook has been facing

the realtime trend for years [12]. These applications require

high speed concurrent write/read access to a very large amount

of realtime data. For example, the Realtime Analytics [8] need

to read and analysis data generated in realtime by Scribe

[10]. Facebook Message [3], which would index the rapidly

growing data set like messages and emails, dynamically and

incrementally for fast random lookups.

Even the realtime trends has emerged for years, cloud

storage system has not been able to catch up with it. Realtime

applications basically need to store large scale data in higher

throughput and randomly read them back, however, this is still

a big challenge for disk based cloud storage system due to

the latency of disk I/O operations. In 2009, RAMCloud [23]

proposed to use RAM as the main storage material instead of

disk in cloud. It showed the possibility and the reasonability

of using RAM or other high speed random access device

This paper is supported by RFP-07-999 Cisco Research Foundation, Natinal
Science Foundation NSFC-60873221, and Jiangsu Research Project-BY128

to substitute disk in data centers. RAMCloud concentrates

on the data persistency and recovery strategy, However, we

believe the scalability is another important problem when

changing from disk storage to memory storage. Considering

the storage capacity of RAM(32-64GB) and Disk(16-32T) in a

standalone server, to build the competitive storage system, we

need at least hundredfold servers in a RAM cloud. Managing

so many servers without delaying the RAM speed is a great

challenge for researchers. In Sedna, we focus on the scalability

issues and design a hierarchical structure to manage large-scale

cluster.

With the high data read/write speed, it is still complex

and difficult to program a realtime application in cloud plat-

form. Current realtime programming models in cloud like

MapReduce Online [21], S4 [20], Spark [24] have some

limitations facing different kinds of realtime applications. It

is unavoidable because the storage layers they are running on

only provides simple data read and write APIs. This means

if applications want to get the newest data from storage

layer, it has to continuously read it over and over again.

These simple read/write Apis are acceptable for batch based

applications but do not fit for realtime ones. In Sedna, besides

the straightforward data access Apis, we provides trigger based

Apis which are useful for upper layer realtime programming

models. According our use case in realtime search engine, we

find it is easy to implement a programming framework for

different kinds of realtime applications based on Sedna.

This article is decomposed as fellows: section 2 list some

problems facing realtime era in cloud environment. After that

we will describe the storage layer of Sedna especially the

hierarchical structure of Sedna detailed in section 3. In section

4, we present the trigger based read/write apis Sedna provides

for realtime applications, and show a use case based on it.

In section 5, we show experiments on Sedna’s performance

comparing with current popular distributed memory cache

system. We also use this performance analysis to demonstrate

the efficiency of Sedna’s hierarchical structure. In section 6,

we list some related works and show the difference between

them and Sedna. Finally, this paper is concluded in section 7.

2012 IEEE International Conference on Cluster Computing Workshops

978-0-7695-4844-9/12 $26.00 © 2012 IEEE

DOI 10.1109/ClusterW.2012.28

48

II. REALTIME FOR STORAGE

Realtime applications have emerged and been popular in

the state-of-art internet services for years. It call for numerous

abilities which most of current storage solutions in cloud

have not obtained. Fig. 1 illustrates a typical realtime cloud

platform. The under layer storage system needs to response to

the write and read requests from clients and needs to support

the realtime application scheduler.

�������	
�

W/R Requests

�����	�
�
���������

Realtime Jobs

Storage
System

Fig. 1. Storage Layer in Realtime Cluster

Knowing this architecture of realtime cluster, and critical

characters of realtime applications summarized below, we can

get more clues about what a modern storage is required to

meet the demands of the realtime applications.

• Need to store large amount of small data. Small and

fragile raw data pieces have been the most common

data type in current cloud applications. According to the

statistics provided by Twitter, 350 billion tweets(each

tweet is limited less than 140 bytes) were posted in

Twitter from near 400 million users per day.

• Need to store data in high throughput. Still take Twitter

as an example, with a rate of billions of messages and

millions of relationship changes every day. To store or

process these newly generated data requires high write

throughput ability. Further more, the situation becomes

worse when each message need to be written several

times for reliability.

• Need to random reads in high speed. Once the newly

generated data was written into the storage system, we

need corresponding handlers to process it immediately.

Take a realtime search engine as example, the time

interval between the newly data sprawled and indexed

should be short.

• Need to help users process data in realtime. Typical

realtime applications response to users within seconds.

This response was generated through a serial complex

computing.

A. Modern Storage Model

Storage model includes several aspects including data repre-

sentation, data storage strategy, data retrieving and other merits

like performance, availability, scalability etc. In following

sections, we describe a storage model that Sedna uses to adapt

real time applications.

1) Representing Data: Modern cloud applications typically

store a large amount of small data pieces, and usually access

them randomly, or at least, in a way that is different from

how these data was collected. Key-Value fashion is quite fit

for small data piece, and supports random read/write well.

