Production Planning with Increasing Byproducts: MINLP Formulations and MILP Approximations

Jim Luedtke

Department of Industrial and Systems Engineering
University of Wisconsin-Madison

Joint work with
Srikrishna Sridhar and Jeff Linderoth

Outline

- Problem description
- Production process involving desirable and undesirable products
- Continuous-time problem containing nonconvex functions and integer decision variables
- Discrete-time MINLP formulations
- Existing "natural" approach
- An alternative formulation that is more accurate and easier to solve
- MILP approximations and relaxations
- Performance evaluation

Problem Description

Production Process

- Problem contains many linked production processes, e.g., as part of a supply network, over a planning horizon $[0, T]$
- We focus on model for a single process; in full problem, use one copy of model for each process
- Each production process creates a mixture of useful products \mathcal{P}^{+}and undesirable byproducts \mathcal{P}^{-}
- Discrete decisions for if and when each production process starts (fixed cost)
- Continuous decisions determine the amount of mixture to produce over time
- Maximum production rate and mixture composition are functions of the cumulative total production at each process

Production functions

- Production function $f(\cdot)$ is a concave function that determines the maximum production rate as a function of cumulative total production

Production functions

- Production function $f(\cdot)$ is a concave function that determines the maximum production rate as a function of cumulative total production
- Product fraction functions $g_{p}(\cdot)$ are monotone functions of the cumulative total production, for each $p \in \mathcal{P}=\mathcal{P}^{+} \cup \mathcal{P}^{-}$

Continuous-time formulation
Decision variables: Production rates $x(t) \geq 0, t \in[0, T]$ and start-time indicator $z(t) \in\{0,1\}, t \in[0, T]$

Continuous-time formulation
Decision variables: Production rates $x(t) \geq 0, t \in[0, T]$ and start-time indicator $z(t) \in\{0,1\}, t \in[0, T]$

Cumulative total production $v(t)$ is calculated using production rate

$$
v(t)=\int_{0}^{t} x(s) d s
$$

Continuous-time formulation

Decision variables: Production rates $x(t) \geq 0, t \in[0, T]$ and start-time indicator $z(t) \in\{0,1\}, t \in[0, T]$

Cumulative total production $v(t)$ is calculated using production rate

$$
v(t)=\int_{0}^{t} x(s) d s
$$

Mixture production rate is limited by production function $f(\cdot)$

$$
x(t) \leq f(v(t))
$$

Continuous-time formulation

Decision variables: Production rates $x(t) \geq 0, t \in[0, T]$ and start-time indicator $z(t) \in\{0,1\}, t \in[0, T]$

Cumulative total production $v(t)$ is calculated using production rate

$$
v(t)=\int_{0}^{t} x(s) d s
$$

Mixture production rate is limited by production function $f(\cdot)$

$$
x(t) \leq f(v(t))
$$

Product production rates $y_{p}(t)$ calculated by fraction functions $g_{p}(\cdot)$

$$
y_{p}(t)=x(t) g_{p}(v(t))
$$

Continuous-time formulation

Decision variables: Production rates $x(t) \geq 0, t \in[0, T]$ and start-time indicator $z(t) \in\{0,1\}, t \in[0, T]$

Cumulative total production $v(t)$ is calculated using production rate

$$
v(t)=\int_{0}^{t} x(s) d s
$$

Mixture production rate is limited by production function $f(\cdot)$

$$
x(t) \leq f(v(t))
$$

Product production rates $y_{p}(t)$ calculated by fraction functions $g_{p}(\cdot)$

$$
y_{p}(t)=x(t) g_{p}(v(t))
$$

Production can only be positive after the process starts, $z(t)=1$

$$
v(t) \leq M z(t)
$$

Discrete-Time Formulations

Discrete-time formulations

Past models have proposed a natural discretization of this continuous-time model.

