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Abstract Extreme value theory motivates estimating extreme upper quan-
tiles of a distribution by selecting some threshold, discarding those obser-
vations below the threshold and fitting a generalized Pareto distribution to
exceedances above the threshold via maximum likelihood. This sharp cutoff
between observations that are used in the parameter estimation and those that
are not is at odds with statistical practice for analogous problems such as non-
parametric density estimation, in which observations are typically smoothly
downweighted as they become more distant from the value at which the den-
sity is being estimated. By exploiting the fact that the order statistics of in-
dependent and identically distributed observations form a Markov chain, this
work shows how one can obtain a natural weighted composite log-likelihood
for fitting generalized Pareto distributions to exceedances over a threshold.
Some theory demonstrates the asymptotic advantages of using weights in the
special case when the shape parameter of the limiting generalized Pareto dis-
tribution is known to be 0. These theoretical results show clear parallels to
results for choosing weight functions and bandwidths for kernel density es-
timation. Methods for extending this approach to observations that are not
independent and identically distributed are described and an analysis to daily
precipitation data in New York City provided. Perhaps the most important
practical finding is that including weights in the composite log-likelihood can
reduce the sensitivity of estimates to small changes in the threshold.
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1 Introduction

Estimating extreme quantiles of a distribution provides a striking case of the
bias-variance tradeoff that is ubiquitous throughout statistics. Specifically,
from a sample of size n from some distribution, quantiles that are not too ex-
treme can be estimated with little bias under weak assumptions on the smooth-
ness of the underlying distribution (see, e.g., Falk (1985)). However, without
additional assumptions, it is difficult to say something useful about quantiles
like 1 ´ δn, where δn is comparable to or, worse, much smaller than n´1. Al-
ternatively, assuming that the observations come from some low-dimensional
parametric family can yield good estimates of even extreme quantiles if the
family includes the true distribution but at the risk of severe bias if the truth
is not in this family. Thus, it is common practice to appeal to extreme value
theory, which shows that for a broad range of distributions, their upper tails
can be well approximated by a generalized Pareto distribution (GPD), whose
survival function is given by

Gθpxq “

ˆ

1`
ξpx´ µq`

σ

˙´1{ξ

`

, (1)

where θ “ pµ, σ, ξq with µ and ξ real, σ positive and y` is the positive part
of y. For ξ “ 0, this formula is interpreted as the limit as ξ Ñ 0, given by
expt´px´ µq`{σu. This result can be used to estimate extreme quantiles by,
for example, using the n´ j’th order statistic to estimate the 1´pj` 1q{pn`
1q quantile of the distribution and then treat exceedances above this order
statistic as iid (independent and identically distributed) from a GPD with
µ “ 0. Typically, j is chosen to be large but small relative to n.

Using this formulation does not make the bias-variance problem go away.
Indeed, the situation is somewhat analogous to nonparametric density estima-
tion, in which one compromises between assuming a finite-parameter model
for the density and assuming nothing about it by assuming the density is, say,
twice differentiable, which allows one to obtain rates of convergence for esti-
mates of the density at any fixed x for which the density is positive (Sheather,
2004). For example, one can just use a boxcar kernel estimate of the density
of x, given by the fraction of the observations within some distance b of x di-
vided by 2b. This bandwidth parameter b plays a similar role as j, the number
of tail observations used to estimate the parameters of the GPD. It is well-
known that density estimates with modestly lower asymptotic variance can be
obtained by using a kernel that decreases smoothly as observations get farther
from x (Epanechnikov, 1969). Furthermore, if one is willing to use a kernel
function that is negative at some distances, it is possible to obtain estimates
with a faster rate of convergence than can be achieved with any nonnegative
kernel (Jones and Signorini, 1997; Sheather, 2004). This work develops an
analogous approach to smoothly downweighting the influence of less extreme
observations for fitting GPDs to the tails of a sample from some distribution.

Section 2 describes the basic methodology, which exploits the elementary
fact that the order statistics from an iid sample form a Markov chain. This
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result allows one to write down a weighted composite log-likelihood (WCL) for
the parameters of the GPD distribution that includes the usual log-likelihood
function when the weights are all 1; see Varin et al. (2011) for a general review
of weighted composite log-likelihood methods. When the shape parameter ξ
of the GPD is assumed to be 0, so that the GPD reduces to an Exponential
distribution, then the maximizing value for the scale parameter σ of the WCL
has a closed form expression, which then also yields a closed form expression
for the corresponding estimated quantiles. This explicit expression for the es-
timated quantiles is used in Section 3 to show that under a standard condition
on the second-order tail behavior of the distribution and allowing j to grow
at an appropriate rate as n increases, the estimated quantiles are asymptoti-
cally normal with asymptotic bias related to this second-order tail behavior.
These results allow one to compare mean squared errors for different weight-
ing functions and, assuming an exponent appearing in the expression for the
second-order behavior of the underlying distribution is known, an asymptot-
ically optimal nonnegative weighting function can be obtained. Furthermore,
if this exponent is known, it is possible to eliminate the leading term in the
bias of the quantile estimates by using a weighting function that is negative on
part of its domain. Simulation results in Section 4 support these results and
also show benefits to weighting in the more realistic setting where the shape
parameter is not assumed known. In addition to yielding somewhat better
quantile estimates if j is chosen well, using weights can substantially reduce
the volatility of the estimated quantiles as j varies.

Extreme value methods are often applied to observations that are not in-
dependent or not identically distributed or neither. The Markov property of
order statistics only applies when the observations are iid. In a brief simula-
tion study, Section 5 examines how dependence can effect the expected values
of gaps in order statistics and thus bias estimates based on the WCL. This
bias can be substantially reduced by partitioning the observations into subsets
made up of well-spaced observations. Furthermore, an additional simulation
shows that, at least in some circumstances, biases in estimated quantiles due to
dependence can be substantially smaller than biases due to exceedances from
the underlying distribution not being exactly from a GPD. Section 6 considers
independent but not identically distributed observations and writes down two
conditional distributions based on order statistics that could be used to obtain
WCLs in this setting. Because the order statistics no longer form a sufficient
statistic when the observations are not iid, Section 6 proposes a simple ap-
proach based on quantile regressions to preprocess the observations so that
they are more nearly iid before reducing them to order statistics. In Section
7, this approach of applying WCL to preprocessed observations is compared
to estimates based on the ordinary likelihood for over 150 years of daily rain-
fall data in New York City. Specifically, for a range of small probabilities δ, a
seasonally varying threshold function was estimated using quantile regression
for the 1 ´ δ quantile and then exceedances beyond this threshold function
were fit using a GPD with seasonally varying scale parameter. For the WCL,
the differences between quantile regressions at the 1´ δ{2 and 1´ δ quantiles



4 Michael L. Stein

were used to preprocess the exceedances to make them more nearly identically
distributed. These procedures were fitted to roughly half of the data and then
evaluated using the other half of the data. Measured by a log-likelihood for
the testing data censored at cutoffs of 2 or 3 inches, the weighted approach
has the advantage that its results vary much less erratically with the choice of
δ. When δ is chosen well, both approaches yield good estimates of seasonally
varying extreme quantiles for daily rainfall in the testing data.

Section 8 discusses further possible applications of WCLs based on order
statistics, both to extremes and more generally, as well as other issues such as
how to choose thresholds in practice. Section 9 contains the proof of Theorem
1 from Section 3.

