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The PATH Not Taken

Two problem formulations diverged

The grassy fork wanting wear

Preventing a cycle back

Scheme less traveled

“The Road Not Taken”, Robert Frost, 1920
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Two roads diverged in a yellow wood,

And sorry I could not travel both

And be one traveler, long I stood

And looked down one as far as I could

To where it bent in the undergrowth;
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Two problem formulations diverged
I Find a nontrivial solution to

0 ≤ x ⊥ 1−Mx ≥ 0

I NP-hard to determine existence
I M ≤ 0 implies no solution
I M strictly semimonotone implies existence

I Preprocessing implies each row of M has a positive entry
I No conditions on columns of M unless M is symmetric

I An augmented formulation (Zhu, Dang, and Ye 2012)

0 ≤ w ⊥ −Mw + v ≥ 0
0 ≤ v ⊥ eTw ≥ 1

I x∗ = w∗

v∗

I w∗ = x∗

eT x∗
and v∗ = 1

eT x∗

I Numerical results for random sparse instances
I Lemke’s method (provably) terminates with secondary ray
I PATH with regular starts solves only small problems

I Reasonable algorithms can fail on difficult problems
I Better question: why does PATH even work on some problems?
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Two problem formulations diverged

I A regularized augmented formulation

0 ≤ w ⊥ −Mw + v ≥ 0
0 ≤ v ⊥ eTw − 1

αv ≥ 1

I A dual regularized variational formulation

0 ≤ w ⊥ −Mw + v ≥ 0
v free ⊥ −eTw + 1

αv = −1
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Two problem formulations diverged

I Find a nontrivial solution to

0 ≤ x ⊥ 1−Mx ≥ 0

I For any solution eT x∗ ≥ 1
maxi,j Mi,j

I A strictly positive formulation (inspired by CPS 1992)

0 ≤ w ⊥ (αE −M)w − 1 ≥ 0

I x∗ = w∗

αeTw∗−1
(if M strictly semimonotone)

I w∗ = x∗

αeT x∗−1
(if α > maxi,j Mi,j > 0)

I Numerical results for random sparse instances
I Lemke’s method (provably) solves nondegenerate instances
I PATH with regular starts solves most instances

I Reasonable algorithms should succeed on easy problems
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Two problem formulations diverged

I Strictly positive formulation

0 ≤ w ⊥ (αE −M)w − 1 ≥ 0

I Two player games

0 ≤ w ⊥ αw1Ew + (αw2E + A)v − 1 ≥ 0
0 ≤ v ⊥ (αv1E + B)w + αv2Ev − 1 ≥ 0

I Multiplayer bilateral games

0 ≤ w ⊥ αw1Ew + (αw2E + A1)v + (αw3E + A2)u − 1 ≥ 0
0 ≤ v ⊥ (αv1E + B1)w + αv2Ev + (αv3E + B2)u − 1 ≥ 0
0 ≤ u ⊥ (αu1E + C1)w + (αu2E + C2)v + αu3Eu − 1 ≥ 0

I Numerical results for random sparse instances
I Lemke’s method (provably) solves nondegenerate instances
I PATH with regular starts solves fewer instances

I Reasonable algorithms should succeed on easy problems
I Better question: why does PATH fail on some problems?
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Then took the other, as just as fair,

And having perhaps the better claim,

Because it was grassy and wanted wear;

Though as for that the passing there

Had worn them really about the same,
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The grassy fork wanting wear

I Lemke’s method fails on some instances
I Degenerate in infinite precision arithmetic or
I Degenerate due to finite precision arithmetic

I Implement method in arbitrary precision arithmetic (Bailey et.al.)
I Dense matrices and linear algebra
I Rank-revealing QR factorization using Householder transformations
I Refactor and compute iterate after each pivot
I Minimum ratio test needs to break ties

I Use maximum direction value (devex)
I Use least index (Bland’s rule)

I Conclude that instances are degenerate in infinite precision
I Zero step length fixable by devex or Bland’s rule
I Cycles of nonzero length in piecewise linear path are not
I Linear path furcates and forms a complicated figure-eight cycle
I PATH can detect cycles, but we must prevent them
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And both that morning equally lay

In leaves no step had trodden black.

Oh, I kept the first for another day!

Yet knowing how way leads on to way,

I doubted if I should ever come back.
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Preventing a cycle back

I Lexicographic pivoting
I Requires extra solves to break ties
I May not be numerically stable in finite precision

I Randomization of the problem
I Perform random symmetric scaling

0 ≤ w ⊥ R(αE −M)Rw − Re ≥ 0

I Choose a random covering vector for Lemke’s method

I Conjecture: with high probability, randomized problem is
nondegenerate

I Numerical results for the sparse instances
I Lemke and PATH solve all problems with either randomization
I Methods use a small number of pivots to find a solution
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Preventing a cycle back

I Randomization may not fully address degeneracy
I Finite precision destroys the high-probability argument
I Opens the door for cycling in the randomized problems

I Numerical results for sparse instances
I Problem data and random variable truncated to eight digits
I In high precision arithmetic

I Methods are nondegenerate
I Lemke and PATH solve the problem either randomization

I In eight digit arithmetic
I Degeneracy observed with both randomizations
I Even using the first randomization tried
I Lemke and PATH still solve them though
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I shall be telling this with a sigh

Somewhere ages and ages hence:

Two roads diverged in a wood, and I –

I took the one less traveled by,

And that has made all the difference.
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Scheme less traveled

I Randomization is insufficient in finite precision
I Can reduce the amount of observed degeneracy
I Note that random cover is only viable for Lemke’s method

I Need full lexicographic ordering to prevent cycles
I Construct efficient and stable implementation
I Modify for finite lower and upper bounds and equations
I Handle Lemke and regular starts in a rigorous manner
I Identify cycling in linear path constructed

I Concluding message
I Bad formulations can lead to insights
I Good formulations can lead to better insights
I PATH requires rigorous degeneracy resolution
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ICCOPT 2013
July 27 – August 1

Lisbon, Portugal

Actively seeking session organizers for
all topic in complementarity and variational inequalities

Contact Francisco Facchinei or Todd Munson

http://eventos.fct.unl.pt/iccopt2013
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