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Introduction

Data Acquisim

« Modern HPC workflows typically comprise multiple e iy
coupled elements running simultaneously. | Makedaa
i .—l_ cluster
« Understanding the behavior of a complex workflow running s | —
at-scale on a supercomputeris very challenging | e
— Built-in timing/profiling can highlight areas of potential oata | d |
optimization but cannot identify root cause. oo —— A
— Capturing detailed trace data for root-cause analysis can only [ & E !l
be done at small scale as data volumes quickly become ‘ l I
overwhelming. sl Data Consoldation |+
— Small-scale analysis may not capture "stochastic" effects ‘
appearing only at scale, such as resource contention between esuhs/
workflow elements or hardware-driven anomalies. A




Chimbuko : "Place of Origin" (Swabhili)

e Visualation « Chimbuko performs real-time in situ
o & o analysis of trace data captured by TAU.
i @ « All workflow component instances
v =1 v simultaneously analyzed by local "Online
Online AD Online AD Pa;ameter Online AD Online AD AD" processeS.
ADI@ST ADI@ST ADl@ST ADI@ST
T TAU Yt T TAU T TAU "t T TAU e Focus on isolating anomalous behavior
MPI Rank 1 MPI Rank N MPI Rank 1 MPI Rank M USing M L_d riven approach ]
Application 1 (e.g. NWChem) Application 2 (e.g. OAS)

» Detailed provenance information is stored
for each anomaly.

 Remaining trace data is discarded,
resulting in a dramatic reduction in data
volume.




Anomaly detection » Trace data is obtained by TAU and piped to local OAD via
ADIOS2 in batches (~1 batch / second).

For each function the OAD builds a model of the executions In
the batch.

(server node)

(local node) Presently model only function runtime.

@ Model sync
Online

AD
instance

Model parameters are merged/sync'd with global model.

Executions in batch are then analyzed for anomalies.

Supported AD algorithms:
— Histogram-based outlier selection (HBOS)
* Runtime histogram generated, outliers chosen based on bin likelihood

— Copula-based outlier detection (COPOD)
» Also histogram-based but utilizes empirical CDF

— Gaussian model (SSTD)
» Executions modeled as a normal distribution

AD|@S Trace data

Workflow
element / rank

Parameter server optimized to support thousands of OAD
ECP 525 client instances.




Provenance information

« To enable root-cause identification we must capture detailed
provenance.

Inclusive/exclusive runtime, timestamp, function name

Rank, device, host, thread, etc

Both host and device side for GPU kernel executions

- captured during function execution
PAPI counters, disk activity, GPU API-provided counters

- during function execution
\ative_thread_routine [{thread.cc} {8, 0}1", —_ used tO make Outlier deCiSion

e Data are formatted as JSON records and sent to centralized
provenance database.




Chimbuko Visualization
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Provenance database
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 Provenance database runs on the server node
and collects provenance data from all ranks.

* Require a remote (JSON) document-store, non-
relational database with:

— Support for asynchronous stores from clients
— Low-latency read access to support visualization.

— Scalability to potentially thousands of
simultaneous clients.
(i.e. 1000s of records stored / s)

[https://github.com/mochi-hpc/mochi-sonata]
e Our implementation uses Sonata
— A Mochi service codesigned by Matthieu Dorier.
— Remote access to UnQLite database instances.
— Jx9 query language enables arbitrary filtering.
— C++ and Python client support.




A scalable design

» Database sharding allows for a scalable

ij} design capable of supporting large
2 numbers of clients:

- — Clients each connect to a single shard

/// \\ — Server instances control multiple shards
/ / / N \ \ \ — Additional server instances can be maintained

(Svr0 Svrl on independent resources to avoid hardware
[ wrh dw ] [ ) /am—Y ] constraints
Shards Shard : L
>hards — Visualization connects to every shard but

accesses infrequent as driven by direct user
Interaction with frontend.
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OAD clients




Server-level parallelization @

@erver \ « Server can support an arbitrary
Prag loop :

number of

« Each shard is an independent Margo
provider

a « Each provider bound to independent
Argobots and pool
to minimize interference between
shards.




Scalablility study (Summit) Clients stor:[ped sending
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» Scalability study performed on _ ;
. B — 1008 clients, 1 server : 3
Su mm |t —— 2016 clients, 1 server :
4e+06 — | —— 3024 clients, 1 server —

4032 clients, 1 server
n 4032 clients, 2 servers

e Assume 2 stores / second /
client
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Additional servers allow scaling past'throughput limit
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. throughput limit of single server instance _]

 Single server demonstrated
capability of supporting up to
O(2500) clients
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cumulative database stores

e Additional server instances

allow unlimited scalability. e

Cljents running
0 200 400 600 800

Jobruntime overhead rggion




[https://github.com/mochi-hpc/mochi-yokan]

Mochi Yokan

UnQLite is not the fastest database solution on the market.

— Hacking the API to call into lower-level functionality is necessary to
achieve best performance.

Some issues encountered with stability and thread safety.

Databases such as Facebook's RocksDB and Google's LevelDB
may improve server capacity

— Some also offer compression to reduce provDB memory footprint.

The new Mochi"Yokan" service is an evolution of Sonata to
support many different backends (including RocksDB and
LevelDB)

« The Chimbuko team are working with the Mochi team to replace
the Sonata implementation with Yokan.

— Preliminary implementation complete and benchmarking is underway.




Summary

 The ECP Chimbuko tool allows for real-time
performance monitoring for workflows running at-scale
on HPC machines.
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« The application is modeled and outliers detected
using unsupervised machine learning algorithms.
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» Detailed provenance information is captured and
stored in a highly scalable database implemented as a
Mochi Sonata microservice codesigned by the Mochi
team.
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 Visualization tools allow for online and offline analysis
of the resulting data.

 We look forward to continued collaboration with the
Mochi team!