2 Methodology

Let us first consider the general setting of fitting a parametric model to iid ob-
servations. Suppose X1, . . . , Xn are iid from some density fθ from a family of
densities indexed by the parameter θ with corresponding cumulative distribu-
tion function Fθ and survival function Sθ “ 1´Fθ. Writing Xp1q ď ¨ ¨ ¨ ď Xpnq
for the corresponding order statistics, then because the order statistics form a
Markov chain (David and Nagaraja, 2003)[Section 2.5], the log-likelihood can
be written as (ignoring an additive constant)

log fθpXp1qq ` pn´ 1q logSθpXp1qq

`

n´1
ÿ

k“1

tpk ´ 1q logSθpXpn´k`1qq ` log fθpXpn´k`1qq ´ k logSθpXpn´kqqu.

Of course, it would be pointless to use this form of the log-likelihood function if
Fθ included the true distribution. However, if one were more interested in some
parts of the distribution than others and were concerned that the parametric
model could be misspecified in ranges that were not of particular interest, then
this form of the log-likelihood naturally allows weighting:

w˚tlog fθpXp1qq ` pn´ 1q logSθpXp1qqu (2)

`

n´1
ÿ

k“1

wktpk ´ 1q logSθpXpn´k`1qq ` log fθpXpn´k`1qq ´ k logSθpXpn´kqqu

for constants w˚, w1, . . . , wn´1. The corresponding weighted score equations
obtained by setting derivatives with respect to the components of θ to 0 are,
under standard regularity conditions, unbiased estimating equations when Fθ
includes the true distribution (Li and Babu, 2019)[Chapter 9].

When fitting the parameters of a generalized Pareto distribution to the
largest order statistics, it is common to use the conditional log-likelihood of
Xpn´j`1q, . . . , Xpnq given Xpn´jq, given by

j
ÿ

k“1

tpk ´ 1q logSθpXpn´k`1qq ` log fθpXpn´k`1qq ´ k logSθpXpn´kqqu.
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Similar to (2), we can gradually downweight the influence of less extreme
observations:

`pθ;wq “
j
ÿ

k“1

wktpk ´ 1q logSθpXpn´k`1qq ` log fθpXpn´k`1qq

´ k logSθpXpn´kqqu. (3)

The idea of a local likelihood for dependent observations goes back to at
least Rao (1970) in the context of regularly observed time series. Anderes and
Stein (2011) used a similar approach to fit the parameters of a stationary
covariance function to spatial data in the neighborhood of some location y0
when the actual process is only “locally stationary” in an appropriate sense.
In contrast with (3), observations in these works were ordered by differences
in time or distance from a point of interest rather than by the value of the
process. Lawrance (1990) suggests adding weights to the log-likelihood func-
tion of the original observations when fitting extreme value distributions as a
method of evaluating the influence of one or more observations, but this is a
rather different goal than downweighting less extreme observations in param-
eter estimation.

If, as is common, we assume that exceedances of Xpn´jq are from a GPD
with µ “ 0, then defining Yi “ Xpn´j`iq ´Xpn´jq, so Y0 “ 0,

`pθ;wq “
j
ÿ

k“1

wk

"

´

ˆ

k

ξ
´ 1

˙

log

ˆ

1`
ξYj´k`1

σ

˙

´ log σ

`
k

ξ
log

ˆ

1`
ξYj´k
σ

˙*

. (4)

When ξ “ 0 is known, this approach yields closed-form expressions for the
estimate σ. The WCL is given by

´

j
ÿ

k“1

wk

"

kpYj´k`1 ´ Yj´kq

σ
´ log σ

*

. (5)

and maximizing (5) with respect to σ yields

σ̂ “W´1
j

j
ÿ

k“1

wkkpYj´k`1 ´ Yj´kq

“W´1
j

j
ÿ

k“1

tkwk ´ pk ´ 1qwk´1uYj´k`1, (6)

where Wj “
řj
k“1 wk and w0 can be set to 0. If the Xi’s are actually from

an Exponential distribution, then σ̂ in (6) is unbiased for σ, which follows
from Rényi’s representation for order statistics of an Exponential distribution
(Rényi, 1953).
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For p ě pn´ jq{pn` 1q, the corresponding estimated p’th quantile is

Q̂ppq “Xpn´jq ´ σ̂ log

ˆ

p1´ pq
n` 1

j ` 1

˙

“Xpn´jq

"

1`
jwj
Wj

log

ˆ

p1´ pq
n` 1

j ` 1

˙*

´W´1
j log

ˆ

p1´ pq
n` 1

j ` 1

˙ j
ÿ

k“1

tkwk ´ pk ´ 1qwk´1uXpn´k`1q. (7)

This last form for the estimated quantiles facilitates the study of their asymp-
totic properties when ξ “ 0 is treated as known in Section 3.

The kernel-like form of (4) is reminiscent of kernel estimates for ξ pro-
posed in the literature by Csorgo et al. (1985), based on adding weights to
the classical Hill estimator of ξ when ξ ą 0. Further study of this weighted
Hill estimator is provided in Caeiro et al. (2019) and the references therein.
Groeneboom et al. (2003) describe a kernel estimator for ξ that works for
all real ξ, although their functional forms are not nearly as simple as for the
weighted Hill estimator. The estimates in all of these works are in terms of
the logarithms of the largest order statistics and thus only make sense for pos-
itive random variables. The method described here does not require positive
observations and, indeed, is location-invariant for all ξ. As noted by Beirlant
et al. (2012), many (but certainly not all) methods for estimating extremes
lack location-invariance. Whether location invariance is always desirable is not
a simple question. In particular, for intrinsically positive quantities, 0 is a spe-
cial value, so location invariance may sometimes be inappropriate, although
scale invariance would still generally be desirable. Perhaps more importantly,
it is unclear how the kernel methods in Groeneboom et al. (2003) could be ex-
tended to observations that are not identically distributed, whereas the WCL
based on order statistics can be applied in this setting (Section 6), if perhaps
not totally satisfactorily.

As in the case of density estimation, one would generally want the wk’s to
decrease smoothly and tend to 0 as k approaches j. This can be accomplished
by setting, for k ą 0, wk “ ωppk ´ 1q{jq for some positive and continuous
decreasing function ω on r0, 1s with ωp1q “ 0. All of the weight functions ω
used in the simulations and the data analysis satisfy ωp1q “ 0.

3 Asymptotic theory

When fitting GPDs to the largest order statistics from a sample, we are im-
plicitly assuming that the upper tail of the true distribution is in the domain
of attraction of some element of the family. The class of distributions that
satisfies this property is so broad that it is necessary to restrict what true
distributions one wishes to consider in order to obtain results that would shed
any light on how to pick the weights in the WCL (3). I only consider a nar-
row special case here, where the true distribution behaves like an Exponential
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distribution in its upper tail and ξ “ 0 is treated as known. Following the
program in Drees (1998) or de Haan and Ferreira (2006), it should be possible
to obtain results treating ξ as unknown, but even the limited setting studied
here provides some insights into the choice of the weights and evidence for the
asymptotic superiority of unequal weights.