Though original key-value is a flatten data model, we can add

extra information in the ’key’ part to represent hierarchical

data space. Or, divide data into different tables like Bigtable

does. Finally, key-value pair is naturally fit for current popular

MapReduce [14] programming model.

2) Programming Model: MapReduce is a popular dis-

tributed programming model introduced by Google. It simpli-

fies large scale distribution applications by dividing them into

map stage and reduce stage. MapReduce was widely used in

batching jobs, however, it can not support realtime processing

well. In realtime applications, the interactions between users

and cloud platform became continuous. Once data arrived,

we need to process it immediately and generate new results,

which will affect what users see in clients or begin next

round processing. To support this programming model, the

storage system should provide applications the ability to watch

on their interesting data pieces, store the intermediate results

produced in processing safely even failure happens, and send

these results to next phase immediately instead of waiting for

writing into local disk.

3) Speed Requirement: Realtime applications running on

cloud platform require high read/write speed which only can

be provided by memory storage and high speed network con-

nection. 10Gb network has been popular in modern data cen-

ters, so the max transmission speed of network has exceeded

the disk speed. To accommodate this situation, higher speed

storage material began to noticeable for system architecture.

Memory is one of the fastest and its price has been more

reasonable now. We can easily put the whole data set into

a cluster’s main memory. Also, memory is fit for small data

chunks that are typically less than 4KB(MB).

4) Scalability Requirement: Once we store most data into

memory, comparing the disk size per server, we will need more

servers to provide competitive storage capacity. Besides, the

internet scale service needs storage system changes drastically

according to its popularity. In a word, modern storage system

needs the ability of managing more servers to provide scalable

storage and computing power.

B. Sedna Design Idea

Sedna is designed following the storage model described in

section 2.A. Here we list some basic design principles:

• Sedna stores all the recent data in memory instead of

disk. All data stored in Sedna is arranged in key value

49

TABLE I
SUMMARY OF SEDNA

Problems Technique Advantages
Partitioning Consistent Incremental

Hashing Scalability
Replication Eventually Higher R/W Speed

Consistency Flexible policy
Node ZooKeeper Avoid the single

Management Sub cluster node failure
Read Trigger Speed up the

Read&Write and Lock-Free Processing by
Writes data push and

low latency
Heart-beat Reduce the failure

Failure Detection protocol and detection time
and Handling Active detection

Periodically Different speed
Persistency flush or and availability

Strategy write-ahead logs according users’
needs

fashion, and the key was extended implicitly by Sedna to

provide hierarchical data space.

• Sedna uses a subset of cluster to manage overall con-

sistent status. This way avoids the single failure problem

which often draws criticism on the availability of Hadoop

[4] or other GFS [15] like storage system, and provides

the potential to extend data center into huge size without

conspicuous penalty on speed.

• Sedna provides read/write trigger apis to help program-

mers write realtime applications. By pushing recently

changed data to corresponding clients and triggering

specify user-define actions, Sedna can reduce the effort

to write complex realtime applications dramatically. Be-

sides, Sedna provides distributed data structure to help

users write realtime applications or streaming processing

applications.

III. SEDNA ARCHITECTURE

The architecture of a distributed storage system in pro-

duction environment is quite complex which includes data

persistence component, scalable and robust solution for load

balancing, servers management, failure detection, handling

and recovery, replica consistency, state transfer, concurrent

mechanisms. In this section, we focus on several core concep-

tions and implementation in Senda: partitioning, replication,

data read and write, as well as Zookeeper usage. In next

section, we introduce how Sedna provide a new perspective

to program realtime applications. Table 1 presents a summary

of techniques employed by Sedna and their advantages.

A. Overall Architecture

Fig. 2 shows the overall architecture of the Sedna system. As

a cloud storage layer for distributed applications, the requests

from clients usually was directly routed to a server in data

center. Servers in Sedna cluster are divided into two categories:

the upper layer sub-cluster which we call ZooKeeper [11]

cluster and ordinary servers. Each server in data center runs

nearly the same components except for the ZooKeeper parts. A

complete Sedna instance on one server was logically divided

into local part and distributes part. Local part includes the

local memory management layer and persistency layer. The

distribute part was implemented based on ZooKeeper, which

will help us maintain a consistent status information of the

whole cluster. The top layer up cluster status manager layer

in Fig. 2 contains components which are pluggable modules

providing different functionalities, like replica management,

nodes management, data balance, etc.

���������������������

��������������	

��������
����������	��

������������ ����!�������	

�����������"�����	��������"��

��������
����	��

�����
����	��

���������
����	��

����
��������

��������
���������

���######���

��������
����������	��

��������
����

 ����!
�������	

����������

��������������
����	�����

�����������"�
����	��������"��

����������
�������

���$���
�������

��������
����	��

�����
����	��

���������
����	��

����
��������

��������
���������

Fig. 2. Overall Architecture of Sedna

B. Partitioning

Sedna uses distributed hash table to separate data across the

cluster. The distributed consistent hash ring looks like Fig. 3.

