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1 Introduction

The MACSER: Multifaceted Mathematics for Rare, High Impact Events in Complex Energy
and Environment Systems, was started in September 2017. At inception it involved 24 principal
investigators and had plans for 18 junior personnel: junior scientists, postdoctoral fellows, and
graduate students. The number was reduced to 22 following the 2017 budget negotiations and
it currently has 19 active principal investigators.

In 2020-2021 (one year of performance) MACSER pursued high quality mathematical re-
search in nine different investigation areas (§A). It aimed to impact mathematical research, its
community, as well as the domain area of complex energy and environmental systems. This
was achieved by research contributions (§2), technical leadership, (§3), and dissemination of our
findings and ideas through multiple channels and forums (§3).

To answer the organizational challenges, MACSER adjusts focus based on interactions of
the director with the site leads and a technical committee. Some of the facts that guide the
planning are the reviewer feedback, the evaluation of research progress, and the mathematical
opportunities presented by an increased emphasis in the application areas on certain directions.

In this report, we present technical accomplishments, their impact on the mathematical and
domain areas, and the impact of the MACSER researchers on the scientific community during
the performance period.

2 Technical Progress

2.1 Space Time Data Analysis

In this cycle we developed new high/low tail nonstationarity distributions to model both
marginal bulk and extremes, machine learning inference methods for intractable likelihoods,
efficient change point detection methods for regression problems, new spectral estimation meth-
ods, and optimal experiment design strategies for data acquisition with correlated observations.
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Figure 1: Flexible parametric quantile estimates for the year 2020: 0.001, 0.01, 0.1 (blue), 0.25, 0.5,
0.75 (green), and 0.9, 0.99, 0.999 (red). Black lines show the minimum/median/maximum observation
for that day of year, taken over all years.

Parametric distributions and non-stationary temperature modeling. We have developed exten-
sions of the flexible parametric model from last year [46] to take account of seasonal effects and
climate change in daily temperature at locations in the United States with long temperature
records [24] (see Figure 1 for distribution fits at 3 of the locations). Comparisons to empiri-
cal distributions, other parametric models, and fitted models to the tails of the distributions
using generalized Pareto distributions show this approach provides a general methodology to
accurately fitting the bulk and tails of a broad range of temperature distributions with widely
varying seasonal characteristics and responses to climate change.
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Figure 2: Estimated quantiles
changing from the beginning of the
observation period (light) to the end
(dark). Curves are the 0.001, 0.1,
0.5, 0.9, and 0.999 quantiles.

Variability of temperature and its extremes impact the
energy generation and demand, as well other as infrastruc-
tures, and might arise from moderately high/cold temper-
ature over a large spatio-temporal extent. To address the
asymmetry on classical data usage when fitting tails and ex-
tremes separately, we build [24] on our recently proposed
parametric model [45] by accounting for seasonality, long-
term trends, and the interaction between these two charac-
teristics. This model shows better performance when com-
pared to several benchmark models that are used in extreme
value analysis of temperature and allows simultaneous fitting
of all quantiles, Figure 2. We have also started to extend the
model in an hourly fashion accounting for daily cycles and
their interaction with both seasonal and long-term trends as
well as to spatial dependency.
Statistically and computationally efficient change point local-
ization in regression. We studied multiple change-point localization in the high-dimensional re-
gression setting, which is particularly challenging as no direct observations of the parameter of in-
terest is available. Specifically, we assume we observe {xt, yt}nt=1 where {xt}nt=1 are p-dimensional
covariates, {yt}nt=1 are the univariate responses satisfying E(yt) = x>t β

∗
t for 1 ≤ t ≤ n and

{β∗t }nt=1 are the unobserved regression coefficients that change over time in a piecewise con-
stant manner. We propose a novel projection-based algorithm, Variance Projected Wild Binary
Segmentation (VPWBS), which transforms the original (difficult) problem of change-point de-
tection in p-dimensional regression to a simpler problem of change-point detection in mean of
a one-dimensional time series. VPWBS is shown to achieve sharp localization rate Op(1/n) up
to a log factor, a significant improvement from the best rate Op(1/

√
n) known in the exist-

ing literature for multiple change-point localization in high-dimensional regression. Numerical
experiments demonstrate the robust and favorable performance of VPWBS over two state-of-
the-art algorithms, especially when the size of change in the regression coefficients {β∗t }nt=1 is
small.