Assume that wk “ ωppk ´ 1q{jq for some sufficiently smooth function ωp¨q

and that
ş1

0
ωptq dt “ 1 to fix the normalization of ω. To motivate the conditions

on the true distribution used in Theorem 1 below, for some λ P p0, 1q and some
positive α and γ, consider a mixture of two Exponential distributions, whose
survival function is

Spxq “ λe´αx ` p1´ λqe´αpγ`1qx (8)

for x ě 0. Since only the asymptotic behavior of S in its upper tail will matter
for the results here, we will consider the somewhat more general setting in
which

Spxq “ a1e
´αx ` a2e

´αpγ`1qx ` o
`

e´αpγ`1qx
˘

(9)

as xÑ8. By straightforward computations, the corresponding quantile func-
tion, Q, satisfies

Qp1´ εq “ ´
1

α
log ε`

1

α
log a1 `

a2

αaγ`1
1

εγ ` opεγq (10)

as ε Ó 0. In fact, Theorem 1 below only requires that Q satisfy (10). For
example, for a logistic distribution, whose survival function S is of the form
1{p1` epx´µq{σq, we have α “ σ´1, γ “ 1, a1 “ eµ{σ and a2 “ ´e

2µ{σ in (10).
Under (10),

Qp1´ txq ´Qp1´ tq

1{α
“ ´ log x`

a2t
γ

aγ`1
1

pxγ ´ 1q `Rpt, xq, (11)

where, for any fixed x ą 0, we have Rpt, xq “ optγq as t Ó 0. Defining Ψpxq “
xγ ´ 1 and Φptq “ a2t

γ{aγ`1
1 , it follows that Condition 1 in Drees (1998) is

satisfied. Thus, we can use Theorem 2.1 from Drees (1998) to find the limiting
asymptotic distribution of the estimated quantiles in the important case where
j grows with n in a way that the bias and standard deviation of these quantiles
are of the same order of magnitude.

Theorem 1 Suppose X1, X2, . . . are iid with distribution satisfying (10) and,
for finite C, the sequence of positive integers jn satisfies

lim
nÑ8

a

jnΦpjn{nq “ C. (12)

Assume ω has a bounded second derivative on r0, 1s and
ş1

0
ωptq dt “ 1. Then

for a positive sequence δn “ opjn{nq and Q̂ defined as in (7),

α
?
jn

logpjn{pnδnqq

`

Q̂p1´ δnq ´Qp1´ δnq
˘

Ñ N

ˆ

´C

ż 1

0

tγωptq dt,

ż 1

0

ωptq2 dt

˙

(13)
in distribution.
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The proof of this result is given in Section 9. For working out the implica-
tions of this result, it is helpful to replace jn by its asymptotic approximation
(41), so that Theorem 1 implies

α

˜

aγ`1
1

a2

¸1{p2γ`1q
nγ{p2γ`1q

2γ
2γ`1 log n´ logpnδnq

`

Q̂p1´ δnq ´Qp1´ δnq
˘

Ñ N

ˆ

´C2γ{p2γ`1q

ż 1

0

tγωptq dt, C´2{p2γ`1q

ż 1

0

ωptq2 dt

˙

(14)

in distribution. Writing Cγ for the value of C that minimizes the second mo-
ment of this limiting distribution, we have

Cγ “

 ş1

0
ωptq2 dt

(1{2

p2γq1{2
ˇ

ˇ

ˇ

ş1

0
tγωptq dt

ˇ

ˇ

ˇ

, (15)

assuming the denominator is not 0. Defining

Iγpωq “

ˆ
ż 1

0

ωptq2 dt

˙2γ{p2γ`1q ˇ
ˇ

ˇ

ˇ

ż 1

0

tγωptq dt

ˇ

ˇ

ˇ

ˇ

2{p2γ`1q

, (16)

the corresponding expression for the minimized second moment of the asymp-
totic distribution of Q̂p1´ δnq ´Qp1´ δnq is

2γ ` 1

α2

˜

a2

aγ`1
1 p2γqγ

¸2{p2γ`1q

¨
Iγpωq

´

2γ
2γ`1 log n´ logpnδnq

¯2

n2γ{p2γ`1q
, (17)

which is attained when jn satisfies

jn „

˜

a2γ`2
1

ş1

0
ωptq2 dt

2a22γ
 ş1

0
tγωptq dt

(2

¸1{p2γ`1q

n2γ{p2γ`1q. (18)

Of course, (18) is not useful for selecting jn since it requires knowing aγ`1
1 {a2

in addition to γ. However, if there were some basis for believing that γ takes
on some particular value such as 1 or 2, then (17) could be useful for selecting
ω because Iγpωq depends only on γ.

If we allow ω to take on negative values, we can make
ş1

0
tγωptq dt “ 0 for

any given positive value of γ. Section 4 shows some limited results for such a
kernel; there is a substantial reduction in bias from using a kernel that makes
ş1

0
tγωptq dt “ 0 for the true value of γ, but the improvement in mean squared

error is less dramatic. Restricting ω to be nonnegative, we can, for any given
γ, seek the nonnegative function ω that integrates to 1 on p0, 1q and minimizes
Iγpωq. This problem is just a one-sided version of Lemma 18 in Devroye and
Györfi (1985)[Chapter 5], so an optimal nonnegative ω is given by

ωγptq “
γ ` 1

γ
p1´ tγq. (19)
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This minimizer is not unique since, for any c ą 1, the function cωpctq also
minimizes the functional Iγ .

If nδn “ Op1q, then the term logpnδnq can be dropped from (14) and the
result still holds, so that the actual quantile being estimated affects neither
the large-sample bias nor variance to this degree of approximation. Examining
the proof of Theorem 1, we can see that (13) drops out terms that are smaller
than the included terms by a factor of only log jn and, thus, may not be very
accurate unless jn is quite large. Assuming an appropriately stronger condition
on jn than (12), Equations (39)–(42) suggest that a better approximation than
implied by Theorem 1 might be obtained by adding C{pα

?
jnq to the mean of

Q̂p1´ δnq ´Qp1´ δnq, or that

Q̂p1´ δnq ´Qp1´ δnq

« N

ˆ

´
C

α
?
jn

log
nδn
jn

ż 1

0

tγωptq dt`
C

α
?
jn
,
C2

α2jn
log2 nδn

jn

ż 1

0

ωptq2 dt

˙

.

(20)

Proving that this result yields a better approximation than Theorem 1 would
require sharper control of the error in the Brownian motion approximation
used in Section 9.

In the case of a mixture of two Exponential distributions, it is possible to
show directly that including the C{pα

?
jnq term provides a sharper approxi-

mation to the bias of Q̂p1´ δnq. Because this result is so narrow, I just outline
the argument. Suppose that

?
jnΦpjn{nq “ C ` Opj´εn q for some ε ą 0. Note

that, from (6), we can write

σ̂ “W´1
jn

jn
ÿ

k“1

wkkpXpn´k`1q ´Xpn´kqq. (21)

Since Zi “ ´ logp1 ´ F pXiqq follows a standard Exponential distribution, for
k “ 1, ..., n, the gaps in the order statistics Zpn´k`1q´Zpn´kq (where Zp0q “ 0)
are independent Exponentials with EpZpn´k`1q´Zpn´kqq “ k´1 (Rényi, 1953).
Defining Hpzq “ Qp1´ e´zq so that Zi “ H´1pXiq and taking a second order
Taylor series, we have

Xpn´k`1q ´Xpn´kq

“ H 1pEZpn´kqqpZpn´k`1q ´ Zpn´kqq

`
1

2
H2pEZpn´kqq

 

pZpn´k`1q ´ EZpn´kqq
2 ´ pZpn´kq ´ EZpn´kqq

2
(

plus a remainder that can be shown to contribute o
`

j
´1{2
n

˘

to the expectation

of Q̂p1´ δnq. Taking expectations yields the approximation

EpXpn´k`1q ´Xpn´kqq « H 1pEZpn´kqq
1

k
`H2pEZpn´kqq

1

k2
. (22)
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From Olver et al. (2010)[(2.10.8] we get

EZpn´kq “
n
ÿ

`“k`1

1

`
“ log

n

k
`

1

2n
´

1

2k
`O

ˆ

1

k2

˙

. (23)

Applying (21)–(23) to (7), dropping lower order terms and approximating
sums by integrals yields the desired result on EQ̂p1 ´ δnq. Section 4 gives a
numerical example showing that this approximation is an improvement over
the mean from Theorem 1.