It was equally divided into millions of slices, so every slice

represents a sub-range of INTEGER(which indicates the key

range). What’s more, each sub-range is called a virtual node,

which consists sequential numbers. When data arrives, its key

will be hashed to an integer, then mod to a virtual node. Every

data in a virtual node will be stored in one server(r1), and

replicated in other two servers(r2, r3 as the figure shows). The

real servers that store data were named real nodes comparing

with virtual nodes.

The simplest consistent hash algorithm is problematic as

its non-uniformity when servers join and leave the cluster

frequently. Virtual nodes [2] strategy was proposed to reduce

the imbalance in a cluster. In Sedna, virtual node is the

minimal continuous block for data storage. We record all

the virtual nodes’ status including its capacity, read/write

frequency. Besides, we also maintain a imbalance table for all

the real nodes computed from the virtual nodes’ status. This

information is calculated and stored locally, and periodically

updated to ZooKeeper cluster. It is only necessary to update

the imbalance table, which is a quite small comparing with

the virtual nodes number.

50

Fig. 3. Virtual Node Ring of Sedna

C. Replication

Every data stored in Sedna system have at least other two

copies to guarantee the data availability. We only provide the

eventually consistency among different copies using quorum

algorithm. Use R denotes the minimal number of nodes that

must be connected when read data from N replicas, W denotes

the minimal number of nodes that must be connected when

write data from N replicas. The values of R and W are subject

to following two constrains:

R+W > N

W >
N

2

This two formulas guarantee the consistency eventually. For

example, if there are 3 copies for each data, and R equals 2, W
equals 2. These two formulas are satisfied. In this situation,

once any two writes among these three copies success, the

read operations will need to wait until at least two copies are

consistent because we need at least two reads in these three

copies.

When receiving a read request, local running Sedna service

requests all the corresponding real nodes to get data with

timestamp, then checks for R equality. If there are more than

R equal data, the Sedna service will return corresponding

value to clients. Similarly, when encountering write requests

for given keys, Sedna service generates the requests were sent

to all the relative nodes, if more than W nodes return the same

version number then the write is considered success.

As we want to keep three copies stored in Sedna for every

piece of data, any server failure will cause part of replicas

broken. To maintain the data availability, Senda use read

recovery to do replica recovery after nodes failing appears.

Reads in Sedna system need to send requests to all the three

real nodes that store replicas. According to the ’timeout’,

’refuse’ response from these real nodes, Sedna service will

determine whether the servers have failed, and check their

existence by asking the ZooKeeper service. If it does fail, reads

operation will start a data duplication task asynchronously to

copy the lost replica from other healthy nodes and finally

change the data mapping information stored in ZooKeeper

service. The possibility of lost all the three replicas in a very

short time during which no reads nor writes happens can be

ignored, even this happens, like the power shortage of the

cluster, we can still recover the data from lost by the periodic

data flushing.

D. Node Management

When a node joins the Sedna cluster, it will start the local

memory storage firstly, then connect to the ZooKeeper service

for status synchronization. If the ZooKeeper service has not

been initialized, it will start a initial procedure instead of

normal start-up procedure. After checking the existence of

ZooKeeper service, newly joined node will start its Sedna Ser-

vice. The service will firstly try to register itself to ZooKeeper

by creating a ephemeral znodes under the real nodes znode.

After this, it will start number of threads (according the config-

uration) to ask for virtual nodes and store them locally. This

action will change the mapping information between virtual

node with real node, which is stored in ZooKeeper service,

so the local Sedna service need write into ZooKeeper service,

which means changing the value of a znode in ZooKeeper.

When a real node fails or shuts down accidentally, the heart-

beat signal which is kept between this server and ZooKeeper

service will lost. This will make ZooKeeper service aware

of the real node’s lost. Sedna does not need to do anything.

Recovery work will be started when we read or write data that

was stored in this real node.

In Sedna, the virtual node number is a abstracted as a

configurable parameter, however, once it is set, we can not

change it unless restart the Sedna cluster. The retrieving data

threads mentioned above is highly related with the number

of virtual nodes. Typically, we store about 100 virtual nodes

in a one real node, so if a cluster contains 1,000 servers at

most, the total virtual nodes number can be set to 100,000.

As every real node stores 100 virtual nodes in average, the

data retrieving threads number could be 16 or 8.

E. ZooKeeper Cluster

ZooKeeper cluster is the critical part to maintain virtual

node distribution information in Sedna. Besides, it also pro-

vides node existence information for all nodes in Sedna cluster,

therefore its performance will determine the Sedna perfor-

mance. In this section, We analysis the usage of ZooKeeper

in Sedna and show its performance is fit to be used in large

scale storage system to provide consistent status information..