Figure 3: Spectra showing the
characteristic double energy cas-
cade of vertical wind speed dur-
ing the nighttime stable boundary
layer. The band in frequency be-
tween the two energy cascades can
be permeated by gravity waves ex-
cited by different phenomena (7%
missing observations) [17].

Vertical wind speed in the stable boundary layer. We devel-
oped a novel method for spectral estimation when data is
missing and applied it to demonstrate the ability to identify
unique features of the surface winds. Using the methods devel-
oped in [17] to downweight periods in which there is missing
data, we were able to utilize data sequences long enough to
be able to show both the diurnal and night time energy cas-
cades of the boundary layer wind speeds (and, consequently,
with much higher accuracy), Figure 3. The data in that fig-
ure are of vertical wind speeds collected via Doppler LIDAR
at two heights in the atmosphere for a duration of one hour
near 6am Oklahoma time. We also developed novel spectral
methods for modeling high-frequency space-time data and ap-
plied these methods to Doppler LIDAR vertical wind velocity
measurements [16] demonstrating again vastly improved accu-
racy. This paper won an honorable mention in 2021 in Student
Paper Competition of the Section on Statistics and the Envi-
ronment of the American Statistical Association. Moreover,
we extended the Multitaper.jl package [18], for spectral estimation to time series with un-
equal temporal observing cadence and two and three dimensional data.
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Correlations Discarded

Figure 4: Solution of the inverse problem (±2σpost)
obtained based on the A-optimal design from solv-
ing the OED problem. The number of candidate
observational sensors/locations is 43 with a budget
of only 8, resulting in +108 candidate observational
configurations making it impossible to tune the ob-
servational configurations by brute force, and man-
dates efficient and accurate OED approaches. Not
accounting for correlation errors leads to poor results
by a factor of 4.

Optimal experimental design and data assim-
ilation. PDE driven experimental design typ-
ically treat observational errors as being un-
correlated. In our case however, we cannot
make such assumptions in the case of LIDAR
instruments and discarding such evident data
correlations leads to biased results, poor data
collection decisions, and waste of valuable re-
sources. We have developed new theory that
allows for space-time correlations and extends
current state-of-the art in the design of exper-
iments [3]. Our framework follows a proba-
bilistic Bayesian approach and inherently pro-
motes a binary design, thus dramatically sav-
ing acquisition cost and and/or resources. Re-
sults (in Figure 4), shown for multiple choices
of weighting kernel, demonstrate the value of
our approach, compared to the case with dis-
carded correlations, insofar solution accuracy.

2.2 Rare Events

In this cycle we have developed spatiotemporal statistical and deep learning-based models for
extreme events, which perform better than the state of the art. Furthermore, we have developed
perturbative methods for quantifying the failure rates of transmission networks driven by random
fluctuations in generation and load. Finally, we propose a new method for estimating worst-case
trajectories in transient dynamics studies.

Figure 5: (Left) Observed vs predicted tempera-
ture minima with 95% confidence intervals estimated
using pairwise likelihood (red) and our approach
(green). (Right) F-madogram (pair-wise dependence
of extremes) estimates for the validation datasets
(black points) and estimated extremal coefficient
functions. Pairwise likelihood underestimates the
spatial dependence of extremes, while our method
captures pairs of locations with high extremal de-
pendencies.

Spatiotemporal models of extreme frequency
events. In [25], we proposed a spatiotemporal
statistical model for detecting early frequency
disturbances and for quantifying the risk of
frequency excursion. Spatial information is
accounted for either as neighboring measure-
ments in the form of covariates or with a spa-
tiotemporal correlation model captured by a
latent Gaussian field. A Bayesian decision
framework is used to determine the boundary
of the decision sets for under-frequency detec-
tion in real-time. Results show that the clas-
sical, purely temporal detection model has a
consistently lower chance of catching a drop in
frequency than our approach, suggesting the
former produces higher costs for the system
operator.

We developed a deep neural network
(DNN)-based method for estimating param-
eters of high dimensional max-stable pro-
cesses [26], which are commonly used for mod-
eling spatiotemporal extremes. While processes are characterized by computationally intractable
full likelihoods even in moderate dimensions, our proposed DNN method allows us to accurately
estimate parameters in high-dimensional settings at reduced computational cost compared to ap-
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proximate likelihood approaches. Our method is also better at capturing the spatial dependence
in extremes than traditional methods (Figure 5).