Davison and Smith (1990)[Section 10] note a similarity between threshold
selection, or nearly equivalently, the choice of j, and bandwidth selection in
kernel density estimation. By allowing weights in the composite log-likelihood,
the similarity between fitting GPDs to exceedances and kernel density estima-
tion is made even stronger. In particular, when considering mean squared error
of kernel density estimates for densities with two derivatives, asymptotic re-
sults that look quite a lot like (14)–(18) with γ “ 2 occur (Rosenblatt, 1971),
although without the log n terms in (14) and (17). Values of γ less than 2 can
arise in the asymptotics of kernel density estimation for densities not possess-
ing a second derivative. For example, Devroye and Györfi (1985)[Chapter 5,
Section 7] essentially shows that γ “ 1 is the appropriate value to use when
evaluating kernel density estimates of a uniform density, which does not even
possess one derivative at its endpoints. In the setting studied here, γ represents
how well the Exponential distribution approximates the upper tail of the true
distribution, with larger γ corresponding to better approximation. The result
that allowing ω to take on negative values can eliminate the leading term in a
bias expansion is well-known in the kernel density estimation literature (Jones
and Signorini, 1997).

In the case where ξ “ 0 is known, Theorem 1 can be used to obtain a
relatively consistent estimate of the variance of Q̂p1 ´ δnq by replacing α in
(13) by the maximized WCL estimate. However, unless at least some lower
bound on the second-order parameter γ is assumed and jn is deliberately
chosen to increase sufficiently slowly to guarantee C “ 0 in (12), then it is
not clear how one might obtain an asymptotically valid confidence interval
for Q̂p1 ´ δnq. Again, there is a clear similarity to kernel density estimation,
for which the limiting bias of the density estimate is non-negligible if the
bandwidth is chosen to minimize mean squared error (Sheather, 2004). In
many problems in extremes, the observations form a time series, in which case
the variance approximation is also likely to be suspect because of the effect
of dependence of neighboring observations. Section 5 considers extending the
WCL to stationary processes and shows that the bias of point estimates due
to ignoring temporal dependence in the WCL can be minimal in at least some
circumstances in which extremal dependence is very strong. However, the same
cannot be expected to hold for the variance of the estimates, in which case,
some kind of resampling approach (Gomes and Neves, 2015) may be a better
option than asymptotic approximation.
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4 Simulation study

This section describes some results from a limited simulation study. To in-
vestigate how well the asymptotic results in the previous section work, I first
consider parameter and quantile estimation when ξ “ 0 is known and the true
distribution satisfies (9). The simulations show that the heuristic approxima-
tion in (20) gives a better approximation to the bias of quantile estimates
than (13) in Theorem 1. I then consider some simulations from heavy-tailed
distributions and ξ is treated as unknown. In both settings, the WCL with
weight function ω1 as defined in (19) performs slightly but distinctly better
than the ordinary likelihood. Perhaps more importantly in practice, the esti-
mate of ξ varies much less erratically with the bandwidth parameter j when
using a weight function ω for which ωp1q “ 0.

Figure 1 shows results from a simulation study in which ξ “ 0 is treated
as known. The simulation is made up of 5000 replications of iid samples of
size 6400 from a mixture of Exponentials with α “ γ “ 1 and λ “ 0.5 in
(8). Large sample sizes and large numbers of simulations aid in seeing some of
the fairly small differences between the results for different weight functions.
The three weight functions shown are: constant weights, ω1 in (19), which is
asymptotically optimal in this example among nonnegative weight functions,

and ω̃ptq “ 6´ 18t` 12t2, for which
ş1

0
tω̃ptq dt “ 0, so that this kernel gives a

lower order asymptotic bias than the other kernels when γ “ 1. This particular
functional form for ω̃ was chosen because it is the unique quandratic polyno-

mial P that satisfies
ş1

0
P ptq dt “ 1, P p1q “ 0 and

ş1

0
tP ptq dt “ 0. The left

panel shows the mean of the estimates of the scale parameter σ as a function
of the bandwidth j, which should be compared to the true scale parameter of
the upper tail, given by α´1 “ 1. We see that, as expected, for any given value
of j, the weight function ω1 gives noticeably smaller bias than constant weights
and ω̃ has much lower bias than either of them. Of course, for a given value
of j, the constant weight function yields an estimate with the lowest variance.
When minimizing the mean squared error over j for constant weights, the min-
imizing j is 319 with mean squared error of 0.00486, for ω1, the minimizing j
is 469 with mean squared error of 0.00453, and for ω̃, the minimizing j is much
larger, 1972, with mean squared error 0.00350. Another possible advantage of
varying weights can be seen in the right panel of Figure 1, which shows that
the mean squared error changes more slowly with the bandwidth j for ω1 and
especially ω̃ than for constant weights. Thus, we might hope that selecting j
will be less critical when using an appropriate WCL, although even empirical
verification of such a claim would depend on having a unified approach for
selecting j across some class of weight functions.

Figure 2 compares empirical and asymptotic biases and variances for es-
timated quantiles from these same simulations. Write δn in the form δ{n to
make it easier to see to what extent the quantile being estimated is an ex-
trapolation outside the range of the observations. As we should expect, the
bias in Q̂p1 ´ δ{nq increases as δ decreases. Furthermore, as the asymptotics
indicate, the change in bias is essentially linear in log δ. Theorem 1 gets the
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Fig. 1 Simulated means and mean squared errors for estimates of σ (truth equals 1) when
ξ “ 0 is known based on 6400 observations from a mixture of Exponentials. The horizontal
axis gives j, the number of observations used to estimate σ. Solid gray line corresponds to
constant weights, solid black to γ “ 1 in (19) and dashed black to quadratic weight function
that removes the leading term in the bias.

slope of this changing bias very accurately, but with a substantial error in
the intercept. Using the correction suggested by (20) reduces the error in this
intercept. Theorem 1 accurately captures the variance of Q̂p1 ´ δ{nq for the
wide range of δ values shown.

Of course, the more important practical setting is when ξ is treated as
unknown. Figure 3 shows mean squared errors for estimates of ξ based on
samples of size n “ 6400 for two distributions in which the true value of ξ is
1/3, so fairly heavy-tailed distributions. The left plot is for a mixture of two
standard (µ “ 0 and σ “ 1) GPDs, where the first component has mixing
probability 0.1 and ξ “ 1{3 and the second component has mixing probability
0.9 and ξ “ 1{6. The right plot is for the cumulative distribution function
T3pxq

2, where Tν is the cumulative distribution function of a t distribution on
ν degrees of freedom. Both of these distributions satisfy Condition 1 in Drees
(1998): there exist constants c1 and c2 such that

Qp1´ txq ´Qp1´ tq

c1t´1{ξ
“
x´ξ ´ 1

ξ
` c2t

1`γpxγ ´ 1q `Rpt, xq, (24)

where ξ “ 1{3, γ “ 1 and Rpt, xq “ opt1`γq as Ó 0 for all x ą 0. Note that the
power of x in the second order term is γ, which equals 1 in both simulated
distributions. Thus, as for the mixture of Exponentials simulations, we might
expect ω1 as defined in (19) would perform well among nonnegative weight
functions for large sample sizes and, indeed, Figure 3 shows ω1 slightly out-
performs ω2, which in turn slightly outperforms the constant weight function.
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panel shows empirical bias (solid gray curvex), asymptotic bias using Theorem 1 (dashed
black curve) and approximate bias using (20) (solid black curve). Right panel shows empirical
variance (solid gray curve) and asymptotic variance using Theorem 1 (dashed black curve).

