MSST 2018: NON-VOLATILE MEMORY API SESSION

INCORPORATING NVM INTO DATA-INTENSIVE SCIENTIFIC COMPUTING

PHIL CARNS Mathematics and Computer Science Division Argonne National Laboratory

May 15, 2018 Santa Clara, CA

ARGONNE NATIONAL LABORATORY U.S. Department of Energy

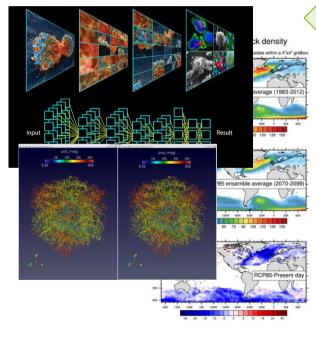
"Argonne is a multidisciplinary science and engineering research center"

Advanced Photon Source

(Under construction: APS upgrade)

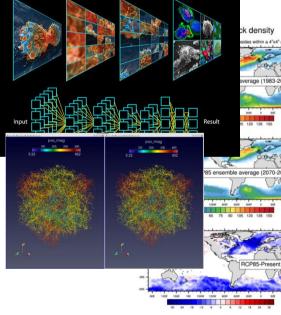
Argonne Leadership Computing Facility

IBM Blue Gene/Q (Mira) Cray XC40 (Theta)


(Under construction: A21 exascale system)

THE ROLE OF ANL/MCS DATA-INTENSIVE SCIENCE RESEARCH

(one perspective)


Techniques, algorithms, and software to bridge the "last mile" between scientific applications and storage systems

THE ROLE OF ANL/MCS DATA-INTENSIVE SCIENCE RESEARCH

(one perspective)

a 4°x4° gridbox

This entails:

- Characterizing access
- Modeling architectures
- Optimizing data services
- Incorporating new technology such as NVM

DATA-INTENSIVE SCIENTIFIC COMPUTING

Constraints on NVM integration from an end-user perspective

- Efficiency
 - CPU hours (and storage) are a scarce commodity
 - This has a direct impact on scientific time to solution
- Portability
 - Applications must execute on multiple platforms
 - The science itself will outlive all of those platforms
- Ease of use
 - Scientists would like to focus on their problem domain
 - Not the mysterious ways of vendor_api_write_foo()

DATA-INTENSIVE SCIENTIFIC COMPUTING

Potential solutions in the storage design space

- Efficiency
- Portability

Ease of use

- 1. A global parallel file system
 - POSIX is portable and easy to use (or at least well understood)
 - Re-engineering needed to address latency shifting by orders of magnitude
 - Semantics and API make this challenging
- 2. "Here are some NVM devices: have fun!"
 - Dedicated developers will always be able to maximize efficiency with this approach
 - Not enough ninja programmers for this to be a viable long term option
- 3. Specialized data services
 - There are challenges and opportunities
 - NVM APIs can help

WHAT DO WE MEAN BY SPECIALIZED DATA SERVICES?

SPECIALIZED DATA SERVICES

- Semantics and capabilities tailored to a problem domain
- Provisioned and instantiated on-demand
- Abstracting storage technology from the application
- Target more than just checkpointing
- A way to leverage NVM characteristics by bypassing conventional storage software infrastructure

Examples are already common in HPC!

AN ECOSYSTEM OF DATA SERVICES

Science Workflow

Executables and Libraries

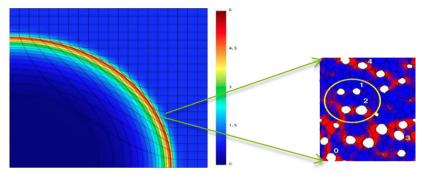
SPINDLE

Checkpoints SCR

FTI

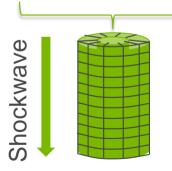
Input and Intermediate Data Products DataSpaces MDHIM

Performance Data


Darshan LMT

There is an opportunity to extend this concept to domain-specific scientific data models as well.

A SCIENTIFIC DATA MODEL EXAMPLE: MULTI-SCALE SIMULATION



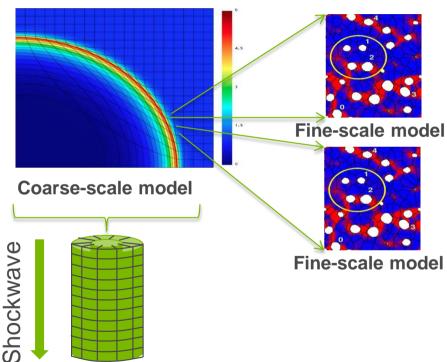
Coarse-scale model

Fine-scale model

Multi-scale models simulate across multiple time and length scales.

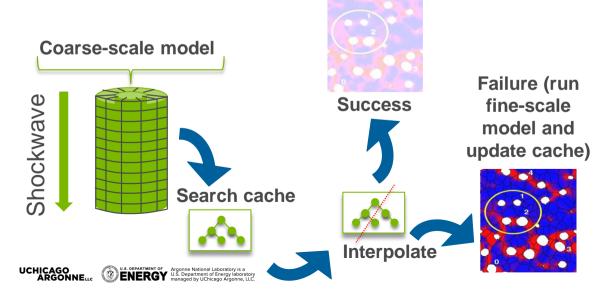
This example is a hydrodynamics unstructured mesh with an FFT-based PDE solver.

R. Lebensohn et al, Modeling void growth in polycrystalline materials, Acta Materialia, http://dx.doi.org/10.1016/j.actamat.2013.08.004


We will use it to illustrate a motif that occurs in other problem domains as well and highlights the need for reusable building blocks.

A SCIENTIFIC DATA MODEL EXAMPLE: MULTI-SCALE SIMULATION

- Phenomena such as shock waves propagate through coursescale model
- This sometimes requires recomputation of similar (or identical) fine-scale models


If the fine-scale model is expensive, then we should cache fine-scale results for later use.

COMPUTATIONAL CACHING AS A SPECIALIZED DATA SERVICE

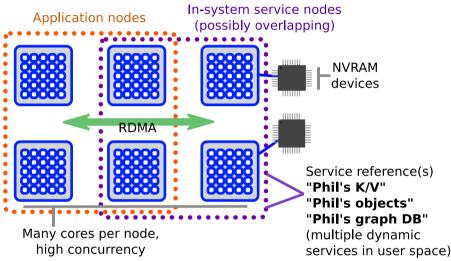
- Search cache for nearest neighbors in parameter space, interpolate, and check error bounds
- Could be a distributed data service that leverages low latency, byte-addressable NVMs

This isn't a standard file system or database.

 Give us building blocks for new data models

NVM APIs:

• Let us differentiate classes of memory



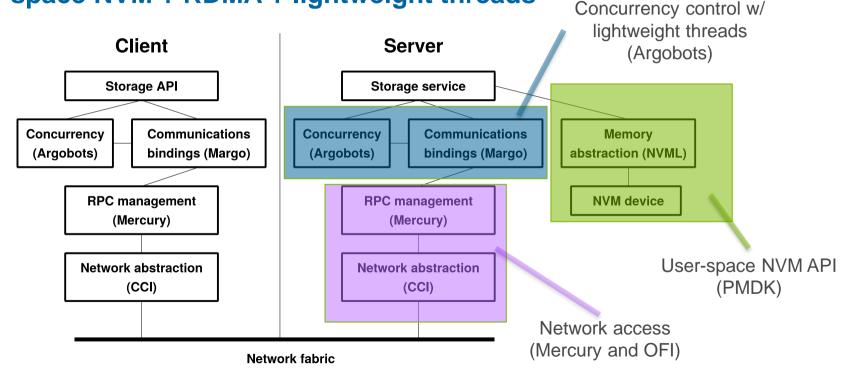
TECHNICAL CHALLENGES FOR SPECIALIZED DATA SERVICES IN HPC

- Where is the NVM?
 - Local to compute nodes, remote access, or remote access via fabric?
- Integration with custom HPC networks
 - Dragonfly, torus, fat tree, exotic APIs
- Concurrency
 - Applications with > 100 thousand processes
- Access mode

 User-space access helps to enable dynamic services on time-shared systems

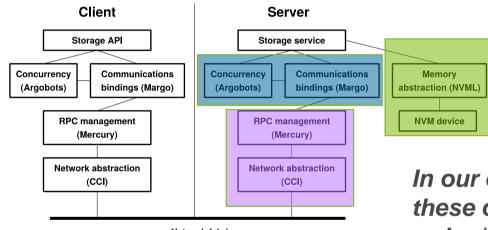
> U.S. DEPARTMENT OF U.S. Department of Energy laboratory is a unanaged by Uchicago Argonne, LLC.

