
FROM FILE SYSTEMS TO SERVICES:
CHANGING THE DATA MANAGEMENT MODEL IN HPC

Simulation, Observation, and Software:
Supporting exascale storage and I/O

ROB ROSS
GARTH GIBSON

JEROME SOUMAGNE
GALEN SHIPMAN

Argonne National Laboratory, rross@mcs.anl.gov
Carnegie Mellon University, garth@cs.cmu.edu
The HDF Group, jsoumagne@hdfgroup.org
Los Alamos National Laboratory, gshipman@lanl.gov

Salishan Conference on High-Speed Computing, April 28, 2016

HPC DATA MANAGEMENT IN THE 2000s

§ Focus was on the POSIX file system model:
“The usual requirements of any file system, remain, generally, in
place.”

§ We’ve gotten a lot of mileage out of this model.

–1–

Trilab SGPFS Requirements

3/07/00
Abstract

The following is intended to serve as guidance for the SGPFS PathForward initiative. It
describes ASCI Trilab file system requirements, in particular we focus on the special
requirements of ASCI-scale systems. The usual requirements of any file system remain,
generally, in place. For example, requirements such as persistence, and stability will be
assumed. Beyond that, due to the nature of the machines served by the file system, there
are some “usual” requirements with a new or different twist as well as some that are
unusual. These requirements are, apparently, outside what the industry has in sight. All
requirements are prioritized as either Mandatory, Highly Desired, or Desired.

Thanks to G. Grider for digging this up!

WHAT’S WRONG WITH POSIX?
§ Storage model – no notion of locality
§ Consistency – strong consistency requires heavy-weight enforcement
§ Data model – difficult to map complex, distributed data sets into single

“stream of bytes”

3

WHAT’S WRONG WITH TODAY’S PARALLEL
FILE SYSTEMS?
§ Expensive – typically rely on expensive underlying hardware
§ Fragile – poor fault handling
§  Inefficient – poorly utilize new fast devices, heavy-weight consistency

management (arguably this last isn’t their fault)
§  Inflexible – not built to support a variety of application abstractions

WHAT COMES NEXT?
§ Assumptions

– New layers in storage hierarchy, lower latencies
– Storage resources will be highly contended for
– No “holy grail” emerges that solves everyone’s problems

§ Alternative model to the “PFS for data management”
– Multiple services employed for different classes of data
– Specialization for scalability/efficiency/productivity
– In some cases, co-design with applications

SPECIALIZATION IN DATA MANAGEMENT

5

Application Data

SPECIALIZATION BY CLASSES OF DATA

6

Application

Checkpoints Executables
and Libraries

Intermediate
Data Products

MANAGING EXECUTABLES AND LIBRARIES

§ Characteristics:
–  Can assume data doesn’t change during runtime
–  High degree of sharing across application processes
–  No need for redundancy in service (original stored elsewhere)

§ Opportunities:
–  Dramatic reduction in parallel file system traffic
–  Stripping of libraries on load
–  Pre-staging of data (with scheduler integration)

§ SPINDLE is a great example of how to manage this data.

Dynamic libraries are a clean class of data to treat separately.

7

Frings, Wolfgang, et al. "Massively parallel loading." ICS 2013, June 2013.

MANAGING CHECKPOINTS
§ Characteristics

–  Typically (still) bulk synchronous
–  Write once, often not read

§ Opportunities
–  Latency hiding
–  Leveraging multiple layers of storage
–  Adjusting rate/placement to match fault rates

§ Fault Tolerant Interface (FTI)
–  Simple “snapshot” abstraction
–  Manages all the layers for the user

8

L. Bautista-Gomez et al. "FTI: high performance fault tolerance
interface for hybrid systems." SC 2011. November 2011.
S. Di et al. "Optimization of multi-level checkpoint model for large
scale HPC applications." IPDPS 2014. 2014.

int main(int argc, char **argv) {

 MPI_Init(&argc, &argv);
 FTI_Init(“conf.fti”,
 MPI_COMM_WORLD);

 double *grid;
 int i, steps=500, size=10000;
 initialize(grid);
 FTI_Protect(0, &i, 1, FTI_INTG);
 FTI_Protect(1, grid, size,FTI_DFLT);

 for (i=0; i<steps; i++) {
 FTI_Snapshot();
 kernel1(grid);
 kernel2(grid);
 comms(FTI_COMM_WORLD);
 }

 FTI_Finalize();
 MPI_Finalize();
 return 0;
}

File System:
Classic Ckpt.