Despite using 5000 simulations, the mean squared errors for the constant
weight function in Figure 3 have noticeable fluctuations in j, especially for the
mixture distribution, suggesting that there is considerable variation in j for
estimates of ξ when using a constant weight function. These fluctuations for
the mixture model are explicitly shown in Figure 4 for the first 2 of the 5000
simulations run. For both simulations and all three weight functions, while the
estimates of ξ change substantially with j, the changes are fairly smooth for
ω1 and ω2, but are quite erratic for constant weights. It is not surprising that
for a weight function ωptq that tends to 0 as t Ò 1, a small increase in j yields
a small change in the estimate of ξ, since the new observations incorporated
into the estimate would all get small weights. Plotting estimates of ξ as a
function of threshold and selecting a threshold beyond which these estimates
no longer show clear systematic variation gives one informal approach for
selecting the threshold when fitting a GPD (Coles, 2001)[p. 83]. Applying this
approach to these two simulations would seem to suggest that, for the weighted
procedures, the threshold should be taken even larger than the largest value
shown in these plots, corresponding to j “ 100. However, as the left panel
in Figure 3 shows, the mean squared error for these weighted estimates are
minimized when j ą 600, so this graphical method for threshold selection may
not be suitable for WCL estimates. In particular, the reduced fluctuations with
small changes in j may make it too easy to see trends in ξ̂, which could lead
to choosing j too small if one expects to see no clear systematic trend in ξ̂
beyond the selected value of j.
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Fig. 3 Simulated mean squared errors for estimates of ξ based on 6400 observations as a
function of j, the number of observations used to estimate ξ for (left plot) a mixture of two
GPDs and (right plot) a distribution with cdf given by T3pxq2, where Tν is the cdf of a t
distribution on ν degrees of freedom. Plotting symbols indicate weight function, where gray
x’s indicate constant weights and numbers correspond to γ in (19).
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5 Observations from a stationary process

When observations are identically distributed but not independent and we
fit a parametric model to their marginal distribution acting as if they are
independent, then the gradient of the resulting log-likelihood function still
yields unbiased estimating equations. This property does not generally carry
over to the WCLs in (2) and (3). However, we might hope that if the sample size
is sufficiently large and the observations are not too dependent, the resulting
biases might be small. For a stationary time series, declustering methods (Ferro
and Segers, 2003) can reduce the impact of this dependence, but they can
have their own problems with bias when the goal is estimation of marginal
quantiles (Fawcett and Walshaw, 2007) and there are other approaches for
addressing the impact of serial dependence on uncertainty quantification for
extreme quantiles (Fawcett and Walshaw, 2012). Of course, if the dependence
of extremes is of specific interest, then an appropriate data analysis will have
to extend beyond estimating marginal quantiles.

If the dependence is negligible after a few lags, it should be possible to
reduce any effects of this dependence on the bias in using a maximizer of (4)
to estimate θ by splitting up the time series into k series with gaps of size k
between each observation. For example, to estimate extreme upper quantiles
using a GPD, first select a value j and set Q̂p1´pj`1q{pn`1qq “ µ̂ “ Xpn´jq
as before. Next, split the time series into m subseries, with the `’th subseries
X` “ pX`, X``m, . . . , X``r`mq, where r` is chosen so that ` ` r`m ď n ă
``pr`` 1qm. Define Xp1,`q ď ¨ ¨ ¨ ď Xpr`,`q to be the ordered values in X` and
select jp`q to satisfy Xpr`´jp`q,`q ď µ̂ ă Xpr`´jp`q`1,`q, where Xp0,`q “ ´8 and
Xpr``1,`q “ `8. Writing Yk,` “ Xr`´jp`q`k,` ´ µ̂ for the exceedances of µ̂ and
setting Y0,` “ 0, the resulting WCL for pσ, ξq assuming observations in each
subseries are independent is

m
ÿ

`“1

jp`q
ÿ

k“1

ω

ˆ

k ´ 1

jp`q

˙"

´

ˆ

k

ξ
´ 1

˙

log

ˆ

1`
ξYjp`q´k`1,`

σ

˙

´ log σ

`
k

ξ
log

ˆ

1`
ξYjp`q´k,`

σ

˙*

, (25)

where a sum whose upper limit is less than its lower limit is understood to
equal 0.

It appears difficult to study theoretically the bias in the estimating equa-
tions obtained by setting the gradient of (25) to 0 for dependent data, so here
I show results from a small simulation study. I consider two stationary time
series models in which the marginal distributions are Exponentials with scale
parameter σ, so any bias that arises from using (25) is due to the dependence.
To further simplify the problem, assume ξ “ 0 and µ “ 0 are known and
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n{m “ r is an integer, in which case, maximizing (25) yields

σ̂ “

m
ÿ

`“1

r
ÿ

k“1

ω

ˆ

k ´ 1

r

˙

kpYr´k`1,`,` ´ Yr´k,`q

m
r
ÿ

k“1

ω

ˆ

k ´ 1

r

˙
, (26)

where Y0,` “ 0. Since EpYr´k`1,`,` ´ Yr´k,`q “ σ{k when the observations are
iid Exponential with scale parameter σ, we immediately see that this estimate
is then unbiased. Using simulations for dependent Exponentials, we can then
isolate the bias of these estimates that arises from using order statistics of
dependent observations by considering kEpYjp`q´k`1,`,`´Ypjp`q´k,`q as k varies.

The first model considered is a chi-squared process with two degrees of
freedom (Davies, 1987): the sum of squares of two independent stationary
Gaussian AR(1) processes with mean 0, variance 0.5 and autocorrelation co-
efficient

?
ρ. The marginal distribution of the resulting process is standard

Exponential and the lag m autocorrelation equal to ρm. The second model is
the TEAR(1) process proposed in Lawrance and Lewis (1981) with correlation
parameter ρ ě 0, for which X1 is a standard Exponential random variable and,
for n ą 1, Xn is defined recursively by p1´ ρqEn `Bn´1Xn´1, where X1, the
Bn’s and the En’s are all independent, the En’s follow a standard Exponential
distribution and the Bn’s follow a Bernoulli distribution with P pBn “ 1q “ ρ.
This process is stationary, the marginal distribution of each Xn is standard
Exponential and the lag m autocorrelation is ρm. In the simulations, I set
ρ “ 0.9 for both processes to consider cases of strong dependence. As the
upper left panel of Figure 5 shows, the realizations of the two processes look
quite different. The first model is reversible in time whereas the second process
clearly is not, with long periods of increase followed by sudden collapses, which
occur when En “ 0. From the point of view of extremes, the two processes
are very different. The index of extremal dependence of consecutive obser-
vations (Chavez-Demoulin and Davison, 2012; Davison et al., 2013), defined
as limxÑ8 P pXn`1 ą x | Xn ą xq (or as x tends to the upper limit of the
distribution in the bounded case), is 1 for the first process, corresponding to
asymptotically independent extremes, and equals 1´ρ for the second process.