We developed new methods for fitting models to the tails of distributions that allow smooth
downweighting of observations as they become less extreme, thus avoiding the standard approach
of using sharp, arbitrary cutoffs [47]. Our methods exploits the fact that the order statistics of
independent and identically distributed observations form a Markov chain, leading to a natural
weighted composite likelihood for estimating models for the tails of a distribution. Furthermore,
we have extended this approach to situations in which observations are not independent and
identically distributed, and have demonstrate the efficacy of the proposed methods through
simulations and an application to over 150 years of New York City daily rainfall data.
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Figure 6: In red, the extreme trajec-
tories of the voltage magnitude com-
puted with the trust-region method.
In grey, trajectories obtained from
sampling the interval of a parame-
ter using a grid with 1, 000 points.

Failure rate analysis of transmission networks. Building on
our work from previous cycles, [42], we propose a perturba-
tive method for quantifying the failure rate of transmission
network components for networks driven by random fluctu-
ations in generation and load. We have incorporated trans-
mission losses via a perturbative approximation of the min-
imum action problem in which we rewrite the deterministic
flow as the sum of a lossless port-Hamiltonian flow plus a
lossy contribution [5], and obtain a perturbative approxi-
mation of the F-W quasipotential in terms of the strength
of the losses, the lossless F-W quasipotential, and the lossy
flow. Finally, we employ this approximation to solve the
minimum action problem via CasADi [1]. The computa-
tional cost of our approach is significantly smaller compared
to the cost of traditional minimum action methods.
Extreme trajectories for power dynamics. The rapid penetration of new renewable technology
has resulted in lumped parameter models of distribution network with far more uncertainty
and thus difficulty in assessing their effect on the system stability. We propose a new method
of obtaining the extreme (worst-case) trajectories of the differential algebraic equations that
model the power system in transient dynamics studies [29]. This problem is formulated as an
optimization-based approach for computing the extreme trajectories dynamic systems. We also
show how to appropriately derive the initial conditions for the first- and second-order sensitivity
systems, which is critical for quantifying the uncertainty of the initial conditions. Results are
shown in Figure 6.

2.3 Optimization Under Uncertainty

We have continued investigating new models, algorithms, and applications in the optimization
under uncertainty theme. Modeling advances include the use of Distributionally Robust Opti-
mization (DRO) for data-driven stochastic optimization models with covariate information [22,
21] and new, less conservative DRO ambiguity sets [27]. We have developed advanced algo-
rithms for solving nonlinear/nonconvex stochastic programming problems [31, 50], DRO with
Wasserstein ambiguity sets [56], stochastic integer programs [8], chance-constrained integer pro-
grams [33, 32], and stochastic mixed-integer conic programs [23]. Finally, we have explored
balancing wildfire risk and electricity distribution [41] and studied the optimal restoration se-
quence after a major outage [40]. In the remainder of this section we highlight a few of these
results in more detail.
Integrating Machine Learning (ML) and Stochastic Optimization (SO). In the last reporting year,
we investigated using residuals of ML models to devise a Sample Average Approximation (SAA)
in order to solve conditional SO problems in the presence of covariates [22]. In this cycle, we
investigated DRO variants to regularize and robustify the residuals-based SAA when there are
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limited observations [21]. A key finding from this study is that DRO variants—especially those
that consider distributions with support that can go beyond the current observations (e.g.,
Wasserstein distance or sample-robust ambiguity sets)—indeed result in better performance,
even when the ML model is misspecified.

Figure 7: Optimality gap and reliability of inter-
mediate solutions from the relaxed approximation
algorithm for DR optimization.

Reducing conservatism in DRO. While tradi-
tional DRO models protect against the un-
known distribution, they may yield conserva-
tive solutions if the ambiguity set is too large.
Motivated by the observation that most uncer-
tainty distributions for renewable generation
are unimodal, we integrate unimodality into
a moment-based ambiguity set to reduce the
conservatism of a DRO model [27]. Figure 7
illustrates the evolution of our optimality gap
and reliability measure for a stochastic opti-
mal power flow.
Algorithms for security-constrained AC opti-
mal power flow (SCACOPF). We continued
to investigate scalable methods for stochastic
programming with special focus on SCACOPF problems. Research and developments were
done in FY21 to provide mathematically more sound (and, thus, more robust) algorithmic al-
ternatives to classical heuristics [31], in particular stopping criteria, formulation of nonconvex
line flow constraints, and nonsmooth AGC coupling. In [50] we focused on the development
of a structured proximal subgradient algorithm for stochastic programming that has compu-
tationally affordable stopping criteria. The algorithm maintains the excellent decomposition
and convergence properties of our SCACOPF methodology from [31]. The team has used the
HiOp-PriDec implementation of the algorithm to solve large-scale simulations on the Summit
and Lassen supercomputers, observing high parallel efficiencies [50].

