
Developing Custom HPC Data
Services using

Matthieu Dorier1, Phil Carns1, Marc-André Vef2

ISC 2023, Hamburg – May 21st

1 Argonne National Laboratory
2 Johannes Gutenberg University Mainz

A note on the hands-on
This tutorial contains 3 hands-on session of 30min each.

If you haven’t already, follow the initial setup here to setup your docker image:

bit.ly/3Ieh0yz

2

https://mochi.readthedocs.io/en/latest/tutorials/01_setup.html

Introduction
What is Mochi?

Phil Carns
🕑 10 min 3

Mochi motivation

4

● HPC systems are typically deployed with a “one size fits all” data service (e.g., a parallel
file system) for all applications.

● Libraries may be layered atop it, but ultimately all storage access uses the same
semantics, policies, and interface.

Mochi seeks to transform this data service monoculture into an ecosystem of specialized
services that are tailored to suit specific use cases and problem domains.

● The objective of the Mochi project is to design methodologies and tools for the
rapid development of distributed HPC data services.

● Mochi relies heavily on composition: common capabilities such as communication, data
storage, concurrency management, and group membership are provided under Mochi
along with building blocks such as bulk data and key-value stores.

● These building blocks can be combined as needed to suit the task at hand.

The Mochi concept

5

Example Mochi components

6

● Our hands-on exercises will focus on Margo (C), Thallium (C++), and Bedrock (composition).
● Mochi components are carefully designed for interoperability: reuse as much as you can!

Example services built with Mochi

7

● Conventional data services, performance tuning, in situ analytics, and more.
● … anything that requires high-performance data exchange, decoupled from the application
● Marc Vef will walk us through an example full-featured Mochi service later on today.

What is an RPC-based data service?

8

Clients ServersCommunication

request

(optional) bulk data

response

remote
function

● RPC = “remote procedure call”
● Clients ask servers to execute remote

functions on their behalf.
● Function inputs and outputs are

encoded into request and response
messages.

RPC systems have been around in various forms for decades. What’s unique about Mochi?
● Designed for high concurrency
● Explicit bulk data transfers (e.g., a fast path for I/O operations)
● Support for HPC hardware and protocols

○ But independent of MPI!
● Can operate in user space without escalated privileges

High-level Mochi concepts and terminology

9

RPCs and providers

● RPCs are grouped together into “providers” that collectively
implement a service or broker access to a resource.

● There can be multiple providers per server
○ Even multiple instances of the same type of provider

● Providers can talk to each other.
○ One provider may delegate some functionality to another provider on

the same server or elsewhere.

“Everything is an RPC”: Regardless of location, even among providers,
use RPCs to interact with a provider.

Server daemon

Provider bar

RPC fn
“foo_1”

RPC fn
“foo_2”

RPC fn
“foo_3”

RPC fn
“bar_A”

RPC fn
“bar_B”

Provider
foo

High-level Mochi concepts and terminology

10

Why are RPCs the primary interface to
providers?

This is crucial to composability.

● API conventions and addressing do not
change based on deployment/composition
(transparent transport selection is handled by
Mochi components).

● RPC framework becomes the common
substrate for monitoring and profiling.

● Let Mochi optimize the RPC communication
path for you.

Client Server

Node

Client Server

Node

Client Server

Node1 Node2

RPC transport:
Function call &
memory copy

RPC transport:
Local pipe &
fast shared
memory

RPC transport:
HPC network
fabric & RDMA

Decoupling software concurrency from
hardware concurrency

● When you register a new RPC, you will define
an RPC handler function to service it.

● Mochi will automatically execute handlers on
user-level threads, which map to operating
system threads, which map to CPU cores.

How do you manage this mapping in your service?
It’s easy: don’t! Use as much concurrency as you
need. In Mochi, this resource mapping challenge is
a configuration problem, not a software
architecture problem.

High-level Mochi concepts and terminology

rpc_handler_fn(...) {...} RPC
handlers

User-level
threads

OS threads

CPU cores

Mochi uses the Argobots threading
package. You can call Argobots functions
directly (in C) or with Thallium wrappers
(C++) if you have a need for explicit
concurrency control: there are equivalents
of all major pthread functions, plus more.

Mochi’s core libraries
Service development as easy as it can be

12

Margo
Programming model and API to

develop a data service in C

Matthieu Dorier
🕑 10 min 13

Margo is a library combining Mercury and Argobots

14

Margo

Mercury Argobots

Mercury

● Provides RPC and RDMA
● Wide range of transport

backends (tcp, verbs, gni,...)
● Callback-driven
● User has to implement their

progress loop (call
HG_Progress/HG_Trigger
periodically)

Argobots

● Provides user-level
threading runtime

● Very flexible in how and
where user-level threads
(ULTs) execute

Margo is a library built on top of Mercury and Argobots, hiding a Mercury progress loop in a ULT and
converting RPC handlers into UTLs.

Using Margo allows programs to make other progress while waiting for network operations to complete.

The margo instance
#include <margo.h>

margo_instance_id mid = margo_init("tcp", MARGO_SERVER_MODE, true, 4);

hg_addr_t my_address;

margo_addr_self(mid, &my_address);

char addr_str[128];

size_t addr_str_size = 128;

margo_addr_to_string(mid, addr_str, &addr_str_size, my_address);

margo_addr_free(mid, my_address);

printf("Server running at address %s", addr_str);

margo_wait_for_finalize(mid);

or MARGO_CLIENT_MODE

Whether to create a
dedicated progress thread

Number of RPC threads. Passing 0 will
make RPCs execute in the main thread.
Passing -1 will make them execute in
the Mercury progress thread.

Will block until margo_finalize
is called (by another thread). Client
should call margo_finalize . 15

static void hello_world(hg_handle_t h) {

 hg_return_t ret;

 margo_instance_id mid = margo_hg_handle_get_instance(h);

 margo_info(mid, "Hello World!");

 margo_respond(h, NULL);

 margo_destroy(h);

}

DEFINE_MARGO_RPC_HANDLER(hello_world)

Registering RPC handlers

static void hello_world(hg_handle_t h);

DECLARE_MARGO_RPC_HANDLER(hello_world)

hg_id_t rpc_id = MARGO_REGISTER(mid, "hello", void, void, hello_world);

hg_id_t rpc_id = MARGO_REGISTER(mid, "hello", void, void, NULL);

Server

Client

All RPC handlers have this signature

This macro generates a hello_world_ult
function that will wrap the RPC in a ULT

On servers, provide the function pointer

On clients, pass NULL

16

hg_id_t hello_rpc_id = MARGO_REGISTER(mid, "hello", void, void, NULL);

hg_addr_t svr_addr;

ret = margo_addr_lookup(mid, argv[1], &server_addr);

hg_handle_t handle;

ret = margo_create(mid, svr_addr, hello_rpc_id, &handle);

ret = margo_forward(handle, NULL);

ret = margo_destroy(handle);

ret = margo_addr_free(mid, svr_addr);

Calling the RPC

17

Lookup the server’s address from a string

Create a handle

Send the handle to the server along with
RPC arguments (here NULL – we will

talk about argument serialization later)

Let’s use arguments and return values

static void hello_world(hg_handle_t h);

DECLARE_MARGO_RPC_HANDLER(hello_world)

#include <mercury.h>

#include <mercury_macros.h>

MERCURY_GEN_PROC(sum_in_t,

 ((int32_t)(x))\

 ((int32_t)(y)))

MERCURY_GEN_PROC(sum_out_t, ((int32_t)(ret)))

hg_id_t rpc_id = MARGO_REGISTER(mid, "sum", sum_in_t, sum_out_t, sum);

sum_in_t in = { 42, 33 };

margo_forward(handle, &in);

sum_out_t out;

margo_get_output(handle, &out);

margo_free_output(handle, &out);

sum_in_t in;

margo_get_input(handle, &in);

sum_out_t out = {.ret = in.x + in.y };

margo_respond(handle, &out);

margo_free_input(handle, &in);

In most cases, Mercury macros can be used to generate both the structure
definition and the code that serializes it. If you need more complicated
serialization, see https://mochi.readthedocs.io/en/latest/margo/08_proc.html

Now you can provide input and output
types to the MARGO_REGISTER macro!

