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Abstract—Recent applications of a semidefinite programming
(SDP) relaxation to the optimal power flow (OPF) problem offers
a polynomial time method to compute a global optimum for a
large subclass of OPF problems. In contrast, prior OPF solution
methods in the literature guarantee only local optimality for the
solution produced. However, solvers employing SDP relaxation
remain significantly slower than mature OPF solution codes.This
letter seeks to combine the advantages of the two methods. In
particular, we develop a SDP-inspired sufficient conditiontest
for global optimality of a candidate OPF solution. This testmay
then be easily applied to a candidate solution generated by a
traditional, only-guaranteed-locally-optimal OPF solver.

Index Terms—Optimal power flow, Global optimization

I. I NTRODUCTION

T HE optimal power flow (OPF) problem determines an
optimal operating point for an electric power system in

terms of a specified objective function, subject to both network
equality constraints (i.e., the power flow equations, which
model the relationship between voltages and power injections)
and engineering limits (e.g., inequality constraints on voltage
magnitudes, active and reactive power generations, and flows
on transmission lines and transformers).

Recent research has applied semidefinite programming
(SDP) to the OPF problem [1]. Using a rank relaxation, the
OPF problem is formulated as a convex SDP. If the relaxed
problem satisfies a rank condition, a global optimum of the
OPF problem can be determined in polynomial time. No prior
OPF solution method guarantees calculation of the global solu-
tion in polynomial time; SDP thus has a substantial advantage
over other solution techniques. However, the rank condition
is not always satisfied, so the SDP relaxation does not give
physically meaningful solutions to all OPF problems [2].

The SDP relaxation of the OPF problem is computationally
limited by a positive semidefinite constraint on a2n × 2n
matrix, wheren is the number of buses in the system. Thus,
despite being provably polynomial time, the SDP relaxation
is computationally challenging for large systems. With recent
work in matrix completion decompositions that speed com-
putation by exploiting power system sparsity, solution of the
SDP relaxation is feasible for large systems [3], [4].

However, solution of the SDP relaxation is still significantly
slower than mature OPF algorithms, such as interior point
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methods [5]. It would be beneficial to pair the solution
speed of mature OPF solution algorithms with the global
optimality guarantee of the SDP relaxation. We propose a
sufficient condition derived from the Karush-Kuhn-Tucker
(KKT) conditions for optimality of the SDP relaxation of the
OPF problem [6]. A candidate solution obtained from a mature
OPF solution algorithm that satisfies the KKT conditions is
guaranteed to be globally optimal. However, satisfaction of
these conditions is not necessary for global optimality.

II. SUFFICIENT CONDITION FOR GLOBAL OPTIMALITY

Consider ann-bus power system, whereN is the set of all
buses,G is the set of generator buses, andL is the set of all
lines.PDk + jQDk is the load demand andVk = Vdk + jVqk

is the voltage phasor at busesk ∈ N . PGk + jQGk is the
generation at busesk ∈ G. Slm is the apparent power flow
on the line(l,m) ∈ L. Lines are modeled asΠ-equivalent
circuits (see [4] for more flexible models). Superscripts “max”
and “min” denote upper and lower limits.Y = G + jB is
the network admittance matrix. Define a quadratic objective
function associated with each generatork ∈ G, typically
representing a variable operating cost. The OPF problem is

min
∑

k∈G

(

ck2P
2
Gk + ck1PGk + ck0

)

subject to (1a)

Pmin
Gk ≤ PGk ≤ Pmax

Gk ∀k ∈ G (1b)

Qmin
Gk ≤ QGk ≤ Qmax

Gk ∀k ∈ G (1c)
(

V min
k

)2
≤ V 2

dk + V 2
qk ≤

(

V max
k

)2
∀k ∈ N (1d)

|Slm| ≤ Smax
lm ∀ (l,m) ∈ L (1e)

PGk−PDk = Vdk

n
∑

i=1

(GikVdi −BikVqi)+Vqk

n
∑

i=1

(BikVdi +GikVqi)

(1f)

QGk−QDk=Vqk

n
∑

i=1

(GikVdi −BikVqi)−Vdk

n
∑

i=1

(BikVdi +GikVqi)

(1g)

A solution to (1) consists of vectors of voltage phasorsV =
Vd+ jVq, power injectionsP + jQ, and Lagrange multipliers.
We denote the Lagrange multipliers associated with the voltage
magnitude equation (1d) asµ, those associated with the active
power balance equation (1f) asλ, those associated with the
reactive power balance equation (1g) asγ, and those associated
with the apparent power line flow equation (1e) asζ.