Figure 8: Number of instances for which 95% or
more of the gap is closed over time using our pro-
posed methods (RstrMIP,Rstr1,Rstr2) and existing
approaches.

Dual decomposition of stochastic mixed-
integer second-order cone programs
(SMISOCPs). We have extended the dual
decomposition of two-stage stochastic MILP
to that of two-stage stochastic SMISOCPs.
In particular, the parallel dual decomposi-
tion algorithm has been implemented in Ar-
gonne’s open-source software DSP with Julia
interface, publicly available in Github reposi-
tory [23].
New cutting planes for stochastic integer pro-
gramming (SIP). Traditional approaches for
solving SIP either use a Lagrangian relax-
ation, which can be very expensive to com-
pute, or use a branch-and-cut (BnC) approach
based on LP relaxations, which can suffer due
to weak bounds on the optimal value. In [8],
a significant step forward was made in solving

SIP by proposing an effective integration these approaches, enabling the efficient use of cuts for
the BnC approach that are derived from the Lagrangian relaxation. The resulting approach has
bounds stronger than the BnC approach, but is faster than Lagrangian relaxation, and leads to
state-of-the-art results in solving SIP instances, as illustrated in Figure 8.
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Figure 9: Solution quality vs solver time
limit for four different algorithms. RRR
is our proposed recursive algorithm.

Wildfire mitigation. Building on our previous work [41],
we are currently working on an optimization model
which considers wildfire ignitions caused by power lines
and/or other sources, and models the operation of the
power system before and after the event. This is mod-
eled as a stochastic optimization problem with inte-
ger variables in both the first and second stage. This
work is a collaboration with Haoxiang Zhang and Lewis
Ntaimo (Texas A&M), a collaboration that was ini-
tiated through the MACSER sponsored workshop at
ICERM.
Post-event restoration. We have studied the post-event
restoration ordering problem, which prioritizes the re-
pairs of damaged power system components to minimize
the energy not served to customers [40]. To address the
potential combinatorial explosion we have developed a
new heuristic solution algorithm which obtains solutions
by recursively splitting the set of damaged component into two parts, where repairs of the first
set is prioritized over the second set. Numerical simulations show that our proposed algorithm
obtains near-optimal solutions (within 1% gap) in the majority of cases and is 1000 times faster
than existing algorithms (see Figure 9). This has allowed us to obtain better solutions for larger
systems than what was previously possible.

2.4 Data-oriented Computation

In the last year, we obtained several new results in this area. In [15] we used mean-field analy-
sis, continuous limits and gradient flow to show that, in the asymptotics of infinitely large deep
architectures, the problem of training the network converges to a solution that perfectly fits
the training data, resolving a phenomenon observed empirically but not explained theoretically
up to our work. In [26], we proposed the first approach whereby deep neural network method-
ologies are utilized with the goal of performing inference on statistical models based solely on
simulated data and parameters. We introduced a novel machine learning framework for learn-
ing dynamical systems in data assimilation [10] that outperforms existing methods that use
expectation-maximization or particle filters to merge data assimilation and machine learning,
Figure 10. We proposed a data fusion method based on multi-fidelity Gaussian process regres-
sion (GPR) framework [13]. Furthermore, we proposed a novel augmented Gaussian random
field (AGRF) framework [55], which is a universal frame- work incorporating the data of observ-
able and derivatives of any order. We defined a hybrid technique combining Bayesian inference
and quantum-inspired Hamiltonian Monte Carlo (QHMC) method for imputation of missing
datasets [14]. We proposed a novel an adaptive (stochastic) gradient perturbation method for
differentially private empirical risk minimization [51] that considerably improves the utility guar-
antee compared to the standard differentially private method in which vanilla random noise is
added.

