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EXASCALE SYSTEMS ARE HERE

Nearly all problem domains are data-intensive at

this point, and unprecedented compute capabilities

call for unprecedented storage capabilities.

It’s not enough to just do the same things we’ve 

always done, but faster. Some issues to consider:

▪ Can existing storage system architectures take

advantage of the potential of new device technology?

▪ What kinds of novel data use cases do we need to accommodate?

▪ How do we embrace new users from a broader collection of problem domains?

Let’s look at some examples!
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Aurora system @ the Argonne Leadership 

Computing Facility

What does this mean for HPC storage?



THE CHALLENGE OF

NEW DEVICE TECHNOLOGY



DEVICE CAPABILITIES
Checking in on consumer NVMe specifications
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Screenshots from Samsung web site, retrieved October 2023

▪ October 2023: $85 buys an

off-the-shelf storage device 

with:

> 1 million IOPs and

> 7 GB/s throughput.

– No heat sink, though;

that’s another $5.

▪ Devices with embedded 

compute features are not 

nearly as cheap or widely 

available, but they are coming.



WHY DEVICE CAPABILITIES MATTER
HPC storage is more than just checkpointing
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Figure credit: B. Settlemyer, G. Amvrosiadis, P. 

Carns and R. Ross, "It’s Time to Talk About HPC 

Storage: Perspectives on the Past and Future," 

in Computing in Science & Engineering, vol. 23, 

no. 6, pp. 63-68, 1 Nov.-Dec. 2021

• For example: many data-intensive algorithms rely on statistical or AI 
methods that extract samples from immense data sets.

• The resulting storage access patterns are often unpredictable to outside 
observers.

• That’s bad for general purpose caching and prefetching, but modern device 
characteristics should be well-equipped to deal with the workload directly.