Building Custom Data Services With Mochi

Philip Carns (Argonne National Laboratory) Philip Davis (University of Utah) Matthieu Dorier (Argonne National Laboratory) Chris Kelly (Brookhaven National Laboratory) Rob Ross (Argonne National Laboratory) Jerome Soumagne (The HDF Group)

May 12, 2022

What's changing in HPC data services?

Application pull:

- Artificial intelligence use cases
- Use of HPC in experimental science (e.g., ATLAS/CMS)
- Streaming data

Technology push:

- New networking APIs and capabilities
- More capable storage technologies
- Compute in storage

Image from M. Geurden, "Market Opportunity Identification: Push or Pull?," July 2012, https://newentrepreneurship.nl/2012/07/02/market-opportunity-identification-push-or-pull/

Mochi Customized data services for DOE science

Mochi <u>.</u> 3 1. Core functionality **Application Process** developed as standalone components and **Object API** "microservices", cleanly **Object Provider Object Client** reusable in different Bake configurations and KV/Client Client products. Client Memory Extent **KV** Provider Application node Provider DB (e.g., PMDK or LevelDB) 2. Modularity eases POSIX adaptation to new **KV** Provider hardware technologies. Object provider node Margo 3. Multiple methods of **Berkeley** LevelDB programming (C, C++, Python), DB Mercury Argobots more accessible. 4. Portable RPC communication library designed for multi-Argonne //5 service environments The HDF Group

What's new in the Mochi approach?

	Component	Summary	
Core			
	Argobots	Argobots provides user-level thread capabilities for managing concurrency.	
	Mercury	Mercury is a library implementing remote procedure calls (RPCs).	
	Margo	Margo is a C library using Argobots to simplify building RPC-based services.	
	Thallium	Thallium allows development of Mochi services using modern C++.	
	SSG	SSG provides tools for managing groups of providers in Mochi.	
Utilities			
	ABT-IO	ABT-IO enables POSIX file access with the Mochi framework.	
	Bedrock	Bedrock is a bootstrapping and configuration system for Mochi components.	
	ch_placement	ch-placement is a library implementing multiple hashing algorithms.	
	Shuffle	Shuffle provides a scalable all-to-all data shuffling service.	
Microservices			
	BAKE	Bake enables remote storage and retrieval of named blobs of data.	
	POESIE	Poesie embeds language interpreters in Mochi services.	
	REMI	REMI is a microservice that handles migrating sets of files between nodes.	
	Sonata	Sonata is a Mochi service for JSON document storage based on UnQLite.	
	Yokan	Yokan enables RPC-based access to multiple key-value backends.	

11:00 – 11:15	Welcome and Introductions	Rob Ross
11:15 –11:25	Getting Started	Phil Carns
11:25 – 11:40	New Components: Bedrock and Yokan	Matthieu Dorier
11:40 - 11:55	Mercury Updates	Jerome Soumagne
11:55 – 12:10	Case Study 1: DataSpaces	Philip Davis
12:10 - 12:25	Case Study 2: Chimbuko	Chris Kelly
12:25 – 12:30	Wrap-up	Rob and Phil