Each process was simulated 100,000 times for sample sizes n “ 1600 and
6400 and the average values for gaps of the order statistics were computed.
Writing Gk for Xpn´k`1q ´Xpn´kq, we know that kEGk “ 1 when ρ “ 0. We
also have n´1

řn
k“1 kEGk “ 1 for both models and all values of ρ, since the

WCL then equals the exact log-likelihood under independence, which yields
unbiased estimating equations even when the observations are dependent as
long as the model for the marginal distribution of the observations is, as in the
current case, correct. The upper right panel of Figure 5 shows the averages of
kGk over the 100,000 simulations for the two processes. These expected values
are substantially less than 1 for k “ 1 and then appear to decay exponentially
towards 1 as k increases. Since n´1

řn
k“1 kEGk “ 1, some of the averages of

kGk must be greater than 1, but for n “ 6400, all of these averages are well
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below 1.02 for both processes, so the larger biases are all concentrated at small
k. A perhaps unexpected result is that these averages show little dependence
on n, to the extent that it is difficult to see the difference between the results
for the two sample sizes for the TEAR(1) process. Since the value of j will
tend to increase with n, this result suggests that bias induced by dependence
will lessen as the sample size increases. Not surprisingly, the deviations from 1
are substantially larger for the TEAR(1) process, which has strong extremal
dependence. The bottom two plots in Figure 5 show the average values of
kpYr´k`1,`,` ´ Yr´k,`q for ` “ 1, 2 and 4; for k small, we very nearly have
kEpYr´k`1,`,` ´ Yr´k,`q “ k`EpXpn´k``1q ´Xpn´k`qq for both processes. Fur-
ther results (not shown) demonstrate that this approximation is accurate for
larger values of r as well. Since one would generally use smaller values of j for
smaller n, we might expect that biases caused by dependence would be more
of an issue with smaller sample sizes.

Since the simulations of the previous section indicate that the exact form
of the weights does not matter much, if one is concerned about the bias in-
duced by dependence it may make sense to choose r fairly large as long as
j{r is not too small. However, in practice, any bias due to dependence may be
inconsequential compared to bias caused by the fact that the distribution of
exceedances do not exactly follow a GPD. To demonstrate this phenomenon,
consider a chi-squared process on 4 degrees of freedom: the sum of squares of
four iid stationary Gaussian AR(1) processes with mean 0, variance 0.5 and
autocorrelation coefficient

?
ρ. The marginal distribution of the resulting pro-

cess is Gamma(2,1) and the lag m autocorrelation equals ρm. Since the correct
asymptotic shape parameter is ξ “ 0 in this case, I fit Exponential distribu-
tions to the upper order statistics for a range of j and r values using the linear
weight function ω1 as defined in (19). Figure 6 shows biases and standard
deviations for ρ “ 0.9, series of length 1500 and estimates of the 1 ´ 1{1500
quantile, whose true value is 9.682. From Figure 5, we should expect the de-
pendence to cause downward bias in the estimation of σ and, hence, downward
bias in the estimate of extreme quantiles. Indeed, for the smaller values of j,
the quantile estimates are downward biased for r “ 1 and larger values of r
correct this bias. However, even for r “ 1, the biases eventually become posi-
tive for larger j so that increasing r makes this positive bias slightly larger. For
any given value of j, the standard deviations of the estimates always increase
with r, modestly for smaller j and minutely for larger j. Somewhat surpris-
ingly, for given r, the standard deviations do not monotonically decrease with
increasing j, being larger for j “ 40 than for j “ 10 or 20, although there is
a clear decrease in the standard deviations with increasing j for j ě 80. For
the largest value of j shown of 640, in terms of the mean squared error, the
standard deviations dominate the bias, so that among the combinations of j
and r shown in Figure 6, j “ 640 and r “ 1 actually gives the smallest mean
squared error, although larger values of r with j “ 640 do only negligibly
worse. Thus, we see that, at least in this case, the choice of j influences both
the biases and standard deviations of the quantile estimates much more than
the choice of r despite the strong autocorrelation in the process.
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Fig. 5 Simulation results for stationary processes with mean 1 Exponential marginals and
lag 1 autocorrelation 0.9. In all plots, black symbols correspond to chi-squared process and
gray symbols to TEAR(1) process. Upper left panel: simulation of 100 time steps of each
process. For a sample size n, upper right panel gives averages of kXpn`1´kq for k “ 50, . . . , 1,
whose means would all be exactly 1 if the observations were independent. ` corresponds to
n “ 1600 and x to n “ 6400. For the TEAR(1) process, results are nearly identical for the
two sample sizes, making it difficult to see both symbols. Lower two plots (left, chi-squared
process, right, TEAR(1) process) show average values for these statistics when a series of
length 6400 is split into 1, 2 or 4 separate series as described in text.

6 Non-identically distributed observations

There is a substantial literature on order statistics for random variables that
are independent but not identically distributed (David and Nagaraja, 2003;
Bon and Păltănea, 2006; Balakrishnan and Zhao, 2013), but it is not apparent
how to directly use the results in these works to obtain a useful composite log-
likelihood. The exact joint distribution of the order statistics for X1, . . . , Xn

independent but not identically distributed requires summing over all permu-
tations of the indices 1, . . . , n (David and Nagaraja, 2003)[Section 5.2]. How-
ever, even if this sum were feasible to compute, it would not generally be a
good basis for inference because the order statistics are no longer a sufficient
statistic when the observations are not identically distributed. This section
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Fig. 6 Simulations of chi-squared process with Gamma(2,1) marginal distributions and first
order autocorrelation 0.9. For series of length n “ 1500, bias and standard deviations for
estimates of 1´1{n quantile. Horizontal axis indicates r as defined in (26) and, writing ` for
the plotting symbol, j “ 10ˆ2`´1 is the number of upper tail observations used to estimate
the scale parameter.

suggests some possible WCLs that can be used for independent but not iden-
tically distributed observations that attempt to make acceptable compromises
between computational feasiblity and statistical efficiency. One possibility is
to use the conditional likelihood of the k’th order statistic given the values
and indices of the first k order statistics. Let us assume no ties to avoid com-
plications. Write jp1q, . . . , jpnq for the indices of the ordered observations, so
that, for example, Xjp1q “ Xp1q and define the set Jpkq “ tjp1q, . . . , jpkqu. Ad-
ditionally, denote the density and survival functions for Xj by fθ,j and Sθ,j ,
respectively. Then the conditional density of Xpkq given Xp1q, . . . , Xpk´1q and
Jpkq is

fθ,jpkqpXpkqq

Sθ,jpkqpXpk´1qq
¨

ź

i RJpkq

Sθ,ipXpkqq

Sθ,ipXpk´1qq
. (27)

Alternatively, at greater computational effort, we can calculate the conditional
likelihood of Xpkq given Xp1q, . . . , Xpk´1q and Jpk ´ 1q:

ÿ

iRJpk´1q

fθ,ipXpkqq

Sθ,ipXpk´1qq
¨

ź

` RtJpk´1qYiu

Sθ,`pXpkqq

Sθ,`pXpk´1qq

“
ÿ

iRJpk´1q

fθ,ipXpkqq

Sθ,ipXpkqq
¨

ź

` RJpk´1q

Sθ,`pXpkqq

Sθ,`pXpk´1qq
. (28)

Both of these formulas make sense for k “ 1 as long as we define Xp0q “ ´8
and Jp0q as the null set. Weighted sums over k of the logarithms of either
of (27) or (28) are possible WCLs. However, unlike the case for identically



20 Michael L. Stein

distributed observations, neither of these give the exact log-likelihood when
the weights are all 1, so there is the potential for loss of information when
using such WCLs. Indeed, if the distributions of the observations are very
different, then conditioning on Jpkq could lose a lot of information about θ.
For example, suppose our model for the independent observations X1 and X2

is that Xi has a uniform distribution on pθi, θi ` 1q, where pθ1, θ2q equals
either p0, 2q or p2, 0q. Then the actual observations X1 and X2 would tell us
for sure which of the two possibilities for pθ1, θ2q was correct, whereas both
(27) and (28) are identically 1 for k “ 1 or 2 and thus provide no information
about the parameters. Of course, this example is extreme but it makes the
point that if the correct marginal distributions of the observations are very
different, conditioning on the ranks of the observations can lead to a large loss
of information.