Client Server

18

The client needs to free the output,
the server needs to free the input

https://mochi.readthedocs.io/en/latest/margo/08_proc.html

MERCURY_GEN_PROC(sum_in_t,

 ((int32_t)(n))\

 ((hg_bulk_t)(bulk)))

MERCURY_GEN_PROC(sum_out_t, ((int32_t)(ret)))

Using RDMA: the hg_bulk_t handle

sum_in_t args;

int32_t values[10] = { 1,4,2,5,6,3,5,3,2,5 };

hg_size_t seg_sizes[1] = { 10*sizeof(int32_t) };

void* seg_ptrs[1] = { (void*)values };

hg_bulk_t bulk;

margo_bulk_create(mid, 1, seg_ptrs, seg_sizes, HG_BULK_READ_ONLY, &bulk);

args.n = 10;

args.bulk = bulk;

…
margo_bulk_free(bulk);

hg_bulk_t handle can be serialized. This does not serialize the data,
but the information to access the process’ memory remotely.

An hg_bulk_t handle can expose
multiple non-contiguous segments

Tell margo what the remote process
will do with the memory, using
HG_BULK_READ_ONLY ,
WRITE_ONLY , or READWRITE .

19

Tip: most transports
can reasonably
handle a few
segments.

If you have a lot of
segments (more than
4), then it will
probably be faster to
pack them yourself.

Using RDMA: the hg_bulk_t handle

const struct hg_info* info = margo_get_info(h);

hg_addr_t client_addr = info->addr;

int32_t* values = calloc(in.n, sizeof(*values));

hg_size_t buf_size = in.n * sizeof(*values);

hg_bulk_t local_bulk;

ret = margo_bulk_create(mid, 1, (void**)&values, &buf_size,

HG_BULK_WRITE_ONLY, &local_bulk);

ret = margo_bulk_transfer(mid, HG_BULK_PULL, client_addr, in.bulk, 0,

 local_bulk, 0, buf_size);

...

ret = margo_bulk_free(local_bulk);

Inside an RPC handler, you can get
the address of the sender using
margo_get_info on the handle.

Let’s allocate a local buffer
into which to transfer the
data from the client

Create a local bulk handle
for the local buffer

Tell margo to PULL from the
remote bulk handle at offset 0 to
the local bulk handle at offset 0

20

Note: some transports don’t support non-contiguous memory (i.e. exposing more than
one segment in margo_bulk_create). Exposing multiple segments will work, but
transfer may be slower than one big contiguous segment.

Thallium
C++ for convenience and faster

development

Matthieu Dorier
🕑 10 min 21

Thallium: modern C++ on top of Margo

22

Margo

Mercury Argobots

Thallium

● C++14, object-oriented design
● Template metaprogramming allows turning any function

and any lambda into an RPC handler
● Serialization done with the Cereal library instead of

Mercury’s preprocessor macros

Thallium

#include <thallium.hpp>

namespace tl = thallium;

// equivalent of margo_init

tl::engine engine{"tcp", THALLIUM_SERVER_MODE, true, 8};

std::cout << "Engine address is: " << engine.self() << std::endl;

...

// equivalent of margo_finalize

engine.finalize();

// equivalent of margo_wait_for_finalize

engine.wait_for_finalize();

The thallium engine

● If initialized as server, the engine will call wait_for_finalize in its destructor
● If initialized as client, the engine will call finalize in its destructor
● The engine class is copy-constructible, multiple copies will refer to the same instance,

only the last one to be destroyed will call (wait_for_)finalize

or THALLIUM_CLIENT_MODE

Whether to create a
dedicated progress thread

Number of RPC threads

23

#include <iostream>

#include <thallium.hpp>

namespace tl = thallium;

void sum(const tl::request& req, int x, int y) {

 std::cout << "Computing " << x << "+" << y << std::endl;

 req.respond(x+y);

}

int main(int argc, char** argv) {

 tl::engine myEngine("ofi+tcp", THALLIUM_SERVER_MODE);

 std::cout << "Server running at address " << myEngine.self() << std::endl;

 myEngine.define("sum", sum);

 return 0;

}

Registering RPC handlers
Optional request object. If not provided,
the return value of the function will be
used as the response.

Argument type serialization
automatically deduced via templates.

Response type serialization
automatically deduced via templates.

24

#include <iostream>

#include <thallium.hpp>

namespace tl = thallium;

int main(int argc, char** argv) {

 tl::engine myEngine("ofi+tcp", THALLIUM_SERVER_MODE);

 std::function<void(const tl::request&, int, int)> sum =

 [](const tl::request& req, int x, int y) {

 std::cout << "Computing " << x << "+" << y << std::endl;

 req.respond((int)(x+y));

 };

 myEngine.define("sum", sum);

 return 0;

}

Lambdas work too!

25

Client side: calling the RPC

int main(int argc, char** argv) {

tl::engine myEngine("ofi+tcp", THALLIUM_CLIENT_MODE);

tl::remote_procedure sum = myEngine.define("sum");

tl::endpoint server = myEngine.lookup(argv[1]);

int ret = sum.on(server)((int)42,(int)63);

std::cout << "Server answered " << ret << std::endl;

return 0;

}

Lots of template magic happening here

Only the name is specified

● .on(endpoint) creates a callable_remote_procedure bound to the target
● (42, 63) uses template deduction to serialize the arguments and call the RPC
● a packed_data object is returned, representing the response (not deserialized yet)
● casting to int deserializes the data automatically
● Important: you are responsible for correctly matching types in the server and client!

○ Compile with -DTHALLIUM_DEBUG_RPC_TYPES during development to add type checking (adds an overhead)
26

Custom type serialization
● Use the Cereal library to handle

serialization of all primitive types and
STL containers

● Write your own serialize function for
custom types

● Or save and load functions
● They can be defined outside the class

class point {

 private:

 double x;

 double y;

 public:

 point(double a=0.0, double b=0.0)

 : x(a), y(b) {}

 template<typename A>

 void serialize(A& ar) {

 ar & x;

 ar & y;

 }

};

template<typename A>

void save(A& ar, const point& p) {

 ...

}

template<typename A>

void load(A& ar, point& p) {

 ...