In order to reformulate the standard OPF problem into a
structure that allows it to be solved as a SDP, it is necessary
to define several matrices that embed the network’s bus
admittance matrix information into larger arrays. Following
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the development of [1], letek be the kth standard basis
vector inR

n. Define the matricesYk = eke
T
kY and Ylm =

(

jblm
2

+ ylm

)

ele
T
l −(ylm) ele

T
m, whereblm is the line’s shunt

susceptance,ylm is the line’s series admittance, and superscript
T indicates the transpose operator. Define matrices

Yk =
1

2

[

Re
(

Yk + Y T
k

)

Im
(

Y T
k

− Yk

)

Im
(

Yk − Y T
k

)

Re
(

Yk + Y T
k

)

]

(2a)
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1

2
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Im
(
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k
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(
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k
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(
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k
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Im
(
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k

)

]

(2b)

Mk =

[
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T
k

0

0 eke
T
k

]

(2c)
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1

2
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(
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lm

)

Im
(

Y T
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− Ylm
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Im
(

Ylm − Y T
lm

)
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(

Ylm + Y T
lm

)

]

(2d)

Ȳlm = −
1

2

[

Im
(
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lm

)

Re
(

Ylm − Y T
lm

)

Re
(
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lm

− Ylm

)

Im
(

Ylm + Y T
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(2e)

Define the matrix variableW = xxT where x =
[

Vd1 · · · Vdn Vq1 · · · Vqn

]T
. Formulate OPF problem (1)

in terms ofW as in [1]: busk active and reactive power injec-
tions aretrace (YkW) andtrace

(

ȲkW
)

and squared voltage
magnitude istrace (MkW); active and reactive flows on
line (l,m) aretrace (YlmW) and trace

(

ȲlmW
)

. The SDP
relaxation is formed by replacing the constraintW = xxT

with W � 0, where� 0 indicates positive semidefiniteness.
The A matrix of the dual SDP problem, which collects

terms of the optimality conditions as in [1], requires Lagrange
multipliers in terms of the square of voltage magnitudes
(denoted asξ) rather than the voltage magnitudes themselves.
Use the chain rule of differentiation for the conversion

ξk = µk

(

1

2Vk0

)

(3)

where Vk0
is the solution’s voltage magnitude at busk.

Additionally, the solution to (1) gives line-flow limit Lagrange
multipliers ζ in terms of apparent power (MVA), but the dual
SDP problem requires separate multipliers in terms of active
and reactive power flows (denoted asα andβ, respectively).
Using the relationshipSlm =

√

P 2

lm +Q2

lm, wherePlm and
Qlm are the active and reactive flows, respectively, on the line
from busl to busm, the appropriate conversions are

αlm = ζlm

(

∂Slm

∂Plm

)

= ζlm

(

Plm0

Slm0

)

(4a)

βlm = ζlm

(

∂Slm

∂Qlm

)

= ζlm

(

Qlm0

Slm0

)

(4b)

wherePlm0
andQlm0

are the solution’s flows on linelm. The
A matrix is then

A =
∑

k∈N

(

λkYk + γkȲk + ξkMk

)

+
∑

(l,m)∈L

(

αlmYlm + βlmȲlm

)

(5)

When feasible, the SDP relaxation has a global solution that
satisfies the KKT conditions for optimality [6]. A candidate
OPF solution may satisfy these KKT conditions, in which case
the solution is globally optimal. UsingW = xxT andA from
(5), the first KKT condition of complementarity is

trace (AW) = 0 (6)

The second regards feasibility of theW andA matrices. These
matrices are feasible in the SDP relaxation if they are positive
semidefinite. The matrixW = xxT is positive semidefinite
by construction. Thus, the relevant feasibility conditionis

A � 0 (7)

III. D ISCUSSION

Satisfaction of both (6) and (7) implies global optimal-
ity regardless of the rank characteristics of theA matrix
(i.e., dim (null (A)) ≤ 2 is not required). Non-zero branch
resistances, as necessary in [1], are not required. However,
enforcing small minimum branch resistances may result in sat-
isfaction of (6) and (7) for problems that would not otherwise
satisfy these conditions.

If either (6) or (7) is not satisfied, global optimality is
indeterminate. Failure to satisfy these conditions may result
when the semidefinite relaxation does not satisfy the rank
condition [2], in which case the solution may still be globally
optimal but is not guaranteed to be so. Alternatively, failure to
satisfy (6) and (7) may indicate that a better solution exists.

When applied to the IEEE test systems [7] without mini-
mum resistances, global optimality of solutions from MAT-
POWER’s interior point algorithm [5] was verified for the
14, 30, and 57-bus systems, but not for the 118 and 300-
bus systems due to non-satisfaction of (7). With a minimum
branch resistance of1 × 10−4 per unit, the solution to the
118-bus system (but not the 300-bus system) was verified to
be globally optimal. Note that tight solution tolerances are
often needed to obtain satisfactory numerical results.

IV. CONCLUSION

Using the KKT conditions of a semidefinite relaxation of the
OPF problem, this letter has proposed a sufficient condition
test for global optimality of a candidate OPF solution.
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