
Mercury Updates 



2

Mercury

• Base low-level RPC component used for communication between Mochi services

– Always consider higher-level components first before directly using the mercury API

• In-depth documentation:

– https://mercury-hpc.github.io

• Two main data transfer methods

– Point-to-point RPC through eager messages

• Connection-less semantics

– Bulk data through RDMA

• No memory copy

• Requires memory registration internally

https://mercury-hpc.github.io/


3

Status and Roadmap

• 2.1.0 version released

– Added initial support for UCX

– Bug fixes

• 2.2.0rc1 version released

– OFI / UCX:

• Better handling of addressing formats and 
support for IPv6

• Support device (CUDA, ROCm) to host transfers

– OFI:

• Support HPE Slingshot 11 through cxi provider

• Support NIC locality through hwloc

– UCX:

• Switch to active messages for RPC requests

– PSM/PSM2 (new plugin to support OmniPath)

• Hopeful to have psm2 supported through OFI 
opx provider in the future

– Improved diagnostics through `diag` log 
subsystem and improved OFI provider selection 
information

– Checksums disabled by default

• Introduced checksum levels

• 3.0.0 version

– Extend addressing capabilities to address 
contexts (enhanced multithreading support and 
composability)

• Improved support to OFI scalable endpoints

2.1.0 2.2.0rc1 2.2.0 3.0.0… …



4

Supported Transports

tcp verbs shm psm psm2 gni cxi

OFI ✓ ✓ ✕* ✕* ✓ ✓ ✓

UCX ✓ ✓ ✕* ✕ ✕ ✕* ✕

SM ✕ ✕ ✓ ✕ ✕ ✕ ✕

PSM ✕ ✕ ✕ ✓ ✓ ✕ ✕

BMI ✓ ✕ ✕ ✕ ✕ ✕ ✕

* Not explicitly supported by mercury but may be supported by underlying library



5

Slingshot Support and Locality Awareness

• Slingshot 11 supported w/ OFI cxi provider

– Support only native addressing (i.e., no IP)

• “ofi+cxi://cxi[0-9]:[0-510]”

– All Mercury features supported by cxi provider 
except blocking progress

• Busy spinning progress at the moment but will 
be resolved in a future libfabric update

• Locality awareness

– Enabled when no interface is explicitly selected

• “ofi+cxi://:[0-510]” or “ofi+cxi”

– Uses PCI NIC information from libfabric and 
hwloc output to match closest NIC

• As for Cray GNI, communication between 
separate jobs may require key exchange (still 
under evaluation)

Credit: https://docs.olcf.ornl.gov/systems/crusher_quick_start_guide.html#system-overview

cxi2 cxi1

cxi1 cxi0

Core 0

https://docs.olcf.ornl.gov/systems/crusher_quick_start_guide.html#system-overview


6

UCX

• Relies on UCP API of UCX

– Combines both active and tagged messages

– Supports native RDMA for bulk data

• All features of Mercury now supported

– Only tested using tcp and verbs (in general ~1us 
faster than OFI on verbs)

• Supports only IP type of addressing

– ucx+all://<hostname, IP, iface>:port

• Recommended to always use “all” and let UCX 
decide on best protocol to use

• Thread safety mode can be relaxed w/ init info

– Default is thread-safe

• Additional options passed through UCX 
environment variables

HG class

UCP worker

Origin

HG class

UCP worker

Target

RPC request = UCP active message

RPC response = UCP tagged message



7

Host to Device RDMA Transfers

• New routine to provide memory type 
information on bulk handle creation

– HG_Bulk_create_attr() with HG_MEM_TYPE_CUDA, 
HG_MEM_TYPE_ROCM, etc (default is 
HG_MEM_TYPE_HOST)

– Supported by both OFI and UCX plugins

• Only verbs and cxi for OFI

• Transparent for UCX

• RPC requests and response are always sent 
between CPUs

– Eager bulk transfers disabled when using device 
memory to prevent extra copy from device to 
CPU

• More testing remains to be done

Host memory

Origin

Host memory

Target

RPC request

(always sent from CPU to CPU)

Bulk transfer from origin device to target host memory

Device

CPU CPU



8

Logging and Diagnostics

export HG_LOG_LEVEL=debug

export HG_LOG_SUBSYS=diag

export HG_LOG_LEVEL=debug

export HG_LOG_SUBSYS=cls

Diagnostics counters can tell 

you about the type of RPCs that 

were sent / received

Debug output for OFI info give 

information about OFI provider

Compare with fi_info output

(Similar debug output for UCX)