RS Encoding:
Ckpt. Encoding

Partner Copy:
Ckpt. Replication

Local Storage:
SSD, NVM

MANAGING INTERMEDIATE DATA PRODUCTS
§ Characteristics:

–  Data leaves application but not the
system

–  Variety of different data
abstractions

–  Producer-consumer model is
common

§ Opportunities:
–  Exploiting locality
–  Avoiding data movement off system
–  More efficient synchronization

9

C. Docan et al. "DataSpaces: an interaction and coordination framework
for coupled simulation workflows." Cluster Computing 15.2 (2012).
C. Ulmer. “Leveraging In-Memory Key/Value Stores in HPC: Kelpie.”
Salishan 2013, April 2013.

Impact of coupling via ADIOS/DataSpaces on
XGC1/XGCa fusion application.
Material from S. Klasky (ORNL).

SPECIALIZATION FOR MANY-TASK WORKFLOW
§ Swift script controls execution –

generates an ADLB program (see below)
–  Tasks can be basically anything (e.g., MPI code)
–  Data dependencies are emitted as run proceeds

§ Asynchronous Dynamic Load Balancer (ADLB) manages data and work
–  Distributed, data-dependent work queue
–  Work units have (optional) priorities, types, and locality constraints
–  Enables heuristic, coarse-grained data-aware scheduling, mixing user control

and automatic decisions
§ Applied in materials science, power grid, etc.

–  E.g., transforming TBs of X-ray data from the Advanced Photon Sources,
streaming to compute nodes at 100 GB/s

10

J. Wozniak et al. "Swift/T: large-scale application composition via distributed-memory dataflow processing. CCGrid 2013.
E. Lusk et al. “More Scalability, less pain: a simple programming model and its implementation...” SciDAC Review, 2010.
F. Duro et al. “Flexible data-aware scheduling for workflows over an in-memory object store”. CCGrid 2016.

EQUATIONS OF STATE, OPACITIES, AND
DISTRIBUTED DATABASES
§ Current generation applications often

replicate material properties across all
memories in the system
–  Data is often tabular, indexed by

model parameters
–  Tradeoff between representative

physics of the material and
performance / memory utilization

§ Distributed database can hold much
larger table (billions of values) imported
from external storage

11

RB Lowrie and TS Haut, “Reconstructing opacities for multigroup
thermal radiative transport,” LA-UR-14-24608, 2014.

PE 0 PE 1 PE 2 PE 3

σ(T,ν)

ν

σ(T,ν)

ν

σ(T,ν)

ν

Distributed database

Example: Implicit Monte Carlo
simulation looking up discrete opacity
values in distributed database.

CONTINUUM MODEL COUPLED WITH
VISCOPLASTICITY MODEL

12

Lulesh continuum model:
- Lagrangian hydro dynamics
- Unstructured mesh

Viscoplasticity model [1]:
- FFT based PDE solver
- Structured sub-mesh

R. Lebensohn et al, Modeling void growth in polycrystalline materials,
Acta Materialia, http://dx.doi.org/10.1016/j.actamat.2013.08.004.
 S

ho
ck

w
av

e

§  Future applications are exploring the
use of multi-scale modeling

§  As an example: Loosely coupling
continuum scale models with more
realistic constitutive/response
properties
§  e.g., Lulesh from ExMatEx

§  Fine scale model results can be
cached and new values interpolated
from similar prior model calculations

CO-DESIGNING A FINE SCALE MODEL DATABASE

13

§ Goals
–  Minimize fine scale model executions
–  Minimize query/response time
–  Load balance DB distribution

§ Approach
–  Start with a key/value store
–  Distributed approx. nearest-neighbor query
–  Data distributed to co-locate values for interpolation
–  Import/export to persistent store

§ Status
–  Mercury-based, centralized in-memory DB service
–  Investigating distributed, incremental

nearest-neighbor indexing Import/export
DB instances

Distributed DB

Application domain

Query 6D space for
nearest neighbors

ENABLING DATA SERVICES

14

ROB ROSS, PHILIP CARNS, KEVIN HARMS,
JOHN JENKINS, AND SHANE SNYDER

GARTH GIBSON, CHUCK CRANOR, AND
QING ZHENG

JEROME SOUMAGNE AND JOE LEE
GALEN SHIPMAN AND BRAD SETTLEMYER

Argonne National Laboratory

Carnegie Mellon University

The HDF Group
Los Alamos National Laboratory

Pr
ov

is
io

ni
ng

C
om

m
.