We have known that ZooKeeper is much more preferable for

read than write-intensive operations, so mostly Sedna read the

information from ZooKeeper service instead of writing. There

are two general situations that the data stored in ZooKeeper is

required to be modified: 1) when a Sedna cluster boots at the

first time, it needs to create znodes in ZooKeeper, which each

znode represents for a virtual node, and the overall number of

virtual nodes may be millions according to the cluster size; 2)

whenever a real node in cluster leaves or a new node joins,

Sedna updates these information into ZooKeeper by setting

znode’s value. In the first situation, lots of creation operations

51

will take a long time when the virtual nodes number is large,

but it only happens once when the Sedna cluster firstly starts

up. In the second situation, writes in ZooKeeper is much faster

(in milliseconds) than the frequency of new nodes join, so it

will not affect the Sedna performance.

ZooKeeper’s read performance might be another potential

bottleneck of Sedna. To avoid this bottleneck, we have three

strategies: 1) use local cache. When cached data was found

invalid (target node returns ’reject’ or ’timeout’), Sedna reads

from ZooKeeper and updates local cache. 2) each server

starts a periodical thread to synchronize local cache with

ZooKeeper data, which we call it the lease time. To reduce the

unnecessary updates, lease time will reduce to half if there are

lots of changes in ZooKeeper in last lease time, and grow to

double if no change in last lease time. 3) whenever updates in

ZooKeeper, it will be recorded in a separate znode directory

as Sedna only refreshes modified data. In Sedna, we do not

use ZooKeeper’s watch mechanism because if there are many

nodes watching the same znode, any change will result in an

uncontrollable network storm.

F. Basic APIs

1) Write: Since random writes were quite common in In-

ternet service, the Sedna system allows writes on the same key

parallel from different sources without lock mechanism or lock

synchronization. Sedna provides write latest() and write all()
for users, both of which work without lock. Data stored in

Sedna are timestamped and writes with newer timestamp will

successfully overwrite data with older timestamp. When the

write latest() request was received by a real node, local Sedna

service will compare the request’s timestamp with current

stored data’s timestamp. If current data is newer, it will reply

a ’outdated’ to the request, else send a ’ok’. When the

write all() request is received by a real node, it will only

compare the request’s timestamp with the element that came

from the same source server in value list. If newer, it updates

the element and returns ’ok’, else just returns ’outdated’.

When application calls the write latest() api, it will re-

ceive one of three possible replies: ’ok’ means the write is

successful, ’outdated’ means it is outdated, and ’failure’

means error happens and Sedna will start a recovery task

asynchronously. write all() is pretty like write latest() except

updates happened on one element of value list instead of all

the value.

2) Read: Corresponding with the write apis, Sedna also

provides read latest() and read all() for applications to fast

access the data set. When applications call the read latest(),
it will receive the most fresh value no matter it was written by

which node. However, the write all() will return all the values

corresponding that key.

3) Realtime API: In cloud focusing on the realtime process-

ing, the interval between data arrival and proceeded is more

important than batch processing system. That means upper

layer applications need more sensitive way to monitor the data

write operations and get useful data timely. In next section, we

will introduce how Sedna support such operations and how

program realtime applications based on Sedna.

IV. TRIGGERS: SEDNA FOR REALTIME

To support realtime applications, Sedna adds trigger based

APIs as fundamental functionality. Trigger based mechanisms

have been widely used in database system to ensure the data

integrity in the past several decades. It was a special storage

procedure which will be executed once some specific events

happened, like insert, update, or delete.

However, these database triggers are quite different from

the trigger based APIs Senda provides. Firstly, Sedna supports

trigger based programming model which programmers can use

to build their applications running in a Cloud environment. For

example, to implement the Indexer of a search engine, we can

define a Sedna trigger monitoring on the web pages data set

and perform text parsing and index establishing. Whenever any

update on the web pages data set, this trigger will be scheduled

to execute tasks according programmers definition. Secondly,

trigger system in Sedna is much more complex than that in

database. Sedna provides the filter mechanism for triggers.

Filters are necessary because the high frequency of updates

in Cloud applications. Programmers can filter part of them

according user-defined conditions.

A. Trigger Based Programming

A typical application based on Sedna’s trigger APIs usually

includes several triggers to finish a complex job. The left

picture in Fig. 4 shows three triggers - A, B, and C. Trigger

A monitors the initial data set and executes tasks which will

output its intermediate results into distributed file system,

and the variation of trigger As outputs will push forward

trigger C, and so on. The loop body of an iterative tasks was

implemented by the interaction among these three triggers. In

an iterative task, there also would be a stop condition which

used to terminate the infinite loop. Programmers can use filters

to stop next phase execution.