Continuous-time formulation (CNT)
$x(t) \leq f(v(t))$
$v(t)=\int_{0}^{t} x(s) d s$
$y_{p}(t)=x(t) g_{p}(v(t))$
$v(t) \leq M z(t)$
$z(t):[0, T] \rightarrow\{0,1\}$, increasing

Discrete-time formulation $\left(F_{1}\right)$

Decision variables:
$x_{t} \quad$ Mixture production during time period $t \in \mathcal{T}$.
$\Longrightarrow \quad v_{t} \quad$ Cumulative production up to time period $t \in \mathcal{T}$.
$y_{p, t} \quad$ Product $p \in \mathcal{P}$ production during time period $t \in \mathcal{T}$.
$z_{t} \quad$ Facility on/off decision variable.

Discrete-time formulations

Past models have proposed a natural discretization of this continuous-time model.

Continuous-time formulation
(CNT)
$x(t) \leq f(v(t))$
$v(t)=\int_{0}^{t} x(s) d s$
$y_{p}(t)=x(t) g_{p}(v(t))$
$v(t) \leq M z(t)$
$z(t):[0, T] \rightarrow\{0,1\}$, increasing

Discrete-time formulation $\left(F_{1}\right)$

$$
x_{t} \leq \Delta_{t} f\left(v_{t-1}\right)
$$

$$
v_{t}=\sum_{s=0}^{t} x_{s}
$$

$$
y_{p, t}=x_{t} g_{p}\left(v_{t-1}\right)
$$

$$
v_{t} \leq \mathrm{M} z_{t}
$$

$$
z_{t} \geq z_{t-1}
$$

Drawbacks of the natural discrete-time formulation F_{1}

1. Piecewise-constant representation of product amounts is inaccurate

$$
y_{p, t}=x_{t} g_{p}\left(v_{t-1}\right)
$$

- Overestimates useful products, underestimates byproducts
- Errors accumulate over time periods
- Improvements are possible using midpoints, but errors will persist

Drawbacks of the natural discrete-time formulation F_{1}

1. Piecewise-constant representation of product amounts is inaccurate

$$
y_{p, t}=x_{t} g_{p}\left(v_{t-1}\right)
$$

- Overestimates useful products, underestimates byproducts
- Errors accumulate over time periods
- Improvements are possible using midpoints, but errors will persist

2. Production amounts are a nonconvex function of two variables

- Nasty to obtain global solutions or bounds

Alternate formulation

- Given cumulative total production v_{t}, we can calculate exactly how much of product $p \in \mathcal{P}$ is produced up to and including time period t :

$$
\int_{0}^{t} y_{p}(s) d s
$$

Alternate formulation

- Given cumulative total production v_{t}, we can calculate exactly how much of product $p \in \mathcal{P}$ is produced up to and including time period t :

$$
\int_{0}^{t} y_{p}(s) d s=\int_{0}^{t} x(s) g_{p}(v(s)) d s
$$

Alternate formulation

- Given cumulative total production v_{t}, we can calculate exactly how much of product $p \in \mathcal{P}$ is produced up to and including time period t :

$$
\int_{0}^{t} y_{p}(s) d s=\int_{0}^{t} x(s) g_{p}(v(s)) d s=\int_{0}^{v_{t}} g_{p}(v) d v
$$

since $v(t)=\int_{0}^{t} x(s) d s$

Alternate formulation

- Given cumulative total production v_{t}, we can calculate exactly how much of product $p \in \mathcal{P}$ is produced up to and including time period t :

$$
\int_{0}^{t} y_{p}(s) d s=\int_{0}^{t} x(s) g_{p}(v(s)) d s=\int_{0}^{v_{t}} g_{p}(v) d v \stackrel{\text { def }}{=} h_{p}\left(v_{t}\right)
$$

since $v(t)=\int_{0}^{t} x(s) d s$

Alternate formulation

- Given cumulative total production v_{t}, we can calculate exactly how much of product $p \in \mathcal{P}$ is produced up to and including time period t :

$$
\int_{0}^{t} y_{p}(s) d s=\int_{0}^{t} x(s) g_{p}(v(s)) d s=\int_{0}^{v_{t}} g_{p}(v) d v \stackrel{\text { def }}{=} h_{p}\left(v_{t}\right)
$$