Lo
ca

l S
to

ra
ge

Fa
ul

t M
gm

t.
an

d
G

ro
up

M

em
be

rs
hi

p

Se
cu

rit
y

ADLB
Data store and pub/sub. MPI ranks MPI RAM N/A N/A

DataSpaces
Data store and pub/sub. Indep. job Dart RAM

(SSD)
Under
devel. N/A

DataWarp
Burst Buffer mgmt.

Admin./
sched.

DVS/
lnet XFS, SSD Ext.

monitor
Kernel,

lnet
FTI
Checkpoint/restart mgmt. MPI ranks MPI RAM, SSD N/A N/A

Kelpie
Dist. in-mem. key/val store MPI ranks Nessie RAM

(Object) N/A Obfusc.
IDs

SPINDLE
Exec. and library mgmt.

Launch
MON TCP RAMdisk N/A Shared

secret

OUR GOAL

§ Application-driven
–  Identify and match to science needs
– Traditional data roles (e.g., checkpoint, data migration)
– New roles (e.g., equation of state/opacity databases)

§ Composition
– Develop/adapt building blocks

• Communication
• Concurrency
•  Local Storage
• Resilience
• Authentication/Authorization

– Enable rapid development of specialized services

Enable composition of data services for DOE science and systems

COMMUNICATION: MERCURY

Mercury is an RPC system for use in the development of high performance
system services. Development is driven by the HDF5 Group with Argonne
participation.

§ Portable across systems and network technologies
§ Builds on lessons learned from IOFSL, Nessie, lnet, and others
§ Efficient bulk data movement to complement control messages

https://mercury-hpc.github.io/

17

Overview

Function arguments / metadata transferred with RPC request
– Two-sided model with unexpected / expected messaging
– Message size limited to a few kilobytes

Bulk data (more later) transferred using separate and dedicated API
– One-sided model that exposes RMA semantics

Network Abstraction Layer
– Allows definition of multiple network plugins
– Currently MPI, BMI (TCP/IB/GM), SSM (TCP/MPI/IB)
– More plugins to come

Client Server

RPC proc

Network Abstraction Layer

RPC proc

Metadata (unexpected
+ expected messaging)

Bulk Data (RMA transfer)

4

CONCURRENCY: ARGOBOTS

Argobots is a lightweight threading/tasking framework.
§ Features relevant to I/O services:

–  Flexible mapping of work to hardware
resources

–  Ability to delegate service work with
fine granularity across those resources

–  Modular scheduling
§ We developed asynchronous bindings to:

–  Mercury
–  LevelDB
–  POSIX I/O

§ Working with Argobots team to identify
needed functionality (e.g., idling)

https://collab.cels.anl.gov/display/argobots/

18

S

Scheduler	 Pool	

U

ULT	

T
Tasklet	

E

Event	

ES1 Sched

U

U

E

E

E

E

U

S

S

T
T
T

T

T

Argobots Execution Model

...

ESn

GROUP MEMBERSHIP

§ Gossip-based detection
–  Scalable, distributes the comm. load
–  SWIM protocol is one example, rolls

membership in with detection
–  Could introduce jitter…

§ Vendors could provide an “oracle” for
specific classes of faults
–  Won’t necessarily know your service

is misbehaving
§ Replicated state machine for consistent

view of membership
–  PAXOS, RAFT, Corfu

Lots of work in this space already.

19

A. Das et al. “SWIM: Scalable weakly-consistent infection-style
process group membership protocol.” DSN ’02. 2002.
D. Ongaro et al. "In search of an understandable consensus
algorithm.” USENIX ATC 14. 2014.

SWIM protocol with 2K nodes, 30 minutes
of simulated time. Subgroup size
determines number of peers that follow up
on a failed ping.

AUTHENTICATION AND AUTHORIZATION

§  Integrate with external
authentication
(Kerberos, LDAP)

§ Capability-based approach
–  Caching, delegation to

improve scalability
§ Building off LWFS work and

follow-on activities with L. Ward
(SNL) and R. Brooks (Clemson)
–  Mercury prototype

Services intending to replace parallel file systems must provide
(scalable) access control.

