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I Problem description
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Problem Description
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Production Process

I Problem contains many linked production processes, e.g., as part of a supply
network, over a planning horizon [0,T ]

I We focus on model for a single process; in full problem, use one copy of model for
each process

I Each production process creates a mixture of useful products P+ and undesirable
byproducts P−

I Discrete decisions for if and when each production process starts (fixed cost)

I Continuous decisions determine the amount of mixture to produce over time

I Maximum production rate and mixture composition are functions of the cumulative
total production at each process
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Production functions

I Production function f (·) is a concave function that determines the maximum
production rate as a function of cumulative total production

I Product fraction functions gp(·) are monotone functions of the cumulative total
production, for each p ∈ P = P+ ∪ P−

Total production (vt)

Maximum production rate (f)

Total production (vt)

Product fraction (gp)

Useful product

By-product
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Continuous-time formulation

Decision variables: Production rates x(t) ≥ 0, t ∈ [0,T ] and start-time indicator
z(t) ∈ {0, 1}, t ∈ [0,T ]

Cumulative total production v(t) is calculated using production rate

v(t) =

∫ t

0

x(s)ds

Mixture production rate is limited by production function f (·)

x(t) ≤ f (v(t))

Product production rates yp(t) calculated by fraction functions gp(·)

yp(t) = x(t)gp(v(t))

Production can only be positive after the process starts, z(t) = 1

v(t) ≤ Mz(t)
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Discrete-Time Formulations
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Discrete-time formulations

Past models have proposed a natural discretization of this continuous-time model.

Continuous-time formulation
(CNT)

x(t) ≤ f (v(t))

v(t) =

∫ t

0

x(s)ds

yp(t) = x(t)gp(v(t))

v(t) ≤ Mz(t)

z(t) :[0,T ]→ {0, 1}, increasing

=⇒

Discrete-time formulation (F1)

Decision variables:

xt Mixture production during time
period t ∈ T .

vt Cumulative production up to
time period t ∈ T .

yp,t Product p ∈ P production dur-
ing time period t ∈ T .

zt Facility on/off decision vari-
able.
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Drawbacks of the natural discrete-time formulation F1

1. Piecewise-constant representation of product amounts is inaccurate

yp,t = xtgp(vt−1)
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By-product fraction (gp− )
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I Overestimates useful products, underestimates byproducts
I Errors accumulate over time periods
I Improvements are possible using midpoints, but errors will persist

2. Production amounts are a nonconvex function of two variables
I Nasty to obtain global solutions or bounds
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Alternate formulation

I Given cumulative total production vt , we can calculate exactly how much of product
p ∈ P is produced up to and including time period t:∫ t

0

yp(s)ds

=

∫ t

0

x(s) gp(v(s))ds =

∫ vt

0

gp(v)dv
def
= hp(vt)

since v(t) =
∫ t

0
x(s) ds

I Then, the amount of product p ∈ P produced during discrete time period t is exactly

yp,t = hp(vt)− hp(vt−1)
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Alternate formulation – Another advantage

Original Formulation F1:

yp,t = xtgp(vt−1)

Alternative Formulation F2:

yp,t = hp(vt)− hp(vt−1)

Computational advantages of alternative formulation

I Deals only with differences of functions of a single variable

I gp monotone increasing ⇒ hp(vt) =
∫ vt

0
gp(v)dv is convex!

I gp monotone decreasing ⇒ hp(vt) =
∫ vt

0
gp(v)dv is concave!

Total production (vt)

Product fraction (gp)

Useful product

By-product

Total production (vt)

Cumulative product (hp)

Useful product

By-product
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MIP Approximation and Relaxations
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Approximations and Relaxations

Challenge

Even though hp are convex (or concave), the constraints

yp,t = hp(vt)− hp(vt−1)

are still nonconvex

I Obtaining good bounds using general-purpose techniques can still be difficult

Our approach

Use piecewise linear modeling to obtain MIP approximations and relaxations

I Reason for hope: Only need to approximate “mild” univariate functions
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Piecewise Linear Approximation (PLA)

Approximate all the nonlinear production functions with piecewise linearizations

I Pros
I ‘Close’ to a feasible solution of the MINLP formulation
I Fixing integer decisions, then solving continuous NLP may yield a good solution

I Cons
I Introduces additional SOS2 variables to branch on
I NOT a relaxation of the original formulation

Total production (vt)

Maximum production rate (f)

Total production (vt)

Cumulative useful product (gp+ )

Total production (vt)

Cumulative by-product (hp− )

Jim Luedtke (UW-Madison) 14 / 25



Piecewise Linear Approximation (PLA)

Approximate all the nonlinear production functions with piecewise linearizations
I Pros

I ‘Close’ to a feasible solution of the MINLP formulation
I Fixing integer decisions, then solving continuous NLP may yield a good solution

I Cons
I Introduces additional SOS2 variables to branch on
I NOT a relaxation of the original formulation

Total production (vt)

Maximum production rate (f)

Total production (vt)

Cumulative useful product (gp+ )

Total production (vt)

Cumulative by-product (hp− )

Jim Luedtke (UW-Madison) 14 / 25



Piecewise Linear Approximation (PLA)

Approximate all the nonlinear production functions with piecewise linearizations
I Pros

I ‘Close’ to a feasible solution of the MINLP formulation
I Fixing integer decisions, then solving continuous NLP may yield a good solution