}

27

Using RDMA: the client side

● You can expose multiple segments of memory as one bulk object
● tl::bulk objects can be sent as RPC argument
● Sending a tl::bulk object does NOT send the data it exposes
● You need to ensure the exposed memory is valid until the remote party is done accessing it

tl::engine myEngine("tcp", MARGO_CLIENT_MODE);

tl::remote_procedure remote_do_rdma = myEngine.define("do_rdma");

tl::endpoint server = myEngine.lookup(argv[1]);

std::string buffer = "Matthieu";

std::vector<std::pair<void*,std::size_t>> segments(1);

segments[0].first = (void*)(&buffer[0]);

segments[0].second = buffer.size()+1;

tl::bulk myBulk = myEngine.expose(segments, tl::bulk_mode::read_only);

remote_do_rdma.on(server)(myBulk);

28

std::function<void(const tl::request&, tl::bulk&)> f =

 [&myEngine](const tl::request& req, tl::bulk& remote_bulk) {

 tl::endpoint ep = req.get_endpoint();

 std::vector<char> v(6);

 std::vector<std::pair<void*,std::size_t>> segments(1);

 segments[0].first = (void*)(&v[0]);

 segments[0].second = v.size();

 tl::bulk local = myEngine.expose(segments, tl::bulk_mode::write_only);

 remote_bulk.on(ep) >> local;

 req.respond();

 };

myEngine.define("do_rdma",f);

Using RDMA: the server side

● req.get_endpoint() returns the address of the sender. It is needed to bind the received bulk
● We have a local buffer of 6 bytes, too few to transfer the whole remote memory, so the >>

operator will figure it out and transfer only 6 bytes
● The >> operator does not have a typical stream semantics: subsequent operations will still

transfer from the start of the remote memory, not from an offset 29

std::function<void(const tl::request&, tl::bulk&)> f =

 [&myEngine](const tl::request& req, tl::bulk& remote_bulk) {

 tl::endpoint ep = req.get_endpoint();

 std::vector<char> v(6);

 std::vector<std::pair<void*,std::size_t>> segments(1);

 segments[0].first = (void*)(&v[0]);

 segments[0].second = v.size();

 tl::bulk local = myEngine.expose(segments, tl::bulk_mode::write_only);

 remote_bulk.on(ep) >> local;

 req.respond();

 };

myEngine.define("do_rdma",f);

Using RDMA: the server side

● You can select the part of the memory you wish to transfer, and in which direction (provided you
set the right permissions when calling expose)

myRemoteBulk(3,45).on(myRemoteProcess) << myLocalBulk(13,45);

30

Use Argobots wrappers

● Just like margo, thallium will initialize Argobots if it is not already initialized, and finalize it when the
engine is finalized, if it initialized it

● You should make sure no Argobots construct (lock, mutex, pool, execution stream, etc.) outlives the
engine, unless you have manually initialized Argobots first

Locking mechanisms

● Thallium has a full set of wrappers for Argobots objects, e.g. ABT_mutex ⇒ tl::mutex
● You should use Argobots (or these wrappers), NOT POSIX equivalents (e.g. std::mutex)
● You can still use things like std::unique_lock<tl::mutex> (tl::mutex implements

lock())

Argobots constructs

● Thallium has wrappers for ABT_pool (tl::pool) and ABT_xstream (tl::xstream), with
functions to push work unit (ULTs into them). Don’t use std::async or POSIX threads.

31

Using Argobots
and Mercury

features directly

Phil Carns
🕑 10 min 32

Mercury software architecture

33

HG Core HG Bulk

Mercury

Network Abstraction Layer

NA SM NA OFI …
Encoding /
Serialization

Network transport library
(libfabric, UCX, etc.)

Mochi libraries
(Margo and Thallium)

Mercury is the core messaging
layer in Mochi: it translates low
level network primitives into
more usable RPC constructs.

● RPCs (requests and responses) are sent
through the HG Core routines.

○ Messages are encoded and buffered
○ Ideal for control and handshaking

● Bulk transfers are sent through HG Bulk
routines.

○ Direct RDMA access
○ Ideal for larger data payload transfers

Libfabric (OFI) is the preferred transport library.

Mercury network protocols

35

● Every Mercury network address has a string form.
● It starts with a protocol specifier prefix like “ofi+tcp://”

○ In that example: use the TCP protocol provider in the OFI (libfabric)
communication library.

○ This is sufficient for initializing Mercury.
● You can specify portions of the network address at startup (e.g., domain

and/or port) but we generally recommend against it.
○ Instead: start with just the protocol specifier, let Mercury assign an

address, and then retrieve the string for it with addr_self().
○ Or better yet: use helper libraries like Bedrock and SSG.

● What protocols are available? We’ll talk about that more later in the tutorial.

Mercury network addressing

36

● The complete network address will be resolved to something more
specific at runtime like “ofi+tcp;ofi_rxm://192.168.122.1:37557”

○ In this example the protocol prefix has also been expanded to
include RXM.

○ The address portion is an IP address and port.
○ Most, but not all, networks use the hostname:port convention.

● See the server in hands-on exercise 1 for example of how to retrieve the
local network address and convert it into a string to print.

Threading with Argobots
● You don’t have to use Argobots directly, but it’s

available if you need it!
● User-level threads (ULTs) are very lightweight!

Create as many as you need; they will be
multiplexed on execution streams (ESs).

● Argobots uses “cooperative” multithreading:
an execution stream cannot context switch to
another ULT unless you yield control

○ (e.g. by calling a Mochi function or using
an Argobots synchronization primitive).

● Argobots includes counterparts to all major
pthread functions (ABT_thread_create(),
ABT_thread_join, ABT_mutex_lock() etc.)

● Thallium includes C++ wrappers for these
primitives as well.

37

Typical timeline of a Mochi RPC
Client Server

M
er

cu
ry

 E
S

M
er

cu
ry

 E
S

40

● Mochi coordinates a lot of internal
mechanisms in the RPC path.

● You can ignore details when you
are starting, but they may
eventually become important for
performance tuning.

● Later today we’ll talk about how to
extract profiles and analyze them
as an advanced feature.

Tip: Expect one process (and it’s
progress ES) to be able to saturate one
NIC. You may need multiple processes
to take advantage of multiple NICs.

Hands-on session 1
Using Margo and Thallium

41

Prerequisite

Follow the initial setup on Mochi’s documentation to setup your docker image

bit.ly/3Ieh0yz

42

This Ubuntu image contains spack (already setup),
and the mochi-spack-packages repository

https://mochi.readthedocs.io/en/latest/tutorials/01_setup.html

Instructions and objectives

Objectives

● Write your own RPC with either Margo or Thallium
● Understand argument/response serialization
● Understand and use RDMA

Instructions

● Choose your language (C/Margo or C++/Thallium)
● Follow Exercise 1 in your chosen section at bit.ly/3OgtRE8

Note

● Focus on the “insert” RPC, go back to implementing “lookup” if you have time or later
● The second part (RDMA) is a bonus, do it if you have time, or on your own later

43

https://mochi.readthedocs.io/en/latest/tutorials.html

The Mochi Methodology
Designing a Mochi service for composability

Matthieu Dorier
🕑 10 min 44

Services and Components

What is a Mochi component?

● Provides a single functionality (e.g., key/value storage)
● Is accessible via RPC/RDMA, using Margo or Thallium
● Can share its environment (Argobots and Mercury) with other components
● May have multiple backend implementations for the functionality

What is a Mochi service?

● Specific composition of Mochi components
● Specific (usually application-tailored) interface on top
● Specific data semantics and access requirements

45

We always welcome new
open-source contributions!

The Mochi methodology

The Mochi methodology
revolves around a dialogue
between service implementers
and service users to understand
their applications and use-cases,
craft a relevant API, reuse
existing components and
develop new ones as needed,
with composability, reusability,
and configurability in mind

Designing a Mochi service

Service requirements

Data organization
Metadata
organization
User interface

User requirements

Data model
Access Pattern
Consistency guaranties
Fault tolerance

Composition,
interfacing, evaluation

Bedrock or glue-code
API implementation
Evaluation and testing

Components

Existing components
New backends
New components

46

Understand your user’s requirements
Which data model?
● Arrays, meshes, objects, etc.
● Namespace, metadata, hierarchy, etc.