20
R. Oldfield et al. "Lightweight I/O for scientific applications.” Cluster
2006, 2006.

ENABLING A NEW SERVICE
ECOSYSTEM
§ Provide the building blocks for the

next generation of HPC services
§ Toolkit of interoperating

components
–  Solutions to hard problems
–  Integration with related tech.

§ Lower the barrier of entry
–  Teams casually build new

services
§ Work with vendors

21

A Software Defined Storage Approach to Exascale Storage Services

1RQ�9RODWLOH�1RGH�/RFDO�0HPRU\

66,2�QHHGV�DQG�VHPDQWLFV

3RWHQWLDO�LQWHUVHFWLRQ�SRLQWV�ZLWK�26�UXQWLPH

&RPSRVLWLRQ

&RRUGLQDWLRQ

%DVH�&RPSRQHQWV

,QWHJUDWRU�7HFKQRORJLHV
+')���/HJLRQ��97.�P

$XWK�$XWK

%$.(
EDVH�VWRUDJH�DEVWUDFWLRQ

0HUFXU\�53&

'LVWULEXWHG
1DPHVSDFH

5HVLOLHQW�'LVWULEXWHG�6WRUH

*URXS�0JPW

'DWD�([SRUW�,PSRUW

$SSOLFDWLRQ�'ULYHUV3XE�6XE

Figure 2: This project exists in a complex hardware/software ecosystem, with cross-cutting technologies (left) and ap-
plication and usability drivers (right) providing constraints on possible designs. The decomposition of storage services
we will pursue (center) is discussed in § 3.

the use of temporary services for management of data in many-task workflows on HPC systems [46] using
an enhanced version of memcached [49], and the use of distributed hash tables (DHTs) for presenting a
file-system-like model to applications using system memory [158], including using DHTs for storing meta-
data [88]. Approaches such as these demonstrate that these resources can be tremendously advantageous
for scientific codes, particularly when a service layer is added that organizes the resources to fit applica-
tion needs. However, resilience and access control capabilities demonstrated in research so far do not meet
requirements for more pervasive use.

The Scientific Data Services project [41, 42] is examining another aspect of this problem, namely, providing
data reorganization and query capabilities for data in the popular HDF5 format. This layers on the existing
parallel I/O software stack. Another form of storage service is software designed for managing movement
of data between compute nodes and the PFS, possibly using in-system storage resources for buffering.
The Cray Data Virtualization Service (DVS) is one example of software in this space [135], the IBM ciod
system in the Blue Gene series of systems is another. These effectively replay I/O operations from clients on
intermediate nodes, thus providing a limited security mechanism. Our work on the IOFSL project developed
a similar I/O forwarding capability [10]. In all these cases, the purpose of the service is simply to provide
access via a file model to an external file system, although extending such a system to manage buffering
would be relatively simple.

Features of PFS designs such as data protection and access control are clearly required of storage services but
are not typically considered in HPC data “service” research activities. Given the performance and reliability
issues being seen with best-in-class PFSs today (§ 2.2), extending the PFS model to manage these new
resources does not appear to be a promising approach. Building numerous one-off service implementations
is not scalable from a development or maintenance perspective. A new path is needed that provides needed
capabilities, meets performance goals, and enables reuse of components. In the next section we will discuss
our SDS approach and describe how we address the deficiencies of existing HPC solutions.

7

THE END OF PARALLEL FILE SYSTEMS?
§ Data services are a natural step in the trend of composition and

specialization seen in large scale application codes
–  Codes supported by a handful of services

§ Need the community to foster a “data service ecosystem”
–  Need buy-in from all the interested parties!

§ PFSes won’t be ended by this, they’ll be ended by object stores or some
other persistent storage back-end

§ Future directions
–  Traffic throttling?
–  More building blocks for resilient services?
–  QoS?

22

THIS WORK IS SUPPORTED BY THE DIRECTOR, OFFICE OF
ADVANCED SCIENTIFIC COMPUTING RESEARCH, OFFICE OF
SCIENCE, OF THE U.S. DEPARTMENT OF ENERGY UNDER
CONTRACT NO. DE-AC02-06CH11357.

23

