Inferring Structure from Optimization Model Solutions

John Birge, University of Chicago Ali Hortaçsu, University of Chicago Michael Pavlin, Wilfrid Laurier University

November 11, 2012

Themes

- Solutions of optimization models are often observed while the relevant parameters are not.
- Common examples include problems from network industries such aa electricity.
- When the data include constraint coefficients, the inverse optimization to discover the parameters is only partially identified.
- Identification can be possible through norm minimization.

A Motivating Problem

Economics of Two-Stage Electricity Markets? (Veit et al 2006; Sioshansi, Oren, O'Neill 2010; Botterud et al 2011) Market Power In Electricity Markets? (Cardell, Hitt, Hogan 1996; Jiang, Baldick 2005; Hogan 2012) **Results rely assumptions r.e. participant objectives:** ⇒Case Study on Wind Producer Objectives in Midwest ISO

- Two-stages: Day Ahead (DA), Real Time (RT) markets
- ► Forecast: Wind producers submit a DA production commitment

Stochastic production: shortfall or surplus made up via RT prices Wind DA Revenues:

$Rev(Q_{DA}) = Q_{DA} \times P_{DA} + (Q_{RT} - Q_{DA}) \times P_{RT}$

Economic value of intermittent generation depends on forecast quality (Gowrisankaran, Reynolds, Samano 2011; Skea, Anderson 2008 ...)

Quick Look at the Data

Midwest ISO 2010 Data: Forward Premium $E(P_{DA} - P_{RT}) >$ \$2.00 But Under-commitment!

Avg. Day Ahead Commitment

Why?

- Bad forecasting?
- Risk aversion?
- Exercise of Market Power?

Prerequisite for answer: estimate $E(\partial P_{DA}/\partial Q_{DA})$ and $E(\partial P_{RT}/\partial Q_{DA})$ Hard with standard econometrics due to endogeneity

Research Problem:

Ideal solution to endogeneity question:
 An accurate model of price determination process

 Zonal prices uniform price multi-unit auction (c.f. Reguant 2012; Hortaçsu, Puller 2008; Wolak 2004)

 However, Locational Marginal Pricing dominate North American Markets

(e.g. PJM, Midwest ISO, CAISO, ERCOT)

- Prices depend on entire network structure
- Network structure not directly observable Critical Infrastructure Information Act (2002)
- However, Available information:
 - Midwest ISO: prices, quantities, bids, active transmission constraints

Can a useful model of the network be inferred from this information?

(Useful for market researchers, participants, designers of CIIA)

Roadmap

- Locational Marginal Price (LMP) Market: Linear model
- The Estimation Problem... via Inverse Optimization
- An Algorithm: A sufficient explanation
- ► Application to Data: *Midwest ISO*

Electricity Dispatch Model

Relaxation of the unit commitment problem:

Market Participant $i \in \{1..N\}$

 Produces x_i MWh at an announced cost of c_i/MWh

Lossless network with links (i, j)

- Transmission between i and j of y_(i,j)
 MWh
- Topology defined by matrices
 E, A, and D
 - Network Flow Constraints Ey = x
 - R Physical Constraints Ay = 0
 - L Transmission Constraints $Dy \leq d$

min $c^T x$ s.t. Ey = xAy = 0 $Dy \le d$ $u \ge x \ge l$ $y \ge 0$

Locational Marginal Prices

Definition:

- 1. The Locational Marginal Price (LMP) is the immediate cost of supplying one additional MW of power at a particular node.
- 2. The LMP is the shadow price of the flow constraint

min $c^T x$	dual variables
s.t. $Ey = x$	π
Ay = 0	σ
$Dy \leq d$	ho
$u \ge x \ge I$	$lpha,\gamma$
$y \ge 0$	

LMP Example

Corresponding LP:

$$\begin{array}{l} \min 20x_A + 20x_B + 20x_C\\ \text{s.t. } Ey = x\\ 2y_{AB} - y_{AC} = 0\\ y_{BC} \leq 50 \end{array} \quad \begin{array}{l} \text{A constraints}\\ \text{D constraints} \end{array}$$

LMP Example

Corresponding LP:

$$\begin{array}{l} \min 20x_A + 20x_B + 20x_C \\ \text{s.t. } Ey = x \\ 2y_{AB} - y_{AC} = 0 \\ y_{BC} \leq 50 \\ 0 \leq x_A \leq 500 \\ 0 \leq x_B \leq 100 \\ 0 \leq x_C \leq 500 \\ -300 \leq x_D \leq -300 \\ y \geq 0 \end{array}$$

LMP Example

C_B:30 X_B:0 π_B:15

Solution:

$x_A = 150$	$\pi_A = 20$
$x_B = 0$	$\pi_B = 15$
$x_{C} = 150$	$\pi_{C} = 25$
$x_D = -300$	$\pi_D = 25$
$y_{AB} = 50$	
$y_{AC} = 100$	
<i>у_{вс}</i> = 50	$ ho_{\it BC}=-15$
$y_{CD} = 300$	

Estimation Problem (Single Sample)

 $\begin{array}{ll} \min c^T x & \text{dual variables} \\ \text{s.t. } Ey = x & \pi \\ Ay = 0 & \sigma \\ Dy \leq d & \rho \\ u \geq x \geq l & \alpha, \gamma \\ y \geq 0 \end{array}$

Given data:

- Generate a network model: \overline{E} , \overline{A} , \overline{D} , \overline{d}
- \blacktriangleright Explaining shadow prices π and ρ

General Inverse Optimization

Given:

- a partial specification of an optimization model
- a (partial) specification of an optimal solution

Infer missing model parameters such that:

- Consistency: Known Parameters consistent with optimality
- Simplicity: Missing parameters minimize a norm

min $c^T x$ dual variables s.t. $Ey = x \qquad \pi$ $Ay = 0 \qquad \sigma$ $Dy < d \qquad \rho$ Standard form Zhang, Liu 1996,1999 (linear); Ahuja, Orlin 2001 (general):

- Feasible set known
- Opt. solution known
- Cost parameters unknown
- ► Minimize L1 or L∞ norm Extensions: Yang, Zhang 2007; Ahmed, Guan 2005; Iyengar, Kang 2005; Wang 2009; Ahuja, Orlin 1998,2002; Cui, Hochbaum 2010

Our Inverse Optimization Problem

Standard form:

- Feasible set known
- Opt. solution known
- Cost parameters unknown
- Minimize L1 norm

Electricity Market Problem:

- Feasible set unknown
- Opt. solution partially known
- Cost parameters known
- Minimize L1 norm

min c ^T x	dual variables
s.t. <i>Ey=x</i>	π
Ay = 0	σ
$Dy \leq d$	ho
$u \ge x \ge I$	$lpha,\gamma$
<i>y</i> ≥ 0	

min c ^T x	dual variables
s.t. $Ey = x$	π
Ay = 0	σ
$Dy \leq d$	ρ
$u \ge x \ge I$	$lpha,\gamma$
$y \ge 0$	

Our Inverse Optimization Problem

- ▶ Find a "simplest" \overline{A} , \overline{D} , \overline{d} , \overline{E} satisfying optimality conditions
- Minimize 1-Norm
- Regularize \bar{A} s.t. $\sigma_r = 1$

Resulting Optimization Problem:

$$\min ||\bar{A}||_{1} + ||\bar{D}||_{1} + ||\bar{d}||_{1}$$

$$\sum_{r < R} \bar{A}_{r(i,j)} + \sum_{\ell < L} \bar{D}_{\ell(i,j)} \rho_{(i,j)} = \pi_{j} - \pi_{i} \qquad \forall (i,j) \ \bar{y}_{ij} > 0$$

$$\bar{E}\bar{y} = x$$

$$\bar{A}\bar{y} = 0$$

$$\bar{D}\bar{y} < \bar{d}$$

2-Step Algorithm:

- 1. Find \overline{E} and \overline{y} :
- 2. Find \overline{A} , \overline{D} , \overline{d} :

Step 1: Determine \overline{E} and \overline{y}

- Assume no loss $ar{E}_{k(ij)} \in \{-1, 0, 1\}$
- limit to flows between sources and sinks $\bar{E}_{i(ij)} = 1$ only if $x_i > 0$,
 - $ar{E}_{j(ij)} = -1$ only if $x_j < 0$, $ar{E}_{k(ij)} = 0$ otherwise
- Minimize requirements on A
 A and
 D
 to satisfy

$$\sum_{r} \bar{A}_{r(i,j)} + \sum_{\ell} \bar{D}_{\ell(i,j)} \rho_{(i,j)} = \pi_j - \pi_i \quad \forall \bar{y}_{ij} > 0$$

By solving:

$$\begin{split} \min\sum_{ij} \bar{y}_{ij} \cdot \max\{\pi_i - \pi_j, 0\} \\ \text{s.t.} \ \bar{E}\bar{y} = x \\ \bar{y}_{ij} \geq 0 \end{split}$$

Step 1: Determine \overline{E} and \overline{y}

- Assume no loss $ar{E}_{k(ij)} \in \{-1, 0, 1\}$
- limit to paths between sources and sinks