One might hope that, because it conditions only on Jpk ´ 1q rather than
Jpkq, WCLs based on (28) will sometimes yield more statistically efficient esti-
mates than when using (27). Since both (27) and (28) reduce to the conditional
density of Xpkq given Xp1q, . . . , Xpk´1q when the observations are identically
distributed, another approach to reduce this information loss is to preprocess
the observations so that they are nearly identically distributed. Here is one
possible way this preprocessing could be done. For some small δ ą 0, choose
some threshold probability 1 ´ δ and fit a quantile regression at this level to
the observations using suitably chosen covariates that can explain the nonsta-
tionarity. Denote the fitted threshold for observation j by t̂j . Now fit a second
quantile regression at level 1 ´ δ{2 using the same covariates as the previous
regression. Write r̂j for the difference in the fitted values of observation j for
the levels 1´ δ{2 and 1´ δ quantile regressions. Then write Yj “ pXj ´ t̂jq{r̂j
for the normalized exceedances and fit a GPD with possibly varying scale and
shape parameters using a weighted composite log-likelihood.

When the number of observations above a designated (possibly varying)
threshold is large, calculating WCLs using even the simpler (27) could be
onerous. We can reduce the number of computations substantially by break-
ing up the data into L groups and only considering the ranks within each
group, similar to what was proposed in the previous section but for a different
purpose. For example, in the analysis of daily precipitation data presented in
the next section, I will split up the observations by months, which, in addition
to reducing the computations by roughly a factor of 12, may help to reduce
any information loss due to using order statistics of observations that are not
identically distributed. More explicitly, define Γ` as the set of indices k that
are in group ` and for which the normalized Yk is positive. Write n` for the
cardinality of this set. Let Yp1,`q ă ¨ ¨ ¨ ă Ypn`,`q be the order statistics among
the Yk’s with k P Γ` and define j`pkq and J`pkq as before except for just those
observations in group `. Then using, for example, (27), we have the WCL

L
ÿ

`“1

n
ÿ̀

k“1

ω

ˆ

k ´ 1

n`

˙

log

$

&

%

fθ,j`pkqpYpk,`qq

Sθ,j`pkqpYpk´1,`qq
¨

ź

i RJ`pkq

Sθ,ipYpk,`qq

Sθ,ipYpk´1,`qq

,

.

-

. (29)
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7 Application to daily rainfall data

This section considers estimating seasonally varying upper quantiles of daily
precipitation (measured to the nearest 0.01 inches) at the Central Park weather
station in New York City for the period January 1, 1869–March 1, 2021,
obtained from the National Centers for Environmental Information website
(Menne et al., 2012). Figure 7 shows quantiles for these data by month. The
months August–October have the smallest 0.75 quantiles and the largest 0.999
quantiles, so there is a clear seasonality in the data that cannot be explained
by a simple scaling factor. Indeed, in October, the percentage of days with
positive precipitation is 27.4 and the 0.75 quantile is 0.01 inch, the lowest pos-
sible positive value. It is worth noting that August–October is the peak of the
North Atlantic hurricane season, although I have not checked to see which of
the most extreme precipitation amounts are associated with hurricanes. Fig-
ure 8 suggests that there is some non-stationarity in the process across years,
with the total annual precipitation taking on consistently low values from the
late 1940s to the late 1960s and the last 50 years containing the 9 highest an-
nual precipitation values out of the 152 complete years of data available. The
maximum daily precipitation by year (right panel of Figure 8) does not show
obvious non-stationarity and, to avoid complications, I will assume there is
no long-term trend in upper quantiles across years. The temporal dependence
in the data is fairly weak. Without correcting for seasonality, the raw lag one
autocorrelation of the time series is 0.083 and the lag one autocorrelation of
the indicator of positive precipitation is 0.161. Focusing on extreme precipita-
tion, there are 30 days with 4 or more inches of rain in the dataset, only two
of which occur on consecutive days, another pair of occurrences are four days
apart and no other occurrences are within one month of each other. These
modest dependencies should have a limited impact on estimates of marginal
distributions and, given the simulation results for processes with much higher
correlations in the previous section, are unlikely to induce substantial biases
when using WCLs based on order statistics.

To provide a fair comparison between maximum likelihood estimates and
maximum WCL estimates using (27), I split the data roughly in half into
training and testing data in alternating periods of 4 years. Thus, the training
data consists of 1869–1872, 1877–1880,. . ., 2013-2016 and all other years in
the testing data, including the partial data for 2021. Spreading the years in
the training data across the time period was done to reduce any influence of
a changing climate on the results and four-year blocks were selected to reduce
statistical dependence between the training and test data. In all quantile re-
gressions and linear models for the logarithm of the scale parameter of the
GPD, I used a periodic cubic spline basis with one-year period and 6 evenly
spaced knots. For a range of quantiles 1´ δ, using the quantreg package in R
(Koenker, 2021), I then estimated threshold functions using quantile regres-
sion, yielding a fitted threshold function t̂k as a function of day k. Because
of the considerable length of this data set, I used the more accurate value of
365.242 days per year rather than 365.25, although it makes almost no differ-
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ence in the results. For the ordinary (unweighted) likelihood, I then fit a GPD
to the exceedances using a scale function σ̂k whose logarithm is linear in the
spline basis functions using the R package extRemes (Gilleland, 2020). For the
WCLs only, to make the exceedances more nearly identically distributed, as
described in the previous section, I normalized the exceedances by dividing
by the difference in the fitted values for each day for quantile regressions at
quantile 1´ δ{2 and 1´ δ. Denote this normalizing function by r̂k. Using (29),
I then fit GPDs to the normalized exceedances over these seasonally varying
thresholds again using a linear model for the logarithm of the scale function σ̂k.
Optimization was carried out using the nlm command in R and starting values
given by the ordinary likelihood estimates for the given value of δ. I considered
allowing the shape parameter to vary seasonally by allowing a separate value
of this parameter for the months of August–October, but preliminary analyses
indicated including such a factor did little to improve the fit, so I chose to use
a constant shape parameter.

Although the distribution of extreme precipitation clearly varies seasonally,
it may be more relevant to assess the chances of precipitation events of a given
size regardless of season. Thus, to evaluate these fits for these various fitted
models, I considered how well these models fit precipitation amounts above
either 2 or 3 inches. Precipitation above 2 inches occurs 756 times (0.63% of
days) and precipitation greater than 3 inches 97 times (0.17% of days) over
the entire dataset.

Following Stein (2021), the criterion function I used is the log-likelihood
of the testing data censored from below at a cutoff c of either 2 or 3 inches,
ignoring any possible dependence in the observations. Now using k to indi-
cate a day in the testing set and writing pk for the corresponding observed
precipitation, this criterion function can be written as

ÿ

pkďc

log

»

–1´ δ

˜

1`
ξ̂

σ̂kr̂k
pc´ t̂kq

¸´1{ξ̂
fi

fl

`
ÿ

pkąc

«

log
δ

σ̂j r̂k
´

ˆ

1

ξ̂
´ 1

˙

log

˜

1`
ξ̂

σ̂kr̂k
ppk ´ t̂kq

¸ff

, (30)

where r̂k is identically 1 for the maximum likelihood estimate. This result
assumes that t̂k ă c for all j, which is true in all cases shown here. Note
that σ̂kr̂k is the estimated scale parameter of the GPD on day k for the
unnormalized observations.

