# The PATH Not Taken: <br> Lemke's Method for Strictly Positive Matrices ${ }^{1}$ 

Todd Munson<br>Mathematics and Computer Science Division<br>Argonne National Laboratory

December 19, 2012

[^0]
## The PATH Not Taken

Two problem formulations diverged
The grassy fork wanting wear
Preventing a cycle back
Scheme less traveled

"The Road Not Taken", Robert Frost, 1920

Two roads diverged in a yellow wood,
And sorry I could not travel both
And be one traveler, long I stood
And looked down one as far as I could
To where it bent in the undergrowth;

## Two problem formulations diverged

- Find a nontrivial solution to

$$
0 \leq x \quad \perp \quad 1-M x \geq 0
$$

## Two problem formulations diverged

- Find a nontrivial solution to

$$
0 \leq x \quad \perp \quad 1-M x \geq 0
$$

- NP-hard to determine existence
- $M \leq 0$ implies no solution
- $M$ strictly semimonotone implies existence


## Two problem formulations diverged

- Find a nontrivial solution to

$$
0 \leq x \quad \perp \quad 1-M x \geq 0
$$

- NP-hard to determine existence
- $M \leq 0$ implies no solution
- $M$ strictly semimonotone implies existence
- Preprocessing implies each row of $M$ has a positive entry
- No conditions on columns of $M$ unless $M$ is symmetric


## Two problem formulations diverged

- Find a nontrivial solution to

$$
0 \leq x \quad \perp \quad 1-M x \geq 0
$$

- NP-hard to determine existence
- $M \leq 0$ implies no solution
- $M$ strictly semimonotone implies existence
- Preprocessing implies each row of $M$ has a positive entry
- No conditions on columns of $M$ unless $M$ is symmetric
- An augmented formulation (Zhu, Dang, and Ye 2012)

$$
\begin{array}{llll}
0 \leq w & \perp & -M w+v & \geq 0 \\
0 \leq v & \perp & e^{T} w & \geq 1
\end{array}
$$

- $x^{*}=\frac{w^{*}}{v^{*}}$
- $w^{*}=\frac{x^{*}}{e^{T} x^{*}}$ and $v^{*}=\frac{1}{e^{T} x^{*}}$


## Two problem formulations diverged

- Find a nontrivial solution to

$$
0 \leq x \quad \perp \quad 1-M x \geq 0
$$

- NP-hard to determine existence
- $M \leq 0$ implies no solution
- $M$ strictly semimonotone implies existence
- Preprocessing implies each row of $M$ has a positive entry
- No conditions on columns of $M$ unless $M$ is symmetric
- An augmented formulation (Zhu, Dang, and Ye 2012)

$$
\begin{array}{llll}
0 \leq w & \perp & -M w+v & \geq 0 \\
0 \leq v & \perp & e^{T} w & \geq 1
\end{array}
$$

- $x^{*}=\frac{w^{*}}{v^{*}}$
- $w^{*}=\frac{x^{*}}{e^{T} x^{*}}$ and $v^{*}=\frac{1}{e^{T} x^{*}}$
- Numerical results for random sparse instances
- Lemke's method (provably) terminates with secondary ray
- PATH with regular starts solves only small problems


## Two problem formulations diverged

- Find a nontrivial solution to

$$
0 \leq x \quad \perp \quad 1-M x \geq 0
$$

- NP-hard to determine existence
- $M \leq 0$ implies no solution
- $M$ strictly semimonotone implies existence
- Preprocessing implies each row of $M$ has a positive entry
- No conditions on columns of $M$ unless $M$ is symmetric
- An augmented formulation (Zhu, Dang, and Ye 2012)

$$
\begin{array}{llll}
0 \leq w & \perp & -M w+v & \geq 0 \\
0 \leq v & \perp & e^{T} w & \geq 1
\end{array}
$$

- $x^{*}=\frac{w^{*}}{v^{*}}$
- $w^{*}=\frac{x^{*}}{e^{T} x^{*}}$ and $v^{*}=\frac{1}{e^{T} x^{*}}$
- Numerical results for random sparse instances
- Lemke's method (provably) terminates with secondary ray
- PATH with regular starts solves only small problems
- Reasonable algorithms can fail on difficult problems


## Two problem formulations diverged

- Find a nontrivial solution to

$$
0 \leq x \quad \perp \quad 1-M x \geq 0
$$

- NP-hard to determine existence
- $M \leq 0$ implies no solution
- $M$ strictly semimonotone implies existence
- Preprocessing implies each row of $M$ has a positive entry
- No conditions on columns of $M$ unless $M$ is symmetric
- An augmented formulation (Zhu, Dang, and Ye 2012)

$$
\begin{array}{llll}
0 \leq w & \perp & -M w+v & \geq 0 \\
0 \leq v & \perp & e^{T} w & \geq 1
\end{array}
$$

- $x^{*}=\frac{w^{*}}{v^{*}}$
- $w^{*}=\frac{x^{*}}{e^{T} x^{*}}$ and $v^{*}=\frac{1}{e^{T} x^{*}}$
- Numerical results for random sparse instances
- Lemke's method (provably) terminates with secondary ray
- PATH with regular starts solves only small problems
- Reasonable algorithms can fail on difficult problems
- Better question: why does PATH even work on some problems?


## Two problem formulations diverged

- A regularized augmented formulation

$$
\begin{array}{llll}
0 \leq w & \perp & -M w+v & \geq 0 \\
0 \leq v & \perp & e^{T} w-\frac{1}{\alpha} v & \geq 1
\end{array}
$$

## Two problem formulations diverged

- A regularized augmented formulation

$$
\begin{array}{llll}
0 \leq w & \perp & -M w+v & \geq 0 \\
0 \leq v & \perp & e^{T} w-\frac{1}{\alpha} v & \geq 1
\end{array}
$$

- A dual regularized variational formulation

$$
\begin{array}{llll}
0 \leq w & \perp & -M w+v & \geq 0 \\
v \text { free } & \perp & -e^{T} w+\frac{1}{\alpha} v & =-1
\end{array}
$$

## Two problem formulations diverged

- Find a nontrivial solution to

$$
0 \leq x \quad \perp \quad 1-M x \geq 0
$$

- For any solution $e^{T} x^{*} \geq \frac{1}{\max _{i, j} M_{i, j}}$
- A strictly positive formulation (inspired by CPS 1992)

$$
0 \leq w \quad \perp \quad(\alpha E-M) w-1 \geq 0
$$

- $x^{*}=\frac{\omega^{*}}{\alpha T^{T^{*}} w^{*}-1}$ (if $M$ strictly semimonotone)
- $w^{*}=\frac{x^{*}}{\alpha e^{T_{x}}-1}$ (if $\alpha>\max _{i, j} M_{i, j}>0$ )


## Two problem formulations diverged

- Find a nontrivial solution to

$$
0 \leq x \quad \perp \quad 1-M x \geq 0
$$

- For any solution $e^{T} x^{*} \geq \frac{1}{\max _{i, j} M_{i, j}}$
- A strictly positive formulation (inspired by CPS 1992)

$$
0 \leq w \quad \perp \quad(\alpha E-M) w-1 \geq 0
$$

- $x^{*}=\frac{\omega^{*}}{\alpha e w^{*} w_{*}^{*}-1}$ (if $M$ strictly semimonotone)
- $w^{*}=\frac{x^{*}}{\alpha e^{T} x^{*}-1}$ (if $\alpha>\max _{i, j} M_{i, j}>0$ )
- Numerical results for random sparse instances
- Lemke's method (provably) solves nondegenerate instances
- PATH with regular starts solves most instances


## Two problem formulations diverged

- Find a nontrivial solution to

$$
0 \leq x \quad \perp \quad 1-M x \geq 0
$$

- For any solution $e^{T} x^{*} \geq \frac{1}{\max _{i, j} M_{i, j}}$
- A strictly positive formulation (inspired by CPS 1992)

$$
0 \leq w \quad \perp \quad(\alpha E-M) w-1 \geq 0
$$

- $x^{*}=\frac{\omega^{*}}{\alpha e w^{*} w_{*}^{*}-1}$ (if $M$ strictly semimonotone)
- $w^{*}=\frac{x^{*}}{\alpha e^{T} x^{*}-1}$ (if $\alpha>\max _{i, j} M_{i, j}>0$ )
- Numerical results for random sparse instances
- Lemke's method (provably) solves nondegenerate instances
- PATH with regular starts solves most instances
- Reasonable algorithms should succeed on easy problems


## Two problem formulations diverged

- Strictly positive formulation

$$
0 \leq w \quad \perp \quad(\alpha E-M) w-1 \geq 0
$$

## Two problem formulations diverged

- Strictly positive formulation

$$
0 \leq w \quad \perp \quad(\alpha E-M) w-1 \geq 0
$$

- Two player games

$$
\begin{array}{lll}
0 \leq w & \perp & \alpha_{w_{1}} E w+\left(\alpha_{w_{2}} E+A\right) v-1 \geq 0 \\
0 \leq v & \perp & \left(\alpha_{v_{1}} E+B\right) w+\alpha_{v_{2}} E v-1 \geq 0
\end{array}
$$

## Two problem formulations diverged

- Strictly positive formulation

$$
0 \leq w \quad \perp \quad(\alpha E-M) w-1 \geq 0
$$

- Two player games

$$
\begin{array}{lll}
0 \leq w & \perp & \alpha_{w_{1}} E w+\left(\alpha_{w_{2}} E+A\right) v-1 \geq 0 \\
0 \leq v & \perp & \left(\alpha_{v_{1}} E+B\right) w+\alpha_{v_{2}} E v-1 \geq 0
\end{array}
$$

- Multiplayer bilateral games

$$
\begin{array}{lll}
0 \leq w & \perp & \alpha_{w_{1}} E w+\left(\alpha_{w_{2}} E+A_{1}\right) v+\left(\alpha_{w_{3}} E+A_{2}\right) u-1 \geq 0 \\
0 \leq v & \perp & \left(\alpha_{v_{1}} E+B_{1}\right) w+\alpha_{v_{2}} E v+\left(\alpha_{v_{3}} E+B_{2}\right) u-1 \geq 0 \\
0 \leq u & \perp & \left(\alpha_{u_{1}} E+C_{1}\right) w+\left(\alpha_{u_{2}} E+C_{2}\right) v+\alpha_{u_{3}} E u-1 \geq 0
\end{array}
$$

## Two problem formulations diverged

- Strictly positive formulation

$$
0 \leq w \quad \perp \quad(\alpha E-M) w-1 \geq 0
$$

- Two player games

$$
\begin{array}{lll}
0 \leq w & \perp & \alpha_{w_{1}} E w+\left(\alpha_{w_{2}} E+A\right) v-1 \geq 0 \\
0 \leq v & \perp & \left(\alpha_{v_{1}} E+B\right) w+\alpha_{v_{2}} E v-1 \geq 0
\end{array}
$$

- Multiplayer bilateral games

$$
\begin{array}{lll}
0 \leq w & \perp & \alpha_{w_{1}} E w+\left(\alpha_{w_{2}} E+A_{1}\right) v+\left(\alpha_{w_{3}} E+A_{2}\right) u-1 \geq 0 \\
0 \leq v & \perp & \left(\alpha_{v_{1}} E+B_{1}\right) w+\alpha_{v_{2}} E v+\left(\alpha_{v_{3}} E+B_{2}\right) u-1 \geq 0 \\
0 \leq u & \perp & \left(\alpha_{u_{1}} E+C_{1}\right) w+\left(\alpha_{u_{2}} E+C_{2}\right) v+\alpha_{u_{3}} E u-1 \geq 0
\end{array}
$$

- Numerical results for random sparse instances
- Lemke's method (provably) solves nondegenerate instances
- PATH with regular starts solves fewer instances
- Reasonable algorithms should succeed on easy problems


## Two problem formulations diverged

- Strictly positive formulation

$$
0 \leq w \quad \perp \quad(\alpha E-M) w-1 \geq 0
$$

- Two player games

$$
\begin{array}{lll}
0 \leq w & \perp & \alpha_{w_{1}} E w+\left(\alpha_{w_{2}} E+A\right) v-1 \geq 0 \\
0 \leq v & \perp & \left(\alpha_{v_{1}} E+B\right) w+\alpha_{v_{2}} E v-1 \geq 0
\end{array}
$$

- Multiplayer bilateral games

$$
\begin{array}{lll}
0 \leq w & \perp & \alpha_{w_{1}} E w+\left(\alpha_{w_{2}} E+A_{1}\right) v+\left(\alpha_{w_{3}} E+A_{2}\right) u-1 \geq 0 \\
0 \leq v & \perp & \left(\alpha_{v_{1}} E+B_{1}\right) w+\alpha_{v_{2}} E v+\left(\alpha_{v_{3}} E+B_{2}\right) u-1 \geq 0 \\
0 \leq u & \perp & \left(\alpha_{u_{1}} E+C_{1}\right) w+\left(\alpha_{u_{2}} E+C_{2}\right) v+\alpha_{u_{3}} E u-1 \geq 0
\end{array}
$$

- Numerical results for random sparse instances
- Lemke's method (provably) solves nondegenerate instances
- PATH with regular starts solves fewer instances
- Reasonable algorithms should succeed on easy problems
- Better question: why does PATH fail on some problems?

Then took the other, as just as fair, And having perhaps the better claim,

Because it was grassy and wanted wear; Though as for that the passing there

Had worn them really about the same,

## The grassy fork wanting wear

- Lemke's method fails on some instances
- Degenerate in infinite precision arithmetic or
- Degenerate due to finite precision arithmetic


## The grassy fork wanting wear

- Lemke's method fails on some instances
- Degenerate in infinite precision arithmetic or
- Degenerate due to finite precision arithmetic
- Implement method in arbitrary precision arithmetic (Bailey et.al.)
- Dense matrices and linear algebra
- Rank-revealing QR factorization using Householder transformations
- Refactor and compute iterate after each pivot
- Minimum ratio test needs to break ties
- Use maximum direction value (devex)
- Use least index (Bland's rule)


## The grassy fork wanting wear

- Lemke's method fails on some instances
- Degenerate in infinite precision arithmetic or
- Degenerate due to finite precision arithmetic
- Implement method in arbitrary precision arithmetic (Bailey et.al.)
- Dense matrices and linear algebra
- Rank-revealing QR factorization using Householder transformations
- Refactor and compute iterate after each pivot
- Minimum ratio test needs to break ties
- Use maximum direction value (devex)
- Use least index (Bland's rule)
- Conclude that instances are degenerate in infinite precision
- Zero step length fixable by devex or Bland's rule
- Cycles of nonzero length in piecewise linear path are not
- Linear path furcates and forms a complicated figure-eight cycle


## The grassy fork wanting wear

- Lemke's method fails on some instances
- Degenerate in infinite precision arithmetic or
- Degenerate due to finite precision arithmetic
- Implement method in arbitrary precision arithmetic (Bailey et.al.)
- Dense matrices and linear algebra
- Rank-revealing QR factorization using Householder transformations
- Refactor and compute iterate after each pivot
- Minimum ratio test needs to break ties
- Use maximum direction value (devex)
- Use least index (Bland's rule)
- Conclude that instances are degenerate in infinite precision
- Zero step length fixable by devex or Bland's rule
- Cycles of nonzero length in piecewise linear path are not
- Linear path furcates and forms a complicated figure-eight cycle
- PATH can detect cycles, but we must prevent them

And both that morning equally lay
In leaves no step had trodden black.
Oh, I kept the first for another day!
Yet knowing how way leads on to way,
I doubted if I should ever come back.

## Preventing a cycle back

- Lexicographic pivoting
- Requires extra solves to break ties
- May not be numerically stable in finite precision


## Preventing a cycle back

- Lexicographic pivoting
- Requires extra solves to break ties
- May not be numerically stable in finite precision
- Randomization of the problem
- Perform random symmetric scaling

$$
0 \leq w \quad \perp \quad R(\alpha E-M) R w-R e \geq 0
$$

- Choose a random covering vector for Lemke's method


## Preventing a cycle back

- Lexicographic pivoting
- Requires extra solves to break ties
- May not be numerically stable in finite precision
- Randomization of the problem
- Perform random symmetric scaling

$$
0 \leq w \quad \perp \quad R(\alpha E-M) R w-R e \geq 0
$$

- Choose a random covering vector for Lemke's method
- Conjecture: with high probability, randomized problem is nondegenerate


## Preventing a cycle back

- Lexicographic pivoting
- Requires extra solves to break ties
- May not be numerically stable in finite precision
- Randomization of the problem
- Perform random symmetric scaling

$$
0 \leq w \quad \perp \quad R(\alpha E-M) R w-R e \geq 0
$$

- Choose a random covering vector for Lemke's method
- Conjecture: with high probability, randomized problem is nondegenerate
- Numerical results for the sparse instances
- Lemke and PATH solve all problems with either randomization
- Methods use a small number of pivots to find a solution


## Preventing a cycle back

- Randomization may not fully address degeneracy
- Finite precision destroys the high-probability argument
- Opens the door for cycling in the randomized problems


## Preventing a cycle back

- Randomization may not fully address degeneracy
- Finite precision destroys the high-probability argument
- Opens the door for cycling in the randomized problems
- Numerical results for sparse instances
- Problem data and random variable truncated to eight digits
- In high precision arithmetic
- Methods are nondegenerate
- Lemke and PATH solve the problem either randomization


## Preventing a cycle back

- Randomization may not fully address degeneracy
- Finite precision destroys the high-probability argument
- Opens the door for cycling in the randomized problems
- Numerical results for sparse instances
- Problem data and random variable truncated to eight digits
- In high precision arithmetic
- Methods are nondegenerate
- Lemke and PATH solve the problem either randomization
- In eight digit arithmetic
- Degeneracy observed with both randomizations
- Even using the first randomization tried
- Lemke and PATH still solve them though

I shall be telling this with a sigh
Somewhere ages and ages hence:
Two roads diverged in a wood, and I -
I took the one less traveled by,
And that has made all the difference.

## Scheme less traveled

- Randomization is insufficient in finite precision
- Can reduce the amount of observed degeneracy
- Note that random cover is only viable for Lemke's method


## Scheme less traveled

- Randomization is insufficient in finite precision
- Can reduce the amount of observed degeneracy
- Note that random cover is only viable for Lemke's method
- Need full lexicographic ordering to prevent cycles
- Construct efficient and stable implementation
- Modify for finite lower and upper bounds and equations
- Handle Lemke and regular starts in a rigorous manner
- Identify cycling in linear path constructed


## Scheme less traveled

- Randomization is insufficient in finite precision
- Can reduce the amount of observed degeneracy
- Note that random cover is only viable for Lemke's method
- Need full lexicographic ordering to prevent cycles
- Construct efficient and stable implementation
- Modify for finite lower and upper bounds and equations
- Handle Lemke and regular starts in a rigorous manner
- Identify cycling in linear path constructed
- Concluding message
- Bad formulations can lead to insights
- Good formulations can lead to better insights
- PATH requires rigorous degeneracy resolution


## ICCOPT 2013

July 27 - August 1
Lisbon, Portugal
Actively seeking session organizers for
all topic in complementarity and variational inequalities

> Contact Francisco Facchinei or Todd Munson
> http://eventos.fct.unl.pt/iccopt2013


[^0]:    ${ }^{1}$ This work was supported by the Mathematical, Information, and Computational Sciences Division subprogram of the Office of Advanced Scientific Computing Research, Office of Science, U.S. Department of Energy, under Contract W-31-109-Eng-38.