The Mochi Project ANL, LANL, CMU, HDFG https://www.mcs.anl.gov/research/projects/mochi


BUILDING SPECIALIZED DATA SERVICES WITH NVM

ARCHITECTING AN NVM-BACKED DATA SERVICE

User space NVM + RDMA + lightweight threads



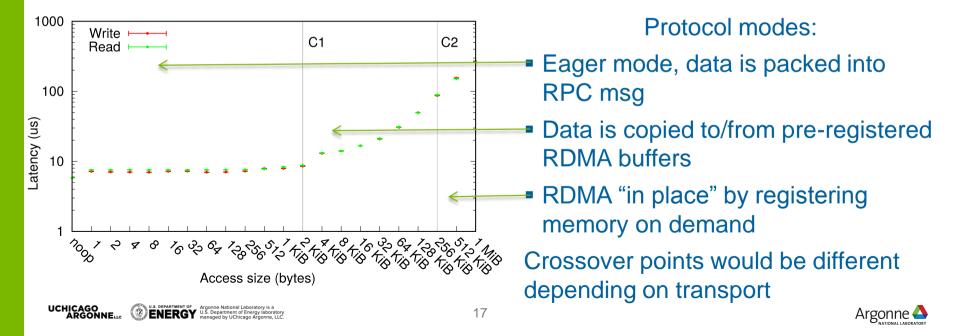
ARCHITECTING AN NVM-BACKED DATA SERVICE

User space NVM + RDMA + lightweight threads

Network fabric

Modularity helps with extensibility, portability, and reuse, but is this too many layers/components?

In our experience, no. We prioritize these optimizations instead:

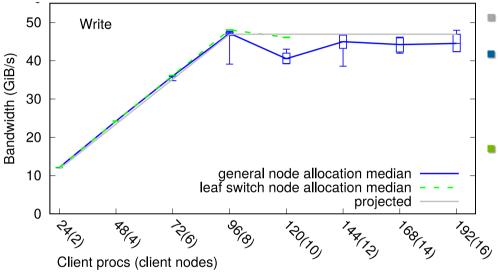

- Avoiding privileged mode transitions
- Avoiding context switches in general
- Avoiding memory copies
- Reducing CPU load

ACCESS LATENCY

How much latency do those software layers add?

- RAM in place of pmem
- No busy polling
- Each access is at least 1 network round trip, 1 libpmem access, and 1 new thread

ACCESS LATENCY


Observations and questions

- Single digit microsecond access latencies: could it be tuned further?
 - Consider adaptive polling
 - Optimize memory allocation
 - OFI providers (and others) are improving rapidly
- What about the long tail?
 - Previous slide shows confidence interval for 10,000 samples at each point, and the intervals are quite narrow
 - But there are outliers: worst noop sample was > 70 microseconds
 - This leads to the dreaded jitter problem in HPC
- The cost of memory copy vs. registration is a key factor in optimization

AGGREGATE BANDWIDTH

- Grey line is projected maximum
- Blue line is a normal allocation
 - Whiskers (min and max) show significant variance
- Green line is an allocation with all nodes on one leaf switch
 - Whiskers (min and max) show very little variance

- Same system as in previous example
- 8 servers (1 per node)
- Up to 192 application processes (12 per node)

AGGREGATE BANDWIDTH

Observations and questions

- New problems arise when storage latency isn't the longest pole in the tent:
 - E.g., network topology (In this example, internal switch routing)
 - Consider dynamic routing and congestion-avoidance algorithms?
 - Better internal service instrumentation?
 - Make the storage system topology-aware?
- The service can saturate aggregate bandwidth relatively easily
- PMDK atomics help avoid serialization
 - Especially when creating and destroying objects
- How does this software architecture hold up at larger scales?

COMMENTARY ON THE ROLE OF NVM APIS IN SCIENTIFIC COMPUTING

- We surely appreciate faster file systems and databases, but there are many other possibilities to consider
- NVM is easier to integrate into HPC if it gets along with our other technologies
 RDMA networks, user-space provisioning, lightweight concurrency
- Bottlenecks aren't where they used to be
- Some degree of standardization is helpful
 - Minimize burden on developers for portability
- What is the role of PMoF?
 - Important technology, but not a full solution for concurrency and flow control
- Right now focus is on "get it to work, fast!", but focus will shift over time: characterization, elasticity, multi-objective optimization, and more

THIS WORK WAS SUPPORTED BY THE U.S. DEPARTMENT OF ENERGY, OFFICE OF SCIENCE, ADVANCED SCIENTIFIC COMPUTING RESEARCH, UNDER CONTRACT DE-AC02-06CH11357.

THIS RESEARCH USED RESOURCES OF THE ARGONNE LEADERSHIP COMPUTING FACILITY, WHICH IS A DOE OFFICE OF SCIENCE USER FACILITY SUPPORTED UNDER CONTRACT DE-AC02-06CH11357.