since $v(t)=\int_{0}^{t} x(s) d s$

- Then, the amount of product $p \in \mathcal{P}$ produced during discrete time period t is exactly

$$
y_{p, t}=h_{p}\left(v_{t}\right)-h_{p}\left(v_{t-1}\right)
$$

Alternate formulation - Another advantage

Original Formulation F_{1} :

$$
y_{p, t}=x_{t} g_{p}\left(v_{t-1}\right)
$$

Alternative Formulation F_{2} :

$$
y_{p, t}=h_{p}\left(v_{t}\right)-h_{p}\left(v_{t-1}\right)
$$

Computational advantages of alternative formulation

- Deals only with differences of functions of a single variable

Alternate formulation - Another advantage

Original Formulation F_{1} :

$$
y_{p, t}=x_{t} g_{p}\left(v_{t-1}\right)
$$

Alternative Formulation F_{2} :

$$
y_{p, t}=h_{p}\left(v_{t}\right)-h_{p}\left(v_{t-1}\right)
$$

Computational advantages of alternative formulation

- Deals only with differences of functions of a single variable
- g_{p} monotone increasing $\Rightarrow h_{p}\left(v_{t}\right)=\int_{0}^{v_{t}} g_{p}(v) d v$ is convex!
- g_{p} monotone decreasing $\Rightarrow h_{p}\left(v_{t}\right)=\int_{0}^{v_{t}} g_{p}(v) d v$ is concave!

Total production $\left(v_{t}\right)$

MIP Approximation and Relaxations

Approximations and Relaxations

Challenge

Even though h_{p} are convex (or concave), the constraints

$$
y_{p, t}=h_{p}\left(v_{t}\right)-h_{p}\left(v_{t-1}\right)
$$

are still nonconvex

- Obtaining good bounds using general-purpose techniques can still be difficult

Approximations and Relaxations

Challenge

Even though h_{p} are convex (or concave), the constraints

$$
y_{p, t}=h_{p}\left(v_{t}\right)-h_{p}\left(v_{t-1}\right)
$$

are still nonconvex

- Obtaining good bounds using general-purpose techniques can still be difficult

Our approach

Use piecewise linear modeling to obtain MIP approximations and relaxations

- Reason for hope: Only need to approximate "mild" univariate functions

Piecewise Linear Approximation (PLA)

Approximate all the nonlinear production functions with piecewise linearizations

Total production $\left(v_{t}\right)$

Total production $\left(v_{t}\right)$

Total production $\left(v_{t}\right)$

Piecewise Linear Approximation (PLA)

Approximate all the nonlinear production functions with piecewise linearizations

- Pros
- 'Close' to a feasible solution of the MINLP formulation
- Fixing integer decisions, then solving continuous NLP may yield a good solution

Total production $\left(v_{t}\right)$

Total production $\left(v_{t}\right)$

Total production $\left(v_{t}\right)$

Piecewise Linear Approximation (PLA)

Approximate all the nonlinear production functions with piecewise linearizations

- Pros
- 'Close' to a feasible solution of the MINLP formulation
- Fixing integer decisions, then solving continuous NLP may yield a good solution
- Cons
- Introduces additional SOS2 variables to branch on
- NOT a relaxation of the original formulation

Total production $\left(v_{t}\right)$

Total production $\left(v_{t}\right)$

Total production $\left(v_{t}\right)$

Piecewise Linear Approximation (PLA)

Formulation F_{2}

Piecewise Linear Approximation
(PLA)

$$
\begin{aligned}
x_{t} & \leq \Delta_{t} f\left(v_{t-1}\right) \\
y_{p, t} & =h_{p}\left(v_{t}\right)-h_{p}\left(v_{t-1}\right)
\end{aligned}
$$

Piecewise Linear Approximation (PLA)