In [9] we describe the first approach we are aware of that allows to do statistical infer-
ence scalably with implicit Gaussian process models, using hierarchical off diagonal low rank
(HODLR) approaches which answers the modeling and computational complexity difficulties si-
multaneously. When modeling directly in data space (which is what we do with explicit Gaussian
processes) there are no forms of kernels that ensure consistency and have the flexibility to deal
with complex features, such as massive anisotropy and nonstationarity. When modeling in the
process space we have considerably more flexibility, but the derivative of the covariance needs to
be computed column by column and even with a scalable solver we need O(n2) operations. Our
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Figure 10: Learning Lorenz-96 from fully unknown dynamics v.s. model correction with partial observa-
tions (H = [e1, e2, e4, e5, e7, · · · ]>). All performance metrics are evaluated after each training iteration.
Red dashed lines correspond to metric values obtained with the reference model f∗ and Q∗. The absence
of lines for EM in the fully unknown setting is due to its low and unstable performance.
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Figure 11: Computational complexity of constructing the HODLR approximation of KU and its deriva-
tives with respect to the parameters θ: (Left) the total number of required KU -vector products and
(right) shows the runtime (in seconds) of the rest linear algebra operations for fixed off-diagonal rank 32
(circle), 64 (x), 128 (square) over different sizes of observations. We use number of observations of size
n = 2r with r ranging from 9 to 16 (x-axis). On the right, to demonstrate the scaling, the theoretical
line (dashed line) corresponding to O(n log n) is added to the plot. Note that the x axis is represented
in logarithmic units.

approach in [9] can use implicit models (generated for example by stochastic partial differential
equations) which have total flexibility. However, our approach uses only log(n) forward solves
with the implicit model to form an efficient approximation of the covariance matrix (Figure 11),
computes the log-likelihood and its derivatives in O(n log2 n) operations, and the Fischer matrix
and consequently the relevant confidence intervals using only O(n log2 n) computations. Our
approach allows thus both modeling flexibility and scalability.

2.5 Bilevel Optimization

Preventing cascading failures. We have formulated bilevel optimization problem to determine
the most severe cascade in a critical infrastructure network with partially or unknown connec-
tivity. Our goal is to identify the most severe combination of failures of facilities in terms of
their impact on the service level of the network. In this model, the upper-level decision maker
(e.g. the hurricane) selects facilities that it closes so that the remaining service of the network
is minimized. The lower-level decision maker (network operator) tries to maximize the service
capacity subject to the closed facilities. Our model also allows for the inclusion of uncertainty
in terms of network connectivity that is modeled as a simple affine uncertainty set. We are
currently exploring stochastic optimization algorithms for solving this model that are motivated
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by active-learning techniques.
New solution methods for bilevel linear programs. A classic solution approach for bilevel linear
programs is to use the KKT conditions of the lower-level problem to reformulate the problem
as a single level nonconvex quadratically constrained quadratic program (QCQPs). In [37], we
study new formulations of nonconvex mixed-binary quadratic programs as completely positive
programs. Specifically, Burer [7] showed that every nonconvex QP can be represented as a linear
program over the Completely Positive (CP) cone of dimension (n + 1) where n is the number
of variables in the QP. We show that in the presence of m equality constraints the QP can
be represented as a linear program over a CP cone of dimension (n + 1−m). We also provide
conditions under which the proposed formulation has a strict interior while it is known that the
formulation of Burer typically does not possess one.

An alternative formulation of a bilevel linear program introduces the lower level model into
the upper level problem and constrains the objective to be at least as good as the optimal value
function of the lower level problem. This leads to a (nonconvex) reverse convex constraint.
Intersection cuts (ICs) are classic approach for deriving cuts to improve the relaxation of a
problem containing such constraints from basic solutions of a linear relaxation that violate the
reverse convex constraint. Surprisingly, in [48] we demonstrate an approach for deriving ICs
from basic solutions that satisfy the reverse convex constraint, thus extending the power of this
classic approach.

2.6 Nonlinear nonconvex local optimization

Nonlinear optimization algorithms. Quasi-Newton methods are highly effective, but for large-
scale optimization problems with many sparse constraints, they rely on solving linear systems
using direct methods and become impractical. In [6] we used a “shape-changing” trust-region
(previously developed) and a novel reduced compact representation of the inverse quasi-Newton
matrix to sharply improve the practicality of quasi-Newton methods in this context. Our method
outperformed state-of-the-art methods in computational tests.
Variance-reduced primal-dual methods. Structured nonsmooth convex finite-sum optimization
is ubiquitous in machine learning. For the primal-dual formulation of this problem, we pro-
posed an algorithm called “Variance Reduction via Primal-Dual Accelerated Dual Averaging”
(VRPDA2) [44]. Our approach takes coordinate steps in the dual variables and proximal steps
incorporating momentum in the primal space. By exploiting a linear structure commonly en-
countered in machine learning applications, it achieves the optimal rate.
Complexity of smooth optimization algorithms. We continued work on worst-case complexity of
algorithms for smooth optimization. Several papers of this type described in previous cycles
were revised and published [11, 52]. In new work, we designed algorithms of projected gradient
type for bound-constrained optimization with second-order scaling [53]. The two methods we
described methods are more practical than the log-barrier approach developed in previous work,
and have competitive complexity.