 Ē_{i(ij)} = 1 only if x_i > 0 ,
 - $ar{E}_{j(ij)} = -1$ only if $x_j < 0$, $ar{E}_{k(ij)} = 0$ otherwise
- Minimize requirements on A
 A and
 D
 to satisfy

$$\sum_{\mathbf{r}} \bar{A}_{\mathbf{r}(i,j)} + \sum_{\ell} \bar{D}_{\ell(i,j)} \rho_{(i,j)} = \pi_j - \pi_i \quad \forall \bar{y}_{ij} > 0$$

By solving:

$$\begin{aligned} \min y_{ij} \cdot \max\{\pi_i - \pi_j, 0\} \\ \text{s.t.} \ \bar{E}\bar{y} = x \\ \bar{y}_{ij} \geq 0 \end{aligned}$$

 $C_{a}:20 \times x_{a}:150 \pi_{a}:20$ $C_{b}:30 \times x_{b}:0 \pi_{b}:15$

Step 2: Determine \overline{A} , \overline{D} , \overline{d}

Minimize sum of 1-norms subject to optimality constraints Solving:

$$\begin{split} \min \sum_{r,(i,j)} |\bar{A}_{r(ij)}| + \sum_{r,(i,j)} |\bar{D}_{\ell(ij)}| + \sum_{\ell} \bar{d}_{\ell} \\ \text{s.t. } \bar{A}\bar{y} &= 0 \\ \sum_{r} \bar{A}_{r(i,j)} + \sum_{\ell} \bar{D}_{\ell(i,j)}\rho_{(i,j)} = \pi_{j} - \pi_{i} \quad \forall \bar{y}_{ij} > \\ d_{\ell} \geq 0 \end{split}$$

Multiple Samples

For set of samples 1..S

- 1. Calculate \bar{y}^s independently
- 2. Add constraints for each sample

$$\begin{split} \min \sum_{r,(i,j)} |\bar{A}_{r(ij)}| + \sum_{r,(i,j)} |\bar{D}_{\ell(ij)}| + \sum_{\ell} \bar{d}_{\ell} \\ \text{s.t. } \bar{A}\bar{y}^s &= 0 \qquad \forall s \\ \sum_{r} \bar{A}_{r(i,j)} + \sum_{\ell} \bar{D}_{\ell(i,j)} \rho^s_{(i,j)} &= \pi^s_j - \pi^s_i \quad \forall \bar{y}^s_{ij} > 0 \\ \bar{d}_{\ell} \geq 0 \end{split}$$

 $C_{_{A}}:20 \times_{_{A}}:153 \pi_{_{A}}:20 \qquad C_{_{B}}:30 \times_{_{B}}:1 \pi_{_{B}}:15$

General Implementation

- Observations for each day and hour
 - x, π, ρ, c vary
 - E, D, A, d constant (approximately)
- Transmission and generation outages may change d
- Transmission losses not included
- Original "optimization" may be adjusted for other reasons (e.g., frequency, reliability)

Algorithm Observations

Extension with multiple observations

- Step 1 performed independently
- Step 2 single optimization adding all constraints
- ► Algorithm feasible if rows in A greater number of samples
- Polynomial approximation
 - Step 2: LP standard transformation
 - Each step presents $O(n^2)$ variables

Results: Application to Midwest ISO

2010/01/01 00:00:00

- 1403 Nodes
- 768 Aggregated Nodes
- 772 Active Links
- Transmission bounds per hour
- Imperfect data
- Naive implementation
 20 ARows →
 40min

Power Flow in Midwest ISO Network

Additional Examples

Macro-economic models

- Prices observed in different regions
- Purchase quantities observed
- Equilibrium model set up as potential optimization
- Unknown transportation routes and costs to discover

Supply chain interactions

- Prices and quantities observed
- Unobserved relationships between suppliers and customers
- Discover relationships and transactions

Future Directions

- Discussed modelling price determination process in LMP based Electricity Markets
 - Inverse optimization based formulation/algorithm consistent with dual interpretation of LMPs

Next Steps

- Predicting market characteristics: price response, congestion costs...
- Structural estimation: model participant decision making
- Solution quality: solution robustness to data imperfections
- Econometrics of general competitive markets: extend to linear market models

Conclusions

Inverse optimization to discover constraints

- Needed to determine objective of market participants
- Many markets include price and quantity observations but not constraints
- Difficulty from bilinear form with constraint and unknown variable values
- Solution method
 - Two-step process
 - Determine consistent primal variables first
 - Choose constraint coefficients with minimum 1-norm
- Results
 - Possible to discover simple network configurations
 - Reasonable results with multiple data observations
 - Possible inconsistencies from unknown parameter changes