Formulation F_{2}

$$
\begin{aligned}
x_{t} & \leq \Delta_{t} f\left(v_{t-1}\right) \\
y_{p, t} & =h_{p}\left(v_{t}\right)-h_{p}\left(v_{t-1}\right)
\end{aligned}
$$

$$
\text { Cumulative useful product }\left(g_{p^{+}}\right)
$$

Piecewise Linear Approximation (PLA)

$$
\begin{aligned}
& v_{t}=\sum_{o \in \mathcal{O}} B_{0} \lambda_{t, o} \\
& x_{t} \leq \Delta_{t} \sum_{o \in \mathcal{O}} F_{0} \lambda_{t, o}
\end{aligned}
$$

$$
y_{p, t}=w_{p, t}-w_{p, t-1}
$$

$$
w_{p, t}=\sum_{o \in \mathcal{O}} H_{p, o} \lambda_{t, o}
$$

$$
1=\sum_{o \in \mathcal{O}} \lambda_{t, o}
$$

$\left\{\lambda_{t, o} \mid o \in \mathcal{O}\right\}$ is $\operatorname{SOS} 2$

Secant Relaxation (1-SEC)

Relax all the nonlinear production functions using inner and outer approximations.

- Pros
- Relaxation of the original formulation.
- Does NOT introduce additional SOS2 variables.

Total production $\left(v_{t}\right)$

Total production $\left(v_{t}\right)$

Total production $\left(v_{t}\right)$

Secant Relaxation (1-SEC)

Relax all the nonlinear production functions using inner and outer approximations.

- Pros
- Relaxation of the original formulation.
- Does NOT introduce additional SOS2 variables.
- Cons
- May not be 'close' to a feasible solution of the MINLP formulation.

Total production $\left(v_{t}\right)$

Total production $\left(v_{t}\right)$

Secant Relaxation (1-SEC)

Relax all the nonlinear production functions using inner and outer approximations.

- Pros
- Relaxation of the original formulation.
- Does NOT introduce additional SOS2 variables.
- Cons
- May not be 'close' to a feasible solution of the MINLP formulation.

Formulation is similar to PLA, except data is different and SOS2 restriction is omitted

Multiple Secant Relaxation (k-SEC)

Relax all the nonlinear production functions using inner and outer approximations but use multiple secants instead of a just a single one.

- Pros
- 'Close' to a feasible solution of the MINLP formulation.
- Relaxation of the original formulation.

Total production $\left(v_{t}\right)$

Total production $\left(v_{t}\right)$

Multiple Secant Relaxation (k-SEC)

Relax all the nonlinear production functions using inner and outer approximations but use multiple secants instead of a just a single one.

- Pros
- 'Close' to a feasible solution of the MINLP formulation.
- Relaxation of the original formulation.
- Cons
- Introduces additional SOS2 variables to branch on.

Total production $\left(v_{t}\right)$

Total production $\left(v_{t}\right)$

Performance Evaluation

Experiments

Goals

- Compare formulation accuracy between F_{1} and F_{2}
- Compare solution time between F_{1} and F_{2}

Sample Application

Multiple period production and distribution problem with fixed costs for opening production facilities that supply products to customers

Solvers

- To solve F_{1} : BARON 9.3.1
- To solve MIP approximations and linearizations of F_{2} : Gurobi 4.5.1
- To solve NLPs with integer variables fixed: KNITRO 3.14

Test Problem

- Multiple period production and distribution problem with production facilities \mathcal{I} manufacturing products \mathcal{P}^{+}for customers \mathcal{J}

Test Problem

- Multiple period production and distribution problem with production facilities \mathcal{I} manufacturing products \mathcal{P}^{+}for customers \mathcal{J}
- Deterministic customer demands with penalty (lost revenue) for shortage

Test Problem

- Multiple period production and distribution problem with production facilities \mathcal{I} manufacturing products \mathcal{P}^{+}for customers \mathcal{J}
- Deterministic customer demands with penalty (lost revenue) for shortage
- Facility operations follow known production functions