Additionally, we extended our Newton-CG approach for unconstrained optimization devel-
oped in earlier papers to finite-sum objectives, a structure that arises often in ML [54]. In this
setting, gradients and Hessians are available only as sampled approximations, and the inexact-
ness must be accounted for in the algorithm design and analysis.
Distributionally robust classification. In [30] we describe a model for classification in ML in
which the population distribution is assumed to lie in a Wasserstein ball around the empirical
distribution defined by the training set. We explore links to other classification paradigms and
show that for certain interesting distribution sets, our model exhibits benign nonconvexity, that
is, gradient-based algorithms will converge to the global minimizer.

Figure 12 illustrates the robustness of our formulation by comparison with the standard
hinge-loss function for a binary classification problem with data is drawn from three different
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Figure 12: Test error (vertical axis) versus fraction flipped (horizontal axis) for nonseparable data, by
distribution type. Averaged over 20 trials; error bars shows one standard deviation.

distributions, with a given random fraction of the labels of one class flipped to the other (incor-
rect) class. As we increase the fraction of points flipped, the figure shows that the test error of
hinge loss (the objective traditionally used for linear classification) degrades severely, while the
test error of the DRO formulation is much more stable.

2.7 Dynamic Optimization

In this cycle we made progress on multistage Distributionally Robust Optimization (DRO), dy-
namic complementarity and equilibrium problems, load-frequency control problems, and shaping
cost trajectories for dynamic optimization. These contributions are summarized below.
Multistage DRO. In many dynamic optimization problems under uncertainty and rare events,
the true distribution of the underlying stochastic process is rarely known. Multistage DRO
provides an attractive approach in these cases. In [39] we investigate the question of how
to define and identify critical scenarios for convex nested multistage DRO problems. We call
scenarios/realizations that change the optimal value when removed as “effective”. A key result
shows that a scenario path (from root to end node of a scenario tree) is effective if and only if all
realizations along that path are conditionally effective. This result provides a computational tool
as well as managerial insight into this class of dynamic optimization problems. In [4], we consider
general multistage DRO formed by φ-divergences or the Wasserstein distance and devise novel
lower bounding techniques (for minimization problems) by scenario subgrouping and convolution
of risk measures. The proposed methods produce high-quality bounds in a fraction of time for
challenging multistage DRO lacking special structure (e.g., convexity, stagewise independence,
binary state variables) that prevent decomposition.
Dynamic complementarity and equilibrium problems. In [38], we study the Discrete-Time
Linear Complementarity System (DLCS)—a dynamical system in discrete time whose state
evolution is governed by linear dynamics in states and algebraic variables that solve a Lin-
ear Complementarity Problem (LCP). We derive sufficient conditions for Lyapunov stability
of a DLCS when using a quadratic Lyapunov function that depends only on the state vari-
ables and a quadratic Lyapunov function that depends both on the state and the algebraic
variables. The sufficient conditions require checking the feasibility of a copositive program
over nonconvex cones. We then devise a novel, exact cutting plane algorithm for the verifi-
cation of stability and the computation of the Lyapunov functions. In ongoing work, Huber,
Shen and Ferris develop a new decomposition algorithm for solving stochastic equilibrium
problems with risk-averse agents. The forward step of this algorithm solves risk-adjusted
equilibrium problems, and the backward step utilizes the duality structure of the risk-set
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to modify each agents risk measure. Preliminary convergence results have been derived.

Figure 13: GP-SNMPC framework
for LFC compared to SAA.