I Cons
I Introduces additional SOS2 variables to branch on
I NOT a relaxation of the original formulation

Total production (vt)

Maximum production rate (f)

Total production (vt)

Cumulative useful product (gp+ )

Total production (vt)

Cumulative by-product (hp− )

Jim Luedtke (UW-Madison) 14 / 25



Piecewise Linear Approximation (PLA)

Formulation F2

xt ≤ ∆t f (vt−1)

yp,t = hp(vt)− hp(vt−1)

Total production (vt)

[a0 ,gp (a0 )]

[a1 ,gp (a1 )]

[a2 ,gp (a2 )] [a3 ,gp (a3 )]

Cumulative useful product (gp+ )

Piecewise Linear Approximation
(PLA)

vt =
∑
o∈O

Bo λt,o

xt ≤ ∆t

∑
o∈O

Fo λt,o

yp,t = wp,t − wp,t−1

wp,t =
∑
o∈O

Hp,o λt,o

1 =
∑
o∈O

λt,o

{λt,o |o ∈ O} is S0S2
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Secant Relaxation (1-SEC)

Relax all the nonlinear production functions using inner and outer approximations.
I Pros

I Relaxation of the original formulation.
I Does NOT introduce additional SOS2 variables.

I Cons
I May not be ‘close’ to a feasible solution of the MINLP formulation.

Total production (vt)

Maximum production rate (f)

Total production (vt)

Cumulative useful product (hp+ )

Total production (vt)

Cumulative by-product (hp− )

Formulation is similar to PLA, except data is different and SOS2 restriction is omitted
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Multiple Secant Relaxation (k-SEC)

Relax all the nonlinear production functions using inner and outer approximations but use
multiple secants instead of a just a single one.

I Pros
I ‘Close’ to a feasible solution of the MINLP formulation.
I Relaxation of the original formulation.

I Cons
I Introduces additional SOS2 variables to branch on.
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Performance Evaluation
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Experiments

Goals

I Compare formulation accuracy between F1 and F2

I Compare solution time between F1 and F2

Sample Application

Multiple period production and distribution problem with fixed costs for opening
production facilities that supply products to customers

Solvers

I To solve F1: BARON 9.3.1

I To solve MIP approximations and linearizations of F2: Gurobi 4.5.1

I To solve NLPs with integer variables fixed: KNITRO 3.14
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Test Problem

I Multiple period production and distribution problem with production facilities I
manufacturing products P+ for customers J

I Deterministic customer demands with penalty (lost revenue) for shortage

I Facility operations follow known production functions

I Fixed costs for opening facilities and variable operating and transportation costs
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Accuracy

Assessing impact of inaccuracy formulation F1
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Formulation F1

I Solve formulation F1 (approximately)

I Repair the solution
I Fix the mixture production decisions

xt and zt
I Correctly calculate the product

production amounts yp,t
I Re-solve the transportation problem

I Compare to F2 solution
I F1 yields solutions 7 - 50% more

costly!

Jim Luedtke (UW-Madison) 21 / 25



Accuracy

Assessing impact of inaccuracy formulation F1

2.5

3.0

3.5

4.0

4.5

O
b
je

ct
iv

e
 f

u
n
ct

io
n

Formulation F1

Repaired F1  solution

I Solve formulation F1 (approximately)

I Repair the solution
I Fix the mixture production decisions

xt and zt
I Correctly calculate the product

production amounts yp,t
I Re-solve the transportation problem

I Compare to F2 solution
I F1 yields solutions 7 - 50% more

costly!

Jim Luedtke (UW-Madison) 21 / 25



Accuracy

Assessing impact of inaccuracy formulation F1

2.5

3.0

3.5

4.0

4.5

O
b
je

ct
iv

e
 f

u
n
ct

io
n

Formulation F1

Repaired F1  solution

Formulation F2

I Solve formulation F1 (approximately)

I Repair the solution
I Fix the mixture production decisions

xt and zt
I Correctly calculate the product

production amounts yp,t
I Re-solve the transportation problem

I Compare to F2 solution
I F1 yields solutions 7 - 50% more

costly!

Jim Luedtke (UW-Madison) 21 / 25



Computational Efficiency

Quality of Lower Bounds
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Conclusions

I Problem Description

I Defined a nonconvex production process involving desirable and undesirable products

I Ratio of byproducts to total production increases monotonically

I Methods

I Introduced a new discrete-tiem formulation (F2) based on the cumulative product
production amounts that is more accurate and computationally attractive than
“natural” approach

I Devised scalable MIP approximations and relaxations (PLA, 1-SEC, k-SEC)
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Strengthening the MIP Formulations

Key Idea

I Production functions are positive only if the facility is open

I Applies to the 1-SEC, PLA and k-SEC models

Original Formulation...

vt =
∑
o∈O

Bo λt,o

wp,t =
∑
o∈O

Hp,o λt,o

1 =
∑
o∈O

λt,o

vt ≤ Mzt

Stronger Formulation...

vt =
∑
o∈O

Bo λt,o

wp,t =
∑
o∈O

Hp,o λt,o

zt =
∑
o∈O

λt,o
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Effect of MIP Formulation Strengthening
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Secant relaxation (1-SEC)
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Multiple secant relaxation (3-SEC)
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Piecewise linear approximation (PLA)

Gaps obtained after one hour time limit when solving the MIP Formulations
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