
Approved for public release

Chimbuko: a workflow-level 
performance anomaly detection 
system for HPC

Christopher Kelly

Computational Science Initiative

Brookhaven National Laboratory



2

Introduction

• Modern HPC workflows typically comprise multiple 
coupled elements running simultaneously.

• Understanding the behavior of a complex workflow running 
at-scale on a supercomputer is very challenging

– Built-in timing/profiling can highlight areas of potential 
optimization but cannot identify root cause.

– Capturing detailed trace data for root-cause analysis can only 
be done at small scale as data volumes quickly become 
overwhelming.

– Small-scale analysis may not capture "stochastic" effects 
appearing only at scale, such as resource contention between 
workflow elements or hardware-driven anomalies.



3

Chimbuko : "Place of Origin" (Swahili)

• Chimbuko performs real-time in situ 
analysis of trace data captured by TAU.

• All workflow component instances 
simultaneously analyzed by local "Online 
AD" processes.

• Focus on isolating anomalous behavior 
using ML-driven approach.

• Detailed provenance information is stored 
for each anomaly.

• Remaining trace data is discarded, 
resulting in a dramatic reduction in data 
volume.

https://github.com/CODARcode/Chimbuko



4

Anomaly detection

Parameter 
server

(server node)

(local node)

Workflow 
element / rank

Online 
AD 

instance

Trace data

Model sync

• Trace data is obtained by TAU and piped to local OAD via 
ADIOS2 in batches (~1 batch / second).

• For each function the OAD builds a model of the executions in 
the batch.

• Presently model only function runtime.

• Model parameters are merged/sync'd with global model.

• Executions in batch are then analyzed for anomalies.

• Supported AD algorithms:

– Histogram-based outlier selection (HBOS)

• Runtime histogram generated, outliers chosen based on bin likelihood

– Copula-based outlier detection (COPOD)

• Also histogram-based but utilizes empirical CDF

– Gaussian model (SSTD)

• Executions modeled as a normal distribution

• Parameter server optimized to support thousands of OAD 
client instances.

[Goldstein, Dengel,2012]

[Li, Zhao et al, 2020]



5

Provenance information

• To enable root-cause identification we must capture detailed 
provenance.

– Execution parameters

• Inclusive/exclusive runtime, timestamp, function name

– Location information

• Rank, device, host, thread, etc

– Call stack information

• Both host and device side for GPU kernel executions

– Performance counters captured during function execution

• PAPI counters, disk activity, GPU API-provided counters

– MPI communication events during function execution

– Algorithm parameters used to make outlier decision

• Data are formatted as JSON records and sent to centralized 
provenance database.



6

Chimbuko Visualization

• Online visualization 
tool provides user 
overview and provDB 
access.

• Drill down from rank 
to individual anomaly

• Call stack and MPI 
comms visualization.



7

Provenance database

• Provenance database runs on the server node 
and collects provenance data from all ranks.

• Require a remote (JSON) document-store, non-
relational database with:

– Support for asynchronous stores from clients

– Low-latency read access to support visualization.

– Scalability to potentially thousands of 
simultaneous clients.
(i.e. 1000s of records stored / s)

• Our implementation uses Sonata

– A Mochi service codesigned by Matthieu Dorier.

– Remote access to UnQLite database instances.

– Jx9 query language enables arbitrary filtering.

– C++ and Python client support.

[https://github.com/mochi-hpc/mochi-sonata]



8

A scalable design

•Database sharding allows for a scalable 
design capable of supporting large 
numbers of clients:

– Clients each connect to a single shard

– Server instances control multiple shards

– Additional server instances can be maintained 
on independent resources to avoid hardware 
constraints

– Visualization connects to every shard but 
accesses infrequent as driven by direct user 
interaction with frontend.

Svr1

Shards

Svr0

Shards

OAD clients

Svr1



9

Server-level parallelization

• Server can support an arbitrary 
number of shards.

• Each shard is an independent Margo 
provider

• Each provider bound to independent 
Argobots execution stream and pool
to minimize interference between 
shards.

Client

pool

xstream

Shards

P
ro

v
id

e
r

Progress loop

Server



10

Scalability study (Summit)

•Scalability study performed on 
Summit

•Assume 2 stores / second / 
client

•Single server demonstrated 
capability of supporting up to 
O(2500) clients

•Additional server instances 
allow unlimited scalability.

Clients stopped sending



11

Mochi Yokan

• UnQLite is not the fastest database solution on the market.

– Hacking the API to call into lower-level functionality is necessary to 
achieve best performance.

• Some issues encountered with stability and thread safety.

• Databases such as Facebook's RocksDB and Google's LevelDB 
may improve server capacity

– Some also offer compression to reduce provDB memory footprint.

• The new Mochi "Yokan" service is an evolution of Sonata to 
support many different backends (including RocksDB and 
LevelDB)

• The Chimbuko team are working with the Mochi team to replace 
the Sonata implementation with Yokan.

– Preliminary implementation complete and benchmarking is underway.

[https://github.com/mochi-hpc/mochi-yokan]



12

Summary

• The ECP Chimbuko tool allows for real-time 
performance monitoring for workflows running at-scale
on HPC machines.

• The application is modeled and outliers detected 
using unsupervised machine learning algorithms.

• Detailed provenance information is captured and 
stored in a highly scalable database implemented as a 
Mochi Sonata microservice codesigned by the Mochi 
team.

• Visualization tools allow for online and offline analysis 
of the resulting data.

• We look forward to continued collaboration with the 
Mochi team!