Dynamic control of power systems. We study Load Fre-
quency Control (LFC) problem subject to uncertain load dis-
turbances and stochastic wind generation. First, we devise a
tractable framework for handling a chance-constrained LFC
problem with Gaussian parametric uncertainties, where we
use Gaussian process regression. (Figure 13). The problem
allows constraint violation at a prescribed probability, and
the Gaussian process exploits the probability distribution to
estimate costs and to propagate mean and covariance of these
functions over the prediction horizon. A comparative study
between the proposed framework , denoted GP-SNMPC, and
Sample Average Approximation (SAA) demonstrates that the GP-SNMPC framework is com-
putationally more efficient and delivers a better performance in keeping load frequency balance
while maintaining the system constraints. Next, we incorporate the unscented Kalman filter
(UKF) [49] to this control problem to estimate the states and to propagate the mean and
covariance of the states over the prediction horizon. By resorting to the Chebyshev-Cantelli
inequality [28], the Schur complement, and reformulating, we obtain a conservative semidefinite
program (SDP). The SDP is computationally efficient and delivers satisfactory performance with
respect to chance constraints.
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Shaping cost trajectories for dynamic optimization. As a byprod-
uct of our work for modeling uncertainty over continuous do-
mains (e.g., space and time) that utilizes random field theory [36],
we propose new measures to shape dynamic cost trajectories by
transferring risk measures from static stochastic optimization to
dynamic optimization [35]. We prove that dynamic optimiza-
tion problems can be classified as a special case of a two-stage
stochastic program; from which it readily follows that stochas-
tic risk measures can be used to shape dynamic cost trajectories.
This key result allows us greatly enhanced modeling flexibility
in posing dynamic optimization problems. For instance, we can
use a time-valued conditional-value-at-risk measure to promote a
smoothed dynamic cost trajectory that is shaped by penalizing
high cost deviations.

2.8 Model Reduction

In this performance period, we have developed novel methods
for discovering dynamical systems from streaming data, sparsity-
promoting methods for model reduction in uncertainty quantifica-
tion, and renormalized reduced-order models for nonlinear partial
differential equations models.
Robust dynamics discovery from streaming noisy data. We pro-
pose an algorithm for discovering dynamical systems from noisy
streaming time-series data based on Koopman operator theory
and robust optimization. The proposed Recursive Extended Dy-
namic Mode Decomposition (R-EDMD) algorithm aims to ad-
dress the problem of real-time identification of power system dy-
namics from data contaminated with process and measurement noise. In R-EDMD, we compute
a robust Koopman operator approximation using robust optimization techniques (to mitigate
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the effect of noise) recursively from streaming data. To illustrate the efficacy of the proposed
approach, we identify the invariant measure of a noisy Van der Pol oscillator (Figure 14). The
computational cost of R-EDMD is almost linear with respect to the number of iterates, whereas
the computation time of the standard EDMD algorithm grows exponentially with the num-
ber of iterates; therefore, R-EDMD leads to a significant reduction in computation time, thus
facilitating real-time identification of power system dynamics.
Sparsity-promoting uncertainty quantification methods. We propose a general framework to es-
timate coefficients of generalized polynomial chaos uncertainty models via rotational sparse
approximation [19]. In particular, we aim to identify a rotation matrix such that the gPC
expansion of a set of random variables after rotation allows a sparser representation than be-
fore rotation. To solve this problem, we employ non-convex sparsity-promoting regularization.
The proposed combination of rotation and non-convex sparse-promoting regularization can yield
more accurate sparse regression models using fewer data than similar existing methods.
Renormalized reduced-order models. Extreme events in complex energy and environment systems
can contain many more scales than can be simulated with available computational resources.
We aim to construct reduced models but popular formalisms assume that we can simulate the
original system for long times. When this is not possible, we have formulated a renormalized
version of model reduction. To the best of our knowledge we have constructed the first pertur-
batively renormalized reduced-order models for the Burgers equation and 3D Euler equations
of incompressible flow without introducing any terms by hand, which has been a long-sought
goal [34].

2.9 Frameworks

Figure 15: A visual summary of our unifying abstraction for infinite-dimensional optimization.

We have proposed a new paradigm, that we call random field optimization, for modeling
uncertainty over continuous domains (e.g., space and time) that utilizes random field theory
to yield infinite-dimensional optimization formulations [36]. This paradigm allows us to rep-
resent dynamic-stochastic problems in continuous time and enables us to model uncertainty
that propagates over other domains (e.g., space). Our approach is general and captures a
wide-breadth of existing uncertainty characterizations and techniques. Leveraging the connec-
tion between dynamic and stochastic optimization established by our unifying abstraction for
infinite-dimensional optimization, we have proposed new measures to shape dynamic cost trajec-
tories by transferring risk measures from stochastic optimization to a dynamic optimization con-
text [35]. We have continued development of our Julia-based modeling platform InfiniteOpt.jl
(see https://github.com/pulsipher/InfiniteOpt.jl). This package implements our unify-
ing abstraction for infinite-dimensional optimization that is illustrated in Figure 15. We have
rigorously characterized this abstraction as established in [36].