Which access pattern?
● Characteristics (e.g. access sizes, burstiness)
● Collective/individual accesses
● Blocking/non-blocking

Which guarantees?
● Consistency
● Performance
● Persistence

User requirements

Data model
Access Pattern
Consistency guaranties
Fault tolerance

47

Service
requirements

Data organization
Metadata organization
User interface

Map user requirements to the service
How should data be organized?
● Sharding
● Distribution
● Replication

How should metadata be organized?
● Characteristics (e.g. access sizes, burstiness)
● Collective/individual accesses
● Blocking/non-blocking

How do clients interface with the service?
● Programming language
● API

48

Components

Existing components
New backends
New components

Components: don’t reinvent the wheel!
We already provide the following components

mochi-yokan Key/value and document storage

mochi-bake Blob storage

mochi-poesie Embedded scripting

mochi-abt-io Wrappers for POSIX I/O

mochi-remi File migration

mochi-ssg Gossip-based failure detection

mochi-raft Replicated state machine

If some have missing features, let us know!
49

Server library

Admin library

Client
Registers RPC names with the
margo instance, keeps track of
the provider handles or
resource handles created

Provider Handle
Represents a running provider,
using its Mercury address and
provider id (uint16_t)

Resource Handle
Represents a resource
maintained by a give provider
somewhere, provides the API
to access the resource

Provider
Registers RPC handlers with
the margo instance, manages
resources, receives RPCs and
directs them to resources

Backend Interface
Defines the abstract
functionalities and API that
resources managed by
providers must expose

Resource
Locally implements the
functionalities of the service

Admin
Registers RPC names with the
margo instance for RPCs
related to resource
management

Client library

Architecture of a Mochi component

RPC/RDMA RPC/RDMA

maps to…

maps to…

50

The Margo and Thallium templates
Provides a starting project with
the annoying code already filled in
so you can focus on what matters:

● The API
● The features

The templates als provide
- Unit tests (catch2)
- Github actions for

automated testing and code
coverage (codecov.io)

Rely on spack for dependencies
(spack.yaml) and on cmake for
building the code

51

Composition and
interfacing

Bedrock or glue-code
API implementation

Composition and interface
Composition
● Prefer Bedrock configuration to hand-written glue code
● Think in terms of dependency injection

Interface
● Have client-side handles representing server-side resources
● Think of non-blocking interfaces
● Think of forwarding interfaces (taking an already created bulk handle)
● Think of potential language bindings (e.g. Python)

○ Look at py-mochi-margo and at how Yokan provides its python binding (internal to the Yokan
code base, built by cmake), or Bake (external, built by setuptools like normal python packages)

52

Hands-on Session 2
Let’s code our own microservice

53

Instructions and objectives

Objectives

● Use the Margo or Thallium microservice template to write your own “phonebook”
component

● Understand the typical architecture of a Mochi component

Instructions

● Follow the instructions in the Exercise 2 section of your chosen language/library

Note

● You don’t need to have completed Exercise 1
● Again, focus on the “insert” function and do the “lookup” if you have time, or later

54

Interlude
Mochi’s role in the GekkoFS distributed file
system and the ADMIRE project

Marc-André Vef
🕑 10 min 55

History of using Mochi
● 2017: First GekkoFS commit January 2017 (funded by the German ADA-FS project)

○ Using Mercury since version 0.9
○ Using Margo before first version 0.1 was released

● Since 2018: Barcelona Supercomputing Center (BSC) GekkoFS collaboration
● 2019: GekkoFS ranked 4th in IO500’s 10-node challenge at Supercomputing
● 2020: DelveFS – semantic file system for object stores

○ Uses Mercury and Margo in a FUSE file system
● Since 2021: GekkoFS funded by the ADMIRE and FIDIUM projects

56

M.-A. Vef, N. Moti, T. Süß, T. Tocci, R. Nou, A. Miranda, T. Cortes, and A. Brinkmann.
GekkoFS - A Temporary Distributed File System for HPC Applications. In 2018 IEEE International Conference on Cluster Computing (CLUSTER)

M.-A. Vef, R. Steiner, R. Salkhordeh, J. Steinkamp, F. Vennetier, J.-F. Smigielski, and A. Brinkmann. 2020. DelveFS
- An Event-Driven Semantic File System for Object Stores. In 2020 IEEE International Conference on Cluster Computing (CLUSTER)

Unpredictability of parallel file systems (PFSs)

I/O performance varies
wildly for identical workloads

Applications suffer due to PFS load!

58

MareNostrum4 @ Barcelona Supercomputing Center (Spain)

Moving from this …

Data manipulations rely on the PFS

● Uncoordinated application I/O to/from PFS
● Node-local storage typically ignored
● Increased PFS contention and performance variability

59

… to this

Data manipulations rely on node-local storage

● Coordinated application I/O that fits the PFS
● Harmful I/O patterns are absorbed by node-local storage
● Reduced PFS contention and performance variability

60

1. Scalability

○ No central components
○ Linear scaling

2. Fast deployment
○ Wall time is important
○ <10 seconds for deployment

3. User space
○ User decides
○ No administrative support

4. Hardware independence
○ Use accessible storage
○ Use fast network fabrics

61
M.-A. Vef, N. Moti, T. Süß, M. Tacke, T. Tocci, R. Nou, A. Miranda, T. Cortes, and A. Brinkmann.
GekkoFS - A Temporary Burst Buffer File System for HPC Applications. In 2020 Journal of Computer Science and Technology (JCST)

GekkoFS is open source: https://storage.bsc.es/gitlab/hpc/gekkofs/

https://storage.bsc.es/gitlab/hpc/gekkofs/

1. Scalability

○ No central components
○ Linear scaling

2. Fast deployment
○ Wall time is important
○ <10 seconds for deployment

3. User space
○ User decides
○ No administrative support

4. Hardware independence
○ Use accessible storage
○ Use fast network fabrics

62
Mochi tools: Mercury, Argobots, and Margo

fundamentally contribute to GekkoFS’s performance

GekkoFS is open source: https://storage.bsc.es/gitlab/hpc/gekkofs/

https://storage.bsc.es/gitlab/hpc/gekkofs/

GekkoFS with Mercury’s bulk buffer transfers

63

Performance variability revisited

I/O performance variability
greatly reduced

64

MareNostrum4 @ Barcelona Supercomputing Center (Spain)

Metadata performance

65

● GekkoFS weakly scaled (100K files per process)
○ More than 819 million files in total with 512 nodes

MOGON II @ Johannes Gutenberg University Mainz (Germany)

The EuroHPC ADMIRE project
● € 7.9 million overall budget (2021-2024)
● 19 partners in 6 EU countries
● Key points:

○ Adaptive multi-tier data management
○ Computational and I/O malleability
○ Focus on ad-hoc storage systems
○ Use cases from industry and academics

● Mochi tools involvement
○ Margo as a communication framework

between ADMIRE components
○ Data movement between PFS and

ad-hoc storage systems

66

ADMIRE project architecture @ https://admire-eurohpc.eu

https://admire-eurohpc.eu

Recap
● Mochi tools helped us greatly in various use cases

○ Ease of use and network independence
○ Low-latency and high-throughput (GekkoFS, DelveFS)
○ Communication framework (ADMIRE)

● What’s next?
○ Supporting Bedrock for file system malleability
○ Overhauling GekkoFS architecture and migrating parts to Thallium

67

Some Mochi components
Reuse, compose, and contribute

68

Yokan
Key/value and document

storage

Matthieu Dorier
🕑 10 min 69

Database

Client (yk_client_t)

Database Handle
(yk_database_handle_t)

Provider (yk_provider_t)

Database

Admin (yk_admin_t)

Yokan in one picture

maps to…

70

● Client library for databases
accesses (put/get/erase/…)

● Database identified by a UUID

● Many available database
backends (rocksb,
leveldb, etc.)