Test Problem

- Multiple period production and distribution problem with production facilities \mathcal{I} manufacturing products \mathcal{P}^{+}for customers \mathcal{J}
- Deterministic customer demands with penalty (lost revenue) for shortage
- Facility operations follow known production functions
- Fixed costs for opening facilities and variable operating and transportation costs

Accuracy

Assessing impact of inaccuracy formulation F_{1}

- Solve formulation F_{1} (approximately)

Accuracy

Assessing impact of inaccuracy formulation F_{1}

- Solve formulation F_{1} (approximately)
- Repair the solution
- Fix the mixture production decisions x_{t} and z_{t}
- Correctly calculate the product production amounts $y_{p, t}$
- Re-solve the transportation problem

Accuracy

Assessing impact of inaccuracy formulation F_{1}

- Solve formulation F_{1} (approximately)
- Repair the solution
- Fix the mixture production decisions x_{t} and z_{t}
- Correctly calculate the product production amounts $y_{p, t}$
- Re-solve the transportation problem
- Compare to F_{2} solution
- F_{1} yields solutions 7 - 50% more costly!

Computational Efficiency

Quality of Lower Bounds

$$
\begin{array}{|lll|}
\hline-F_{1}-1-\mathrm{SEC} & -3 \text {-SEC } \\
\hline
\end{array}
$$

After one hour time limit

Computational Efficiency

Quality of Lower Bounds

$$
-F_{1} \quad-1 \text {-SEC }-3 \text {-SEC }
$$

Quality of Solutions

$$
-F_{1} \quad \text { - 1-SEC }-3-\mathrm{SEC} \quad \text { - PLA }
$$

After one hour time limit

Conclusions

- Problem Description
- Defined a nonconvex production process involving desirable and undesirable products
- Ratio of byproducts to total production increases monotonically

Conclusions

- Problem Description
- Defined a nonconvex production process involving desirable and undesirable products
- Ratio of byproducts to total production increases monotonically
- Methods
- Introduced a new discrete-tiem formulation $\left(F_{2}\right)$ based on the cumulative product production amounts that is more accurate and computationally attractive than "natural" approach
- Devised scalable MIP approximations and relaxations (PLA, 1-SEC, k-SEC)

Strengthening the MIP Formulations

Key Idea

- Production functions are positive only if the facility is open
- Applies to the 1-SEC, PLA and k-SEC models

Strengthening the MIP Formulations

Key Idea

- Production functions are positive only if the facility is open
- Applies to the 1-SEC, PLA and k-SEC models

Original Formulation...

$$
\begin{aligned}
v_{t} & =\sum_{o \in \mathcal{O}} B_{o} \lambda_{t, o} \\
w_{p, t} & =\sum_{o \in \mathcal{O}} H_{p, o} \lambda_{t, o} \\
1 & =\sum_{o \in \mathcal{O}} \lambda_{t, o} \\
v_{t} & \leq M z_{t}
\end{aligned}
$$

Strengthening the MIP Formulations

Key Idea

- Production functions are positive only if the facility is open
- Applies to the 1-SEC, PLA and k-SEC models

Original Formulation...

$$
\begin{aligned}
v_{t} & =\sum_{o \in \mathcal{O}} B_{o} \lambda_{t, o} \\
w_{p, t} & =\sum_{o \in \mathcal{O}} H_{p, o} \lambda_{t, o} \\
1 & =\sum_{o \in \mathcal{O}} \lambda_{t, o} \\
v_{t} & \leq M z_{t}
\end{aligned}
$$

Stronger Formulation...

$$
\begin{aligned}
v_{t} & =\sum_{o \in \mathcal{O}} B_{o} \lambda_{t, o} \\
w_{p, t} & =\sum_{o \in \mathcal{O}} H_{p, o} \lambda_{t, o} \\
z_{t} & =\sum_{o \in \mathcal{O}} \lambda_{t, o}
\end{aligned}
$$

Effect of MIP Formulation Strengthening

Gaps obtained after one hour time limit when solving the MIP Formulations