These criterion functions are plotted in Figure 9. For the 2 inch cutoff,
the best maximum likelihood estimate beats the best WCL estimate by about
1 log-likelihood unit. However, the performance of the maximum likelihood
estimate varies quite irregularly in δ, so this modestly superior performance
could easily be due to luck. In practice, it may be desirable to have a procedure
whose results are fairly insensitive to modest changes in the difficult to specify
quantity δ and, in this regard, the weighted procedure clearly dominates. When
the more extreme and, thus, perhaps more relevant cutoff of 3 inches is used,
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Fig. 9 Cross-validated log-likelihoods for New York City daily precipitation censored at 2
and 3 inches based on a seasonally varying threshold fit via quantile regression at a range
of quantiles and a seasonally varying GPD for exceedances over thresholds using maximum
likelihood (˝) and maximum WCL (`) with a linear weight function.

the best WCL estimate is marginally better than the best ordinary likelihood
estimate. Furthermore, with the 3 inch cutoff, the ordinary likelihood estimate
performs substantially worse when 1 ´ δ is increased from its optimal value,
0.96, to the next larger value considered of 0.97.

Figure 10 gives more detailed results for the number, by month, of ob-
served and expected exceedances of 2 and 3 inches of daily precipitation. The
year 2021 is left out of the calculations so that the training and testing data
have the same number of days, although, in fact, there were no observed ex-
ceedances of 2 inches for the partial year 2021. Because I took a year to have
365.242 days, the expected number of exceedances in the testing and training
periods are not exactly equal, but the difference is trivial and is ignored in
this figure. Based on their good performance in Figure 9, this figure shows
results for δ “ 0.04 for the unweighted procedure and δ “ 0.11 for the linear
weighted procedure. For both cutoffs, the expected seasonal patterns are very
similar for the two estimates, with differences that are much smaller than the
differences between the observed outcomes in the training and testing periods.
If we go to even higher cutoffs, the observed exceedances are too rare to make
a monthly comparison informative. Summing over all months, the unweighted
and weighted procedures estimate the expected number of exceedances of 4
inches over the training (or testing) period of 15.16 and 15.54, respectively,
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whereas the observed number of exceedances was 18 for the training period
and 12 for the testing period. The same results for expected exceedances of
5 inches are 5.15 and 5.27 for the unweighted and weighted procedures, re-
spectively; there are 4 exceedances of 5 inches in both the training and testing
periods. Overall, both procedures give very good agreement with the observed
record in both the training and testing periods.

This kind of cross-validation could be used to select δ, although there are
many issues that would need to be addressed before such an approach could
be used routinely in practice. One simple approach to choosing the threshold
quantile 1´ δ when ξ is constant is to plot estimates of ξ as a function of this
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ordinary log-likelihood (u) and WCL with linear weight function (w). Value for WCL and
1´ δ “ 0.98 not shown because of convergence issues in fitting model.

quantile and then select δ at a point where the estimated shape parameter
shows no obvious systematic variation for smaller δ (Coles, 2001)[p. 83]. Figure
11 gives such a plot for the two procedures. For both procedures, it appears
that the estimated shape is decreasing across the entire range of δ values,
which would normally indicate that δ should be taken even smaller than 0.02,
the minimum value considered. However, the cross-validation results indicate
that such small values of δ are not the best for fitting the upper tail of the
rainfall distribution. We do see that the estimates of shape using the WCL
show less local variation than the ordinary log-likelihood. For example, while
the overall slope of the estimates for ordinary log-likelihood is steeper than for
the WCL, the WCL estimates are monotonically decreasing in 1´ δ, whereas
the estimates based on the ordinary log-likelihood are not. Thus, it may be
easier to spot systematic trends in shape estimates as the threshold varies
when using WCL, although this example indicates that, similar to what was
found in Figure 4, one might be better off deliberately selecting a threshold at
which the estimated shape is still clearly systematically changing.

8 Discussion

The various WCLs described here do not require assuming a GPD model for
the upper tail of the distribution. There are a number of approaches to model-
ing distribution functions of iid observations when the main interest is in the
upper tail, including mixture modeling (Scarrott and MacDonald, 2012; Scar-
rott, 2016), parametric extensions of the GPD (Papastathopoulos and Tawn,
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2013; Naveau et al., 2016; Stein, 2020, 2021) and semiparametric approaches
(Huang et al., 2018). In this setting, one would presumably consider choosing
j in (3) much larger than when fitting a GPD, perhaps even taking j “ n but
still taking wk small when k is a substantial fraction of n to limit the influence
of the smaller observations. For temperature, one may sometimes be interested
in both the upper and lower tails of the distributions, in which case the mod-
els in Stein (2020, 2021) may be appropriate. In this case, taking n odd for
convenience, one might consider a WCL that uses the marginal log-likelihood
of the median and then includes two sums like the sum in (3), one for the
order statistics increasing from the median and one for those decreasing from
the median. Further afield, this WCL could be used to downweight the more
extreme rather than the less extreme observations, giving estimates of char-
acteristics of distributions that are robust to outliers. It could be interesting
to compare the resulting estimates to traditional robust procedures (Huber,
2004).

Clearly more can be done to extend the theory and to refine the methods
proposed here for practical use. Some specific issues needing attention include
the preprocessing step when observations are not identically distributed and
methods for selecting thresholds. Nevertheless, the results obtained here show
that WCLs based on order statistics can have some noticeable, if modest, ben-
efits over ordinary log-likelihoods for fitting GPDs to tail observations, both
for parameter and extreme quantile estimation. The weighted approach can
substantially reduce random fluctuations in estimated parameters and extreme
quantiles as a function of the threshold. This reduction in fluctuations might
be expected to yield improved extreme quantile estimation when thresholds
are chosen in a data-driven manner, but since threshold selection is often done
based on visual inspection of graphical diagnostics, it is not clear how one
might definitively reach such a finding.

9 Proof of Theorem 1

Writing t¨u for the greatest integer function and setting cn in Theorem 2.1 of
Drees (1998) to 1{pα

?
jnq, it follows that there exists a sequence of Brownian

motions tBnptqutě0 such that for each ε ą 0,
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in probability as nÑ8. From the assumptions on ω, we have
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Writing ∆k for kwk ´ pk ´ 1qwk´1, summation by parts implies
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Define νptq “ ωptq ` tω1ptq, so that ∆k “ νpk{jnq ` Op1{jq, uniformly in k.
Using (31) and(32), it follows that
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It follows from (6), (33) and (34) that
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Similar calculations show that
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Setting ε “ 1{4 in (31),
ż 1

0

νptq

ˆ

Xpn´ttjuq ´Q

ˆ

1´
jn
n

˙

`
1

α
log t

˙

dt

“

ż 1

0

νptq

t3{4
t3{4

α
?
j

ˆ

t´1Bnptq ´
a

jΦ

ˆ

jn
n

˙

Ψptq

˙

dt` oppj
´1{2
n q (37)



A weighted log-likelihood for extremes 29

since νptqt´3{4 is integrable on p0, 1q.
Putting together (12), (32) and (34)–(37),
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From (31) with t “ 1, we have α
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Integration by parts yields
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To prove the theorem, we only need that this limit is finite, but we will want the
sharper result to obtain a heuristic correction term to (13). For Bp¨q Brownian
motion, we then have
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in distribution. Theorem 1 follows from
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ż 1

0

ż 1

0

νptqνpsq

ts
minps, tq ds dt

“ ´ωp1q2 ` 2

ż 1

0

νptq

t

„
ż t

0

νpsq ds



dt

“ ´ωp1q2 `

ż 1

0

„

d

dt

`

tωptq2
˘

` ωptq2


dt

“

ż 1

0

ωptq2 dt. ˝
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