● Admin library to create
and destroy databases

● Key/value storage: caller chooses the keys and values
○ Database can be sorted (sort function may be specified) or unsorted

● Document storage: a database stores collections, a collection contains multiple documents
identified by a numerical ID

○ User choose the target collection and document content, ID is returned by the database

Provider and Admin interface

yk_return_t ret = yk_provider_register(mid, 42, NULL, YOKAN_PROVIDER_IGNORE);

yk_admin_t admin = YOKAN_ADMIN_NULL;

yk_database_id_t db_id;

ret = yk_admin_init(mid, &admin);

ret = yk_open_database(admin, server_addr, provider_id, NULL, "map", "{}", &db_id);

char db_id_str[37];

yk_database_id_to_string(db_id, db_id_str);

printf("Database id is %s (take note of it!)\n", db_id_str);

ret = yk_admin_finalize(admin);

Provider

Admin

71

yk_client_t client = YOKAN_CLIENT_NULL;

yk_database_id_t db_id;

ret = yk_client_init(mid, &client);

yk_database_id_from_string(db_id_str, &db_id);

yk_database_handle_t db_handle = YOKAN_DATABASE_HANDLE_NULL;

ret = yk_database_handle_create(client, server_addr, provider_id, db_id, &db_handle);

...

ret = yk_database_handle_release(db_handle);

ret = yk_client_finalize(client);

Client interface
Client

72

const char* key = "matthieu";

const char* value_in = "dorier";

ret = yk_put(db_handle, YOKAN_MODE_DEFAULT, key, strlen(key), value_in, strlen(value_in));

char value_out[128];

size_t value_out_size = 128;

ret = yk_get(db_handle, YOKAN_MODE_DEFAULT, key, strlen(key), value_out, &value_out_size);

Storing and retrieving key/value pairs

Other functionalities

● Put/get multiple key/value pairs (put_multi , get_multi , put_packed , get_packed)
● Erase, check existence, get value length (erase, exists , length), with _multi variants
● List key/value pairs (list_keys(_packed) , list_keyvals(_packed))
● Use filters to return only some of the key/value pairs (simple filters like key prefix, or more complex

using Lua scripting)

73

Document storage
Collections

● List of documents, identified by an ID starting from 0 and increasing as new documents are added
● A database may contain multiple collections, identified by a name

ret = yk_collection_create(db_handle, "my_collection", YOKAN_MODE_DEFAULT);

const char* document = "This is a document";

size_t doc_size = strlen(document);

yk_id_t id;

ret = yk_doc_store(db_handle, "my_collection", YOKAN_MODE_DEFAULT, document, doc_size, &id);

printf("Document has id %lu\n", id);

char buffer[128] = {0};

size_t buf_size = 128;

ret = yk_doc_load(db_handle, "my_collection", YOKAN_MODE_DEFAULT, id, buffer, &buf_size);

74

Document storage
Collections

● List of documents, identified by an ID starting from 0 and increasing as new documents are added
● A database may contain multiple collections, identified by a name

Document storage functionalities

● Storing/loading one or multiple documents (doc_store/load_(multi/packed))
● Listing documents, possibly using filters (e.g. Lua) to select relevant ones
● Updating documents (update_(multi/packed))
● Erasing document (ID is not reused, loading again will return an error)
● Getting the length of a document (length(_multi))

⚠ Document storage is built on top of key/value storage, so if you use a database as a document store,
don’t use the key/value store interface or you might mess up your collections.

75

Change the semantics with modes
● Most functions have a “mode” parameter, usually set to YOKAN_MODE_DEFAULT (0)
● Modes (found in yokan/common.h) will alter the semantics of these functions

Some examples

● YOKAN_MODE_APPEND The put functions will append the values to existing ones instead of overwriting them
● YOKAN_MODE_NEW_ONLY The put or store functions will add the key/value or document only if it does not exist
● YOKAN_MODE_CONSUME The get functions will also erase the key/value pair
● YOKAN_MODE_NO_RDMA The function will not rely on RDMA for data transfers, passing data as RPC arguments instead
● YOKAN_MODE_INCLUSIVE The list functions will include the provided starting key if found
● …

⚠ Not all database backends support each mode. Look at the list on mochi.readthedocs.io to select a
backend that provides the mode you want.

76

Backends
Yokan provides many database backends

● In-memory backends: map, unordered_map, set, unordered_set
● Storage-backed backends: rocksdb, leveldb, lmdb, gdbm, tkrzw, unqlite, berkeleydb
● Some backends have sub-backends (e.g. berkeleydb and tkrzw have a sorted and a non-sorted

backend, and some backends have options for being in-memory)
● All these backends are highly configurable

You can implement your own backend easily (see mochi.readthedocs.io for instructions)

⚠ Some backends are not sorted (e.g. gdbm, unordered_map,...), some backends do not store values
(e.g. set, unordered_set)

⚠ Document storage is only possible on top of backends that store values (obviously)

⚠ Document storage on top of backends that are not sorted risk a performance penalty when calling
doc_list functions.

77

Last note on Yokan
Key/value storage is the most common data service you may want, and we have seen many Mochi
users implement their own (before Yokan was implemented). If you need a key/value store, consider
using Yokan before jumping to re-implementing the wheel. If you think that Yokan does not provide a
specific feature that you need, talk to us!

78

Bake
Blob storage

Phil Carns
🕑 10 min 79

What is Bake?

80

Server

Bake
provider

Target 0xff3d
Region 0x45c2

Region 0xa4c4

Region 0x00d0

Target 0x5634
Region 0xee22

Region 0x8773

Client

bake_create()Bake is a “blob store” microservice: it provides
bare-bones access to large blobs of data.

● Originally designed for efficient access to persistent
memory but has now been generalized to support
conventional local file system devices as well

● Terminology:
○ Targets are roughly analogous to storage devices; there may be

multiple per provider
○ Regions are uniquely addressable units of data within a target

● Semantics:
○ Bake generates all identifiers (represented with hex numbers above)
○ Meant to be paired with an indexing service (e.g. Yokan)
○ There is no “append”; region sizes are defined at create time
○ Read and write concurrently as much as you like within a region
○ There is an explicit “persist” operation to make data durable and immutable

Backend types

81

PMEM backend

● Uses the PMDK library (https://pmem.io/pmdk/) for access
● Intended for use on byte addressable memory devices

○ Could be an NVDIMM, dynamic memory, or even a memory-mapped conventional device
● Target is pre-allocated to a specific total size (as if you are using an NVDIMM)
● Most efficient for true, RDMA-capable memory devices with byte-granular access

File backend

● Stores data in local POSIX files and directories
● Files are accessed using the abt-io Mochi component to allow for high concurrency
● Default mode uses a log structure with block alignment; data is buffered for RDMA
● Future versions will leverage liburing and a multilog format
● Most efficient for block-based storage devices (hard drive, NVMe, etc.)

https://pmem.io/pmdk/

Provider interface

82

#include <bake-server.h>

bake_provider_t provider = NULL;

struct bake_provider_init_info init_info =

 BAKE_PROVIDER_INIT_INFO_INITIALIZER;

int ret = bake_provider_register(mid, 42, &init_info, &provider);

bake_target_id_t tid;

ret = bake_provider_create_target(

 provider, "pmem:/dev/shm/mytarget.dat",

 8388608, &tid);

char tid_str[37];

ret = bake_target_id_to_string(tid, tid_str, 37);

margo_info(mid, "Target ID is %s", tid_str);

Backends include pmem and file

Target IDs are UUID

The Bake json configuration format is likely to be
restructured in a future release to be more
intuitive.