B. Flow Control

The trigger based system is readily comprehensible, how-

ever, there are many difficulties when we want to provide it

as a programming model for applications. One of the most

important challenges is the Ripple effect caused by multiple

triggers. We use the Fig. 4 to demonstrate this problem. The

right picture in Fig. 4 shows that the trigger A and D will

push forward the same trigger C, and the output of trigger

C will push forward A and D in turn. The circle formation

of triggers is the way programmers used to support complex

applications, however, in this situation, once this loop began to

execute, the frequency of triggers activation will be doubled in

each round and finally flood the whole cluster. This would be

much more serious when different users share the same Sedna

cluster as they do not know much about others applications and

might form lots of such kind circles. This overflow situation

was suppressed in Sedna because the filters will give every

application default trigger interval. If value changes during

52

this interval, it would be safe to discard them as the most

fresh data matters most.

Fig. 4. Multiple Triggers Execution. A Case Study

C. Monitor & Filter

Monitor and filter are the key concepts to support realtime

apis in Sedna. As we have described in section 2, Sedna uses

key-value fashion to store data and it extends the key field

of data to support hierarchical data space. So the least unit

programs can monitor would be a key-value pair, and they also

can monitor Tables which is a collector of key-value pairs, or

monitor a Dataset which is a collector of tables. As Fig. 5

shows, all the storage table includes two additional columns:

Dirty and Monitors. Every time data was written in this row,

table, or Dataset, the Dirty filed will be written automatically.

When programmers register a monitor on specific data, that

program will add itself in the corresponding Monitors filed.

��� ����� 	
��� ��
����

Fig. 5. Extended Key-Value Pair

Once Sedna started, it will start several threads according

to the data size to scan the Dirty and Monitored fields sequen-

tially. Whenever Dirty flag was found, that data piece will be

sent to corresponding filters according to the monitor fields of

that data piece. With the respect to the implementation, filters

are much easier than monitors. It is an assert function to check

whether specific conditions have been fulfilled. In Sedna, the

assert functions in Sedna would contain four arguments, two

for the new data, other two for the old data. This is useful

when we need to determine when the triggers should stop.

D. Realtime APIs

Listing 1 shows an example application written in Java

using Sedna’s APIs. To finish specific tasks, Programmers

need to write an action class (MyAction) extending the basic

Action class provided by Sedna APIs. The override action

function in MyAction has three input parameters: the key

part of input data, a list of values share the same key, and

a Result. Result provides a safe way for programmers to write

processing results into distributed storage system paralleled.

Besides the action class, a complete application should contain

the monitors, filters, and the output setting. In our example,

we build a TriggerInput instance from the DataHooks and

a user-defined MyFilter class that bases on Sedna’s Filter
class. And the setActionClass method of class Job glues these

things together. In this method, the Input, Output, and the

MyAction work together to build a trigger job. Finally, in the

main function, we should schedule the just created job to run.

In the practical environment, Programmers should give a job

a timeout measurement to avoid infinite execution.

The assert function in Filter class includes two noticeable

features. First of all the assert function will be called on

each key-value pairs where programmers set hooks on. Sedna

runtime will choose to process this key-value pair or not

according assert’s return value, so the assert function should

be as simple as possible. Secondly, the assert function provides

users four parameters including the old key-value pair and new

key-value pair. The reason to design it this way is, in lots of

condition, the filter need to compare the difference between

before and after the data updates. An obvious example is the

stop condition of iterative tasks.

Listing 1. A Domino Task Example

public static class MyAction extends
Action<Key, Iterator<Value>, Result>{

protected void action(Key, Iterator<Value>,
Result){

//do your stuff here
}

}
public static class MyFilter exntens Filter{

protected boolean assert(OldKey, OldValue,
NewKey, NewValue){
//return true/false

}
}

//Job Configuration
public static Job confJob(){
h1 = new DataHooks();
f1 = new MyFilter();
i1 = new TriggerInput(h1,f1);
o1 = new TriggerOutput();
Job job = new Job();
job.setJarByClass(this.class);
job.setActionClass(MyAction.class,i1, o1);
return job;

}

public static void main(String[] args){
Job job = configureJob();
job.schedule(Timeout);

}

In section 5, we will describe a real cloud realtime ap-

plication based on Sedna storage layer and the trigger based

programming model.

53

V. SEDNA USAGE CASE

At the very beginning, the Sedna system was designed and

implemented for a micro-blogging search project, so in this

section we will briefly describe the usage of Sedna in micro-

blogging search engine.

Micro-blogging search engine is a useful tools we designed

for micro-blogging system like Twitter and Sina Weibo to find

the most fresh discussion trends. In addition to the ability

of usual search engines have, like indexing, parsing, and

ranking according the messages’ timeline, we also consider

other factors that may affect the importance of the contents: 1)

the social connections between the searcher and the messages’

authors, 2) the importance of a message according its re-

tweet or comment count, 3) the specialty of the relative

messages’ author. In these factors, the social connection of

users, existing messages’ re-tweet and comment count are

changing all the times, so we need a storage system which

can help our applications process these data more quickly.

Except for existing messages, there are continually growing

new messages in micro-blogging systems, we need a storage

middle layer like Sedna to help us process newly generated

messages timely.

����������	
 �������

��	
�������

��������

�������������

(1)

(2)

(3)
(4) (5)

(6)

(7)

Fig. 6. Micro-Blogging Search Engine

Fig. 6 demonstrates the realtime search engine. Step 1

means users began to write their new tweets, then this tweets

will be retrieved by our crawler in step 2. The interval between

Step 3 and step 4 will be quite small because the help of

Sedna’s trigger based apis. Once newly data was processed

and written back to Sedna storage layer, users can query their

tweets in step 6 and 7. As a realtime search engine, the time

between (1) and (7) should be less than several minutes.

Sedna was mainly used in two different aspects: 1) The

storage layer, whenever the spider crawls data, not only

includes the messages but also includes the social connection

information, it will store this data into Sedna using write all
api. 2) Process layer, there are different trigger based jobs

using Sedna’s realtime APIs. For example, one of them is to

calculate users’ relationships, this job will register monitors on

users’ relationship data, when data changes, the job will start

to run to calculate new social graphic, another job monitors on

users’ messages data, when new messages were scrawled, the

job will start to parse these messages, index them and update

the inverted index table.

This real application shows that the Senda is extremely fit

for the realtime massive data processing in cloud platform.

VI. EXPERIMENTS

In this section, we mainly compare the read/write perfor-

mance of Sedna with Memcached [7]. Sedna uses modified

Memcached as its local memory storage system, so its per-

formance in standalone mode was limited by Memcached.

However, the comparison in standalone mode and cluster mode

still shows the advantages of Sedna as a high speed distributed

file system other than a simple cache system like Memcached.

The reason we do not compare Sedna with other memory

based key value databases like MemBase [6] was most of

these systems were based on memcached, and designed for

different usages, which make it unfair to be compared together.

We believe our results and other’s comparing with memcached

can give a clear clue on their advantages and disadvantages.

A. Sedna Write/Read Performance

We set up a cluster of 9 real servers for experiments,

each server has a Xeon dual-core 2.53 GHz CPU and 6GB

memory. All machines are connected with a single gigabit

Ethernet link, all of them are in the same hosting facility and

therefore the round-trip time between any pair of machines

was less than a millisecond. Servers are configured to use 4GB

memory as local memory storage if they are not ZooKeeper

nodes, otherwise use 3GB memory. All clients run the Sedna

load test programs, we use the same number of clients as

servers to ensure the clients are never a bottleneck. Besides,

a Memcached cluster is deployed on the same cluster to be

compared with Sedna.

1) One Client Performance: In this test, there are only one

client that issues read and write requests running in Sedna

cluster and Memcached cluster. The size of key value pair is

very small because the data size is not the most important

factor which will affect Sedna efficiency. And, if the key or

value was very large, some more careful strategies need to

be implemented than what we have done in current Sedna

implementation. To make all the test comparable, all the Key-

Value pair has a 20 bytes key which was generated randomly

like ’test-00000000000000’, and has a 20 bytes value which

was a constant value.

To show the efficiency of Sedna system, we compare Sedna

with MemCached instead of other distributed file system.

Some MemCached clients support a distributed way to write

data, we use this features in MemCached test programs. Sedna

test programs works like MemCached test programs excepts

it uses Sedna strategy to manage all the data.

There are a significant difference between Sedna and Mem-

cached when we write and read data: Sedna writes every key

value pair three times into different real nodes parallel, and

reads every key value pair three times from different real

54

nodes. To make the writes in these two systems comparable,

we set the Memcached test program write and read every

data three times and compare the result with Sedna system

as Fig. 7(a) has shown.

Though Fig. 7(a) shows Sedna has better W/R performance

than Memcached, It is not fair for Memcached because three

times read and write in Sedna were issued and processed

parallel, but in Memcached these reads and writes requests

were issued sequentially. It is still necessary to compare

Sedna with Memcached when writes each data only one

time. Fig. 7(b) shows the W/R performance difference when

comparing Sedna and Memcached when writes each data only

once. From Fig. 7, we can conclude that Sedna performance

is quite stable, and slightly slower than original write-once

Memcached performance, however, it is better than writing

data into three different servers using Memcached clients.

2) Multi-Clients Performance: Throughput is critical for a

distributed file system, we test the read and write performance

of Sedna when all servers in cluster are running client appli-

cations. In this test, nine clients begin to issue the read/write

requests nearly at the same time. The network bandwidth

is one the most important factors affecting the read/write

performance, in our test, all the servers are connected by 1Gb

Ethernet.

Fig. 8 shows the performance of Sedna in nine clients and

one client. We can figure that the I/O performance indeed

reduce when there are more concurrent read/write clients.

However, the reduction is easily understood, in multi-clients

test, there are more clients issuing write operations at the same

time, and each write operation will be sent to three real nodes

for processing. The limitation of each server’s CPU speed,

network I/O bandwidth will make the individual client’s speed

slower, however, the overall throughput is larger than one

client, as there are 9 clients reading and writing.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 10000 20000 30000 40000 50000 60000

Ti
m

e
S

pe
nd

(m
s)

R/W Operations

One Client Write
One Client Read

Nine Clients Write
Nine Clients Read

Fig. 8. R/W Speed, Nine vs One Client

As above experience has shown, writes and reads in Sedna

is slightly slower than Memcached in the quiet mode. It is

reasonable as there are at least 3 writes in Sedna instead

of one write in Memcached. The most important result is

a ZooKeeper like service will not obstruct Sedna’s read and

write efficiency.

VII. RELATED WORK

The Google File System (GFS) [15] is a distributed file

system built for hosting the state of Google’s internal appli-

cations, it uses a simple design with a single master server

serving the entire cluster for meta data read/write, the data is

split into chunks and stored in chunk servers, the GFS master

is made of fault tolerant using the Chubby [13] abstraction.

Dynamo [16] is a storage system that is used by Amazon to

store and retrieve user shopping carts. Dynamo’s Gossip based

membership algorithm helps every node maintain information

about other nodes, by which Redis [9] uses to maintain

cluster information too. Dynamo can be defined as a structured

overlay with at most one-hop request routing. Dynamo detects

updated conflicts using a vector clock scheme, but prefers a

client side conflict resolution mechanism. The write operation

in Dynamo also requires a read to be performed for managing

the vector timestamps, this would limit the performance when

systems need to handle a very high write throughput.

Cassandra [1] is a distributed storage system that combines

Dynamo [16] and HBase [5] together, it provides data model

as HBase provides, and constructs cluster in a P2P fashion as

Dynamo to avoid the single point failure. Cassandra partitions

the data over a set of nodes using consistent hashing as

Dynamo does, however, Cassandra using different ways to

ensure uniform load distribution, which was used in Chord

[18] system. Cluster membership in Cassandra is based on

Scuttlebutt [19], an anti-entropy Gossip based mechanism. To

place replicas of one data, Cassandra system elects a leader

amongst its nodes using a system called ZooKeeper [11]. All

nodes contact the leader who tells them for what ranges they

are replicas for. The metadata about the ranges a node is

responsible is cached locally at each node and in a fault-

tolerant manner inside Zookeeper.

Redis [9] and Memcached [7] are both memory based

storage system, the latter should be named as a cache system

instead of storage system as its simple architecture. However,

Redis can be treated as a complete distributed storage system

based on memory. Redis constructs cluster based on Gossip,

replicates data to N copies based on master-slaves architecture,

which means all writes will firstly be sent to master, and slaves

will keep synchronize with their master. Redis provides data

availability using write-ahead log, all the data modification

will first be written on local append-only file before process-

ing.

Sedna differs from the aforementioned storage systems in

terms of the realtime processing needs. Firstly, Sedna is tar-

geted at high random reads and random writes speed, which is

also the reason we choose memory instead of disks. Secondly,

Sedna is built for an infrastructure with hundreds or thousands

of servers. Considering the possibility of failure in such a

large scale servers, we get rid of the centralize architecture

to avoid the single point failure. Thirdly, to meet the stringent

speed requirements of realtime applications, we avoid routing

requests through multiple nodes like Chord use, and avoid

55

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 10000 20000 30000 40000 50000 60000

Ti
m

e
S

pe
nd

(m
s)

W/R Operations

Sedna Write
Sedna Read

Memcached Write
Memcached Read

(a) Memcached(3) vs. Sedna

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 10000 20000 30000 40000 50000 60000

Ti
m

e
S

pe
nd

(m
s)

W/R Operations

Sedna Write
Sedna Read

Memcached Write
Memcached Read

(b) Memcached(1) vs. Sedna

Fig. 7. W/R Speed Comparing

Gossip mechanism to maintain a consistent cluster status like

Cassandra and Redis does. Sedna uses a zero-hop DHT that

each node caches enough routing information locally to route a

request to the appropriate node directly, and a ZooKeeper min-

cluster which keeps the newest information. Most important,

Sedna is not designed and implemented as a substitution of

disk-base storage systems. With the high w/r speed memory

based storage ability and trigger based APIs, it provides a new

way to program realtime applications on cloud platform.

VIII. CONCLUSION

In this paper, we introduce our work - Sedna, a key-

value memory based storage system in cloud environment for

realtime applications. Sedna is designed especially for huge

size data centers and realtime processing. It provides many

advantages comparing with other storage systems: a high speed

random I/O access, a scalable structure, and new trigger based

data access apis to support realtime programming. The usage

of Sedna in our micro-blogging search also shows its potential

in real time processing in cloud platform.

ACKNOWLEDGEMENT

In the development of Sedna, we receive a lot of help

and recommendation from our colleagues and teachers, thanks

them a lot. We also want to give thanks to Liming Cui for his

remarkable work on Memcached, the great discussion about

Sedna persistency strategy with Feng Yang, and also YuChao

Huang for his great ideas, and lots of other people.

REFERENCES

[1] Apache Cassandra. Available at http://cassandra.apache.org/.
[2] Distributed hash table. http://en.wikipedia.org/wiki/Distributed-hash-

table.
[3] Facebook message. www.facebook.com/about/messages.
[4] Apache hadoop. Available at http://hadoop.apache.org.
[5] Apache hbase. Available at http://hbase.apache.org.
[6] MemBase. http://www.membase.org
[7] Memcached. http://en.wikipedia.org/wiki/Memcached.
[8] Facebook realtime-analytics system. Available at

http://highscalability.com/blog/2011/3/22/facebooks-new-realtime-
analytics-system-hbase-to-process-20.html.

[9] Redis. http://redis.io.
[10] Scribe. https://github.com/facebook/scribe/wiki.
[11] Apache zookeeper. Available at http://zookeeper.apache.org.
[12] D. Borthakur, J. Gray, J. S. Sarma, K. Muthukkaruppan, N. Spiegelberg,

H. Kuang, K. Ranganathan, D. Molkov, A. Menon, S. Rash, R. Schmidt,
and A. Aiyer. Apache hadoop goes realtime at facebook. In Proceedings
of the 2011 international conference on Management of data, SIGMOD
’11, pages 1071–1080, New York, NY, USA, 2011. ACM.

[13] M. Burrows. The chubby lock service for loosely-coupled distributed
systems. In Proceedings of the 7th symposium on Operating systems
design and implementation, OSDI ’06, pages 335–350, Berkeley, CA,
USA, 2006. USENIX Association.

[14] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on
large clusters. Commun. ACM, 51:107–113, January 2008.

[15] S. Ghemawat, H. Gobioff, and S.-T. Leung. The google file system.
In Proceedings of the nineteenth ACM symposium on Operating systems
principles, SOSP ’03, pages 29–43, New York, NY, USA, 2003. ACM.

[16] D. Hastorun, M. Jampani, G. Kakulapati, A. Pilchin, S. Sivasubrama-
nian, P. Vosshall, and W. Vogels. Dynamo: amazon’s a highly available
key-value store. In In Proc. SOSP, pages 205–220, 2007.

[17] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari. S4: Distributed stream
computing platform. Data Mining Workshops, International Conference
on, 0:170–177, 2010.

[18] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan.
Chord: A scalable peer-to-peer lookup service for internet applications.
SIGCOMM Comput. Commun. Rev., 31:149–160, August 2001.

[19] R. van Renesse, D. Dumitriu, V. Gough, and C. Thomas. Efficient
reconciliation and flow control for anti-entropy protocols. In Proceedings
of the 2nd Workshop on Large-Scale Distributed Systems and Middleware,
LADIS ’08, pages 6:1–6:7, New York, NY, USA, 2008. ACM.

[20] Leonardo Neumeyer, Bruce Robbins, Anish Nair, Anand Kesari S4: Dis-
tributed Stream Computing Platform In IEEE International Conference
on Data Mining - ICDM, pp. 170-177, 2010.

[21] Tyson Condie, Neil Conway, Peter Alvaro, Joseph M. Hellerstein,
Khaled Elmeleegy, Russell Sears MapReduce Online In Networked
Systems Design and Implementation - NSDI, pp. 313-328, 2010.

[22] Jeffrey Dean, Sanjay Ghemawat MapReduce: Simplied Data Processing
on Large Clusters In Operating Systems Design and Implementation -
OSDI, pp. 137-150, 2004

[23] John K. Ousterhout, Parag Agrawal, David Erickson, Christos
Kozyrakis, Jacob Leverich, David Mazires, Subhasish Mitra, Aravind
Narayanan, Guru M. Parulkar, Mendel Rosenblum, Stephen M. Rumble,
Eric Stratmann The case for RAMClouds: scalable high-performance
storage entirely in DRAM In Operating Systems Review - SIGOPS, vol43,
no 4, pp. 92-105, 2009

[24] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott
Shenker, Ion Stoica Spark: Cluster Computing with Working Set In
HotCloud’10 Proceedings of the 2nd USENIX conference on Hot topics
in cloud computing pp. 10, 2010

56