In [20] we introduce a class of optimal value function (OVF) compositions that are flexi-
ble enough to capture many applications with nested or (limited) hierarchical structure. We
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relate OVF’s to the more familiar framework of convex composite functions by making simpli-
fying structural assumptions on the forms of our problems. We focus on three reformulation
approaches for OVF compositions that lead to problems that have standard, reliable and im-
plementable solution methods. We have developed a new decomposition approach for solving
stochastic equilibrium problems with risk-averse agents and implemented in ReShop, an open-
source tool for stochastic equilibrium problems. Based on the structure that is available in
ReShop, we use a forward backward structured approach, where the forward step solves risk-
adjusted equilibrium problems, and the backward step utilizes the duality structure to modify
each agents risk measure. Preliminary convergence results have been developed and the approach
has been successfully prototyped in ReShop. The group has collaborated with the rare-events
team to generate data sets, as well as interacting with the Public Services Commission (PSC) of
Wisconsin and the Office of Sustainability. A policy use of this framework was published in [2].
Its general scope is to solve hierarchical optimization problems through reformulations; we allow
these equilibria to be hierarchical in nature, exploiting the theory developed in [20].

In [12] we describe SUTIL, an open-source C and C++ utility library for multi-stage stochas-
tic programs. The library contains tools for (i) reading problems in Stochastic Mathematical
Programming System (SMPS) format, a generalization of the MPS format for stochastic opti-
mization problems, (ii) basic functions like forming deterministic equivalent and expected-value
problems, (iii) handling two- and multistage stochastic optimization data structures such as
scenario trees, (iv) forming subproblems either stage-wise or scenario-wise, and (v) implemen-
tations of various basic and advanced sampling methods. The library has utility for developing
new decomposition- and sampling-based algorithms for solving stochastic programs. We used
the SUTIL library in [39] and [56].

3 Visibility and Outreach

Sharing Results. The outputs of the project are shared via peer-reviewed journal and conference
publications, presentations at professional workshops and conferences, and via the project web-
site. During FY21, MACSER PI’s have completed a total of 61 journal and conference papers,
of which 21 have been published, 2 are in press and 38 are preprints and submissions currently
under review. Furthermore, 35 submissions and preprints reported in the previous cycle have
been updated during FY21, of which 27 were published and 8 are under review. The PIs have
been active in presenting their work at conferences and workshops, giving a total of 100 pre-
sentations about work related to the project. Of these presentations 11 have been plenary or
keynote presentations.

MACSER participants have contributed to or created 9 software items during FY21, and
the code associated to 7 of the submissions mentioned above is also openly available, and the
remaining 2 will be made available soon.

The MACSER web site (https://www.mcs.anl.gov/MACSER/) is another venue where the
work of the MACSER project is shared widely. The site includes an overview of the project,
including an introduction to the mathematical challenges, list of publications, team members,
and news about significant project actives.
Recognition. MACSER personnel received several prestigious awards over the past year:

Rebecca Willett has been named a Fellow of the Society for Industrial and Applied Math-
ematics (SIAM). She is one of 28 people selected as SIAM Fellows for the class of 2021. Prof.
Willett’s nomination cites “contributions to mathematical foundations of machine learning, large-
scale data science, and computational imaging.”

Michael Stein has been appointed Editor of Applications & Case Studies for Journal of the
American Statistical Association.

Sungho Shin, a MACSER postdoctoral appointee at Argonne National Laboratory, has won
the Young Author Award at the 11th International Symposium on Advanced Control of System
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Process (ADCHEM 2021), held virtually in June 2021. In the award paper [43], Shin presented
nonlinear optimization problems as graph-structured optimization problems and shows how that
structure can be exploited at both the modeling and the solver level. The approach, which he
implemented as a general-purpose nonlinear programming solver called MadNLP.jl, was eval-
uated on problems arising in transient gas network optimization and multiperiod AC optimal
power flow. Compared to off-the-shelf tools, MadNLP.jl reduced solution times by 300%.

Christopher J. Geoga, a MACSER-supported graduate student, published [16], a paper that
won an honorable mention in 2021 in Student Paper Competition of the Section on Statistics
and the Environment of the American Statistical Association.
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Mihai Anitescu

Technical Council
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Luedtke, Tartakovsky, Wright, Zavala

Optimization under Uncertainty
Luedtke

Data-oriented Computations
Anitescu

Space-Time Data
Constantinescu

Bilevel Optimization
Luedtke

Dynamic Optimization
Bayraksan

Nonlinear Nonconvex
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Rare Events
Barajas-Solano

Model Reduction
Barajas-Solano

Frameworks
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