Tuning is presently manual, but the defaults are
pretty good in our experience as long as you pick
the correct back end type for your storage
devices.

Configuration

83

{

 "version":"0.6.1",

 "pipeline_enable":true,

 "pipeline_npools":4,

 "pipeline_nbuffers_per_pool":32,

 "pipeline_first_buffer_size":65536,

 "pipeline_multiplier":4,

 "file_backend":{

"targets":[

 "/dev/shm/file.dat"

],

"directio":true,

"sync":true,

"alignment":4096,

"abtio_nthreads":16

 }

}

General transfer protocol options

List of targets

Target acces options

Client interface

84

#include <bake-client.h>

const char* target_id_str = ...;

bake_client_t client;

ret = bake_client_init(mid, &client);

bake_provider_handle_t ph;

ret = bake_provider_handle_create(

 client, server_address, 42, &ph);

…

ret = bake_provider_handle_release(ph);

ret = bake_client_finalize(client);

bake_target_id_t tid;

if(target_id_str) {

 ret = bake_target_id_from_string(

 target_id_str, &tid);

} else {

 uint64_t num_targets;

 ret = bake_probe(ph, 1, &tid, &num_targets);

}

bake_region_id_t rid;

ret = bake_create(ph, tid, 10, &rid);

char in_buffer[10] = ...;

ret = bake_write(ph, tid, rid, 0, in_buffer, 10);

ret = bake_persist(ph, tid, rid, 0, 10);

char out_buffer[10];

uint64_t bytes_read;

ret = bake_read(

 ph, tid, rid, 0, out_buffer, 10, &bytes_read);

Client interface

85

Core functions

● bake_create(): create region
● bake_write/bake_read(): access data in a region
● bake_get_size (): get the size of a region
● bake_remove (): remove a region
● bake_create_write_persist (): create, write, and persist a region in one call

○ This is a compound operation to minimize round trips for a common pattern

Proxy functions: What if one provider wants to relay data transfers to Bake? You could buffer data and
then call bake_write(), but that introduces an extra memory transfer. Alternatively you can use “proxy”
functions that let you delegate a bulk handle to Bake so that it can perform the RDMA transfer itself.

● bake_proxy_write (): write from a bulk handle instead of a local buffer
● bake_proxy_read (): read into a bulk handle instead of a local buffer
● bake_create_write_persist_proxy (): same as bake_create_write_persist but with

a bulk handle

Bedrock
Configuration and bootstrapping

Matthieu Dorier
🕑 10 min 86

Why Bedrock?
● Server code often looks the same

○ Read input configuration
○ Start providers
○ Call margo_wait_for_finalize or engine::wait_for_finalize

● Bedrock provides
○ A unified JSON-based configuration format to describe your service
○ A daemon that reads such configuration and spins up providers

● Bonus
○ Write/generate your configuration using Python
○ Query the configuration remotely at any time
○ Change the configuration (add/remove providers, Argobots pools and ES, etc.)

87

Getting started with Bedrock

spack install mochi-bedrock

bedrock <protocol> -c <configuration.json>

Once installed

Example configuration
see https://mochi.readthedocs.io/en/latest/bedrock/02_json.html

Installing

88

Can be launched on multiple nodes with mpirun or any
launcher you have on your machine

https://mochi.readthedocs.io/en/latest/bedrock/02_json.html

{

 "margo" : {

 "mercury" : { },

 "argobots" : {

 "abt_mem_max_num_stacks" : 8,

 "abt_thread_stacksize" : 2097152,

 "pools" : [

 {

 "name" : "my_rpc_pool",

 "kind" : "fifo_wait",

 "access" : "mpmc"

 }

],

 "xstreams" : [

 {

 "name" : "my_rpc_xstream",

 "cpubind" : 2,

 "affinity" : [2, 3, 4, 5],

 "scheduler" : {

 "type" : "basic_wait",

 "pools" : ["my_rpc_pool"]

 }

 }

]

 },

 "progress_pool" : "__primary__",

 "rpc_pool" : "my_rpc_pool"

 },

 "abt_io" : [

 {

 "name" : "my_abt_io",

 "pool" : "__primary__"

 }

],

 "ssg" : [

 {

 "name" : "mygroup",

 "bootstrap" : "init",

 "group_file" : "mygroup.ssg"

 }

],

 "libraries" : {

 "module_a" : "examples/libexample-module-a.so",

 "module_b" : "examples/libexample-module-b.so"

 },

 "clients" : [

 {

 "name" : "ClientA",

 "type" : "module_a",

 "config" : {},

 "dependencies" : {}

 }

],

 "providers" : [

 {

 "name" : "ProviderA",

 "type" : "module_a",

 "provider_id" : 42,

 "pool" : "__primary__",

 "config" : {},

 "dependencies" : {}

 },

 {

 "name" : "ProviderB",

 "type" : "module_b",

 "provider_id" : 33,

 "pool" : "__primary__",

 "config" : {},

 "dependencies" : {

 "ssg_group" : "mygroup",

 "a_provider" : "ProviderA",

 "a_local" : ["ProviderA@local"],

 "a_client" : "module_a:client"

 }

 }

]

}

Example configuration

89

static struct bedrock_module ModuleA = {

 .register_provider = ModuleA_register_provider,

 .deregister_provider = ModuleA_deregister_provider,

 .get_provider_config = ModuleA_get_provider_config,

 .init_client = ModuleA_init_client,

 .finalize_client = ModuleA_finalize_client,

 .get_client_config = ModuleA_get_client_config,

 .create_provider_handle = ModuleA_create_provider_handle,

 .destroy_provider_handle = ModuleA_destroy_provider_handle,

 .provider_dependencies = ModuleA_provider_dependencies,

 .client_dependencies = ModuleA_client_dependencies

};

BEDROCK_REGISTER_MODULE(module_a, ModuleA)

How do I enable Bedrock for my service?
In C, write a dynamic library (.so) containing the following structure

See https://mochi.readthedocs.io/en/latest/bedrock/04_c_module.html for more
information (in particular on how to declare dependencies and retrieve them)

90

https://mochi.readthedocs.io/en/latest/bedrock/04_c_module.html

How do I enable Bedrock for my service?

Once installed

In C++, write a dynamic library (.so) inheriting from
bedrock::AbstractServiceFactory

See https://mochi.readthedocs.io/en/latest/bedrock/05_cpp_module.html for more information

#include <bedrock/AbstractServiceFactory.hpp>

class ServiceBFactory : public bedrock::AbstractServiceFactory {

 /* ... */

};

BEDROCK_REGISTER_MODULE_FACTORY(module_b, ServiceBFactory)

91

https://mochi.readthedocs.io/en/latest/bedrock/05_cpp_module.html

Querying the configuration of a server
bedrock-query <protocol> -a <address>

bedrock-query <protocol> -a <address1> -a <address2> -a <address3>

bedrock-query <protocol> -s <filename>

bedrock-query <protocol> -a <address> -j query.jx9

$providers = $__config__.providers;

$names = [];

foreach($providers as $p) {

 array_push($names, $p.name);

}

return $names;

● You can query multiple processes at the
same time, the resulting JSON will map
addresses to their configuration

● You can use an SSG file to get the addresses
● You can use the Jx9 language to process the

configuration before it is returned
92

Initializing Bedrock using Jx9

Write a Jx9 script that creates
the configuration

Provide parameters when
launching Bedrock

Can be useful for parameterized
configurations

$config = {

 margo : {

 argobots : {

 pools : [{ name : "my_pool" }]

 }

 }

};

for ($i = 0; $i < $num_extra_pools; $i++) {

 $pool_name = sprintf("extra_pool_$i");

 array_push($config.margo.argobots.pools, { name : $pool_name });

}

return $config;

bedrock ofi+tcp --jx9 -c example.jx9 --jx9-context num_extra_pools=4

93

my_process = bedrock.spec.ProcSpec(margo='na+sm')

Create the new pool, it will be added automatically to the process

my_rpc_pool = my_process.margo.argobots.pools.add(name='my_rpc_pool',

kind='fifo', access='mpmc')

Create two execution streams using that pool

for i in range(0,4):

 sched = bedrock.spec.SchedulerSpec(type='basic', pools=[my_rpc_pool])

 my_process.margo.argobots.xstreams.add(name=f'my_xstream_{i}',

scheduler=sched)

Now let's set the pools we want for handling RPCs

my_process.margo.rpc_pool = my_rpc_pool

Print the resulting configuration

print(my_process.to_json(indent=4))

Creating your configuration programmatically using Python

● This method validates that the configuration is correct
● Can be used as part of an ML-driven workflow, when Python is also used for other tasks
● See https://github.com/mochi-hpc/py-mochi-bedrock/ for more information 94

https://github.com/mochi-hpc/py-mochi-bedrock/

Other
components

SSG, ABT-IO, REMI, POESIE

Phil Carns
🕑 10 min 95

SSG: Group membership and fault detection
What is SSG?

● Group membership component
● Bootstrap from MPI, PMIx, or a list of address
● Allows processes to join an leave
● Membership changes (including crashes)

propagated via the SWIM protocol

Why should I use it?

● Great way to setup a Mochi service on multiple
processes/nodes

● Great way to provide service information to a
client (by reading an SSG group file)

● Allow groups to change over time

#include <ssg.h>

static void my_membership_update_cb(void* uargs,

 ssg_member_id_t member_id,

 ssg_member_update_type_t update_type)

{...}

...

ssg_group_id_t gid;

ret = ssg_group_create(

 mid, "mygroup", array_of_addresses,

 num_addresses, &config,

 my_membership_update_cb, NULL, &gid);

…
int size;

ret = ssg_get_group_size(gid, &size);

…
ret = ssg_group_leave(gid);

96

// abt_io_init takes the number of

// dedicated ES to create

abt_io_instance_id abtio = abt_io_init(2);

// open a file

int fd = abt_io_open(

 abtio, "test.txt",

 O_WRONLY | O_APPEND | O_CREAT, 0600);

// write to the file

abt_io_pwrite(abtio, fd, "This is a test", 14, 0);

// close the file

abt_io_close(abtio, fd);

// ABT-IO must be finalized before Argobots is

finalized

abt_io_finalize(abtio);

ABT-IO: POSIX I/O for Mochi components
What is ABT-IO

● Argobots wrappers for POSIX I/O function
(pwrite, pread, open, close, etc.) including
non-blocking versions

● Only depends on Argobots

Why should I use it?

● POSIX I/O functions block the whole ES they
run on, they don’t yield to other ULTs

● ABT-IO offloads I/O operations to dedicated ES
● For recent kernel versions, ABT-IO will take

advantage of I/O uring, hiding its complexity
behind a POSIX-like interface

97

// initialize REMI client

remi_client_t remi_clt;

ret = remi_client_init(mid, abtio, &remi_clt);

// create REMI provider handle

ret = remi_provider_handle_create(

 remi_clt, svr_addr, 1, &remi_ph);

// create a fileset

ret = remi_fileset_create(

 "my_migration_class", local_root, &fileset);

ret = remi_fileset_register_file(

 fileset, "/path/to/my/file");

 // fill the fileset with some metadata

ret = remi_fileset_register_metadata(

 fileset, "ABC", "DEF");

// check if we can compute the size of the fileset

size_t size = 0;

ret = remi_fileset_compute_size(fileset, 1, &size);

remi_fileset_set_xfer_size(fileset, 4);

int status = 0;

ret = remi_fileset_migrate(

 remi_ph, fileset, remote_root,

 REMI_KEEP_SOURCE, REMI_USE_ABTIO, &status);

REMI: File migrations
What is REMI

● Component to migrate file from a local storage
on one node to the local storage on another

● Works with the notion of “fileset” to be
migrated, with some associated key/value
metadata

Why should I use it?

● Many microservices have resources that are
backed by files

○ e.g. a database file, a storage target, etc.
● REMI is a generic solution to migrating a

resource from one provider/process to another

98

POESIE: executing scripts
What is POESIE

● Embed a Python or Lua interpreter in a Mochi
service, and send code to it via RPC

Why should I use it?

● Can be a good way to enable in-service
processing capabilities

Note: several existing Mochi components, such as
Yokan and Bedrock, already have scripting language
capabilities (using Lua and Jx9 respectively), without
relying on POESIE.

/* create a POESIE client */

poesie_client_t pcl;

poesie_client_init(mid, &pcl);

/* create a POESIE provider handle */

poesie_provider_handle_t pph;

ret = poesie_provider_handle_create(

 pcl, svr_addr, provider_id, &pph);

/* get the id of the vm */

poesie_vm_id_t vm_id;

poesie_lang_t lang;

ret = poesie_get_vm_info(

 pph, vm_name, &vm_id, &lang);

/* executing something */

const char* code =

 "print(\"Hello World from Lua VM \" .. "

 "__name__); return \"Bonjour\"";

char* output = NULL;

ret = poesie_execute(

 pph, vm_id, POESIE_LANG_DEFAULT, code, &output);

99

Hands-on Session 3
Using Bedrock and composing microservices

100

Instructions and objectives

Objectives

● Write a bedrock module to bootstrap your “phonebook” microservice
● Compose your microservice with the Yokan key/value microservice

Instructions

● Follow the instructions in the Exercise 3 section of you chosen language/library

Note

● You will reuse the code from Exercise 2
● You don’t need to have completed Exercise 2, but you need the code to build correctly

101

Advanced features
You aren’t tired, are you?

Phil Carns
🕑 10 min102

Performance statistics
● Set the MARGO_ENABLE_MONITORING environment variable before running your code
● At exit, your applications/services will produce JSON files with statistics
● See https://github.com/mochi-hpc/mochi-performance-analysis to process them with Pandas

{

 ...

 "rpcs": {

 "65535:65535:2924675071:65535": {

 "rpc_id": 2924675071,

 "provider_id": 65535,

 "parent_rpc_id": 65535,

 "parent_provider_id": 65535,

 "name": "echo",

 "origin": {

 ...

 },

 "target": {

 ...

 }

 },

 ...

"set_input": {

 "duration": {

 "num":981,

 "min":0.000000238,

 "max":0.000176907,

 "avg":0.000000763,

 "var":0.000000031,

 "sum":0.000748873

 },

 "relative_timestamp_from_forward_start": { … }

},

RPCs are identified with a callpath

103

https://github.com/mochi-hpc/mochi-performance-analysis

Translating tutorial skills to real systems

104

● The Mochi tutorial docker container was preconfigured with the following so that you could
focus on learning about data service development with Mochi:

○ Development tools
○ Spack
○ Network configuration

● There is a little bit of preliminary configuration work needed to deploy Mochi on a new system
● Spack isn’t strictly required, but it is highly recommended for Mochi
● Spack and network configuration go hand-in-hand

○ Spack is able to build nearly anything you need from scratch, but on many platforms it is
crucial to use network libraries that are already in place. Examples:

■ Proprietary network stacks (like HPE’s Slingshot)
■ Customized network stacks (like Nvidia’s OFED Infiniband library with GPU support)
■ Interoperability with MPI (avoiding conflicts/mismatches when MPI and Mochi are

used at the same time)
● “Hello Mochi” is a step-by-step resource for the process of configuring Mochi on a new

machine, but we will highly some elements in the next few slides:
https://mochi.readthedocs.io/en/latest/hello-mochi.html

https://mochi.readthedocs.io/en/latest/hello-mochi.html

Mochi Spack recipes

105

https://github.com/mochi-hpc-experiments/platform-configurations

● Check our
platform-configurations
repository for example
configurations.

● We would love to have some
new contributions!

● The “generic” recipe has a
skeleton Spack configuration if
you can’t find a good match.

● Just uncomment the parts you
need.

● Each system subdirectory also
includes an example job script.

https://github.com/mochi-hpc-experiments/platform-configurations

Margo-info

106

You’ve followed a recipe, built everything,
but your service won’t start. What’s wrong?

● The “margo-info” command line utility
is installed as part of mochi-margo.

● You can try it in your container now!
● It will probe common network

address types and see which our
actually working

● The output is extensive, share it with
us for help interpreting if you aren’t
sure why something isn’t working.

● Resist the temptation of tcp even
though it (almost) always works; the
biggest optimization you can make is
to use the fastest native transport for
your system.

##

Available Margo (Mercury) network transports on host frontier10465

- GREEN indicates that it can be initialized successfully.

- RED indicates that it cannot.

##

<address> <transport> <protocol> <results> <example runtime address>

libfabric tcp provider (TCP/IP)

ofi+tcp:// ofi tcp YES ofi+tcp;ofi_rxm://10.128.163.152:37543

libfabric CXI provider (HPE Cassini/Slingshot 11)

ofi+cxi:// ofi cxi YES ofi+cxi://0x24fce400

integrated sm plugin (shared memory)

na+sm:// na sm YES na+sm://30022-0

TCP/IP protocol, transport not specified

tcp:// <any> tcp YES ofi+tcp;ofi_rxm://10.128.163.152:42773

shared memory protocol, transport not specified

sm:// <any> sm YES na+sm://30022-1

libfabric Verbs provider (InfiniBand or RoCE)

ofi+verbs:// ofi verbs NO N/A

libfabric shm provider (shared memory)

ofi+shm:// ofi shm NO N/A

…

Margo-info (continued)

107

##

Suggested transport-level diagnostic tools:

- libfabric: `fi_info -t FI_EP_RDM`

- UCX: `ucx_info -d`

- verbs: `ibstat`

- TCP/IP: `ifconfig`

- CXI: `cxi_stat`

#

##

Verbose margo-info information:

- debug log output:

/tmp/margo-info-stderr-0j222h

- results in JSON format:

/tmp/margo-info-json-JsYRbi

#

##

List of dynamic libraries used by the margo-info utility:

- mochi-margo-0.13.1-hcjlhribc345pvtnq5bl2tdwc6xpzqmn/lib/libmargo.so.0

- mercury-master-r2f7brn7fv3ftnkmlfk65qiug3avynhx/lib/libmercury.so.2

- /opt/cray/libfabric/1.15.2.0/lib64/libfabric.so.1

- /usr/lib64/libcxi.so.1

#

Note: the above list was filtered display only those libraries likely related

to communication. Run margo-info with -l to display all libraries.

#

##

Excerpts from margo-info output show
some other possible clues:

● Other command line diagnostic tools
that are available depending on your
desired transport

● Verbose debug log output
○ Most useful if you run

margo-info with a specific
protocol, like “verbs://” as an
argument to limit the volume

● A list of libraries being used
○ A large portion of setup

problems result from Mochi
using the wrong library for a
given network.

Getting Mochi software updates

108

● We’ve tried to make the Mochi software bug free ;-)
● But occasionally we overlook something. More frequently, we add new features!
● The best way to get updates is to refresh your copy of the mochi-spack-packages git repository.
● You can try it in your docker container, using your preferred git update method:

mochi@mt1:~$ cd mochi-spack-packages

mochi@mt1:~/mochi-spack-packages$ git fetch --all

Fetching origin

mochi@mt1:~/mochi-spack-packages$ git rebase

origin/main

Current branch main is up to date.

● That will not alter any existing environments.
● If you really want a new version of something, you will need to uninstall the relevant packages

and install them again.
○ “spack uninstall –dependents <package>” is often helpful, but you may need to

remove it from an environment (or remove the environment and recreate) first.

Conclusion

Phil Carns
🕑 10 min 109

Thank you for your participation!

110

We appreciate everyone spending time with us today, and
we hope that you learned something new about building

custom data services with Mochi!

● Were there things that you especially liked or disliked about the tutorial?
● Please send email us or contact us on Slack to let us know!
● We would like to improve the content for future tutorials.

Staying in touch

111

● Feel free to continue working on tutorial examples after this event and continue to
ask questions.

○ We will keep the #mochi-tutorial-isc-2023 channel open on the Mochi slack
space (see tutorial materials or Mochi web site for link)

○ You are also welcome to post more general questions on #general or on the
mochi-devel mailing list.

● If you continue to work with Mochi, then we encourage you to attend the Mochi
quarterly meetings, announced on the mailing list and slack, e.g.

○ https://www.mcs.anl.gov/research/projects/mochi/2023/04/21/quarterly-m
eeting-and-newsletter-april-2023/

○ Propose topics, questions, or things you would like to share for the agenda!
● We are happy to list publications and projects using Mochi on our web site.

https://www.mcs.anl.gov/research/projects/mochi/2023/04/21/quarterly-meeting-and-newsletter-april-2023/
https://www.mcs.anl.gov/research/projects/mochi/2023/04/21/quarterly-meeting-and-newsletter-april-2023/

Notable related events at ISC 2023

112

● Panel: The Future of Open-Source Filesystems for HPC – Competition, Cooperation or
Consolidation?

○ Monday, May 22, 2023 5:20 PM to 6:35 PM · 1 hr. 15 min. (Europe/Berlin) - Hall Z - 3rd Floor

● BoF: A European I/O Trace Repository to Build Better I/O Systems & HPC Applications
○ Tuesday, May 23, 2023 4:15 PM to 5:15 PM · 1 hr. (Europe/Berlin) - Hall G1 - 2nd Floor

● Workshop: HPC I/O in the Data Center
○ Thursday, May 25, 2023 9:00 AM to 6:00 PM · 9 hr. (Europe/Berlin) - Hall Y2 - 2nd Floor

● Panel: 7th International Workshop on In Situ Visualization (WOIV)
○ Thursday, May 25, 2023, 9:00 AM to 1:00 PM (Europe/Berlin) - Hall Y3 - 2nd Floor

● Workshop: 2nd International Workshop on Malleability Techniques Applications in
High-Performance Computing

○ Thursday, May 25, 2023 2:00 PM to 6:00 PM · 4 hr. (Europe/Berlin) - Hall Y5 - 2nd Floor

113

THIS WORK WAS SUPPORTED BY THE U.S.
DEPARTMENT OF ENERGY, OFFICE OF SCIENCE,
ADVANCED SCIENTIFIC COMPUTING RESEARCH,
UNDER CONTRACT DE-AC02-06CH11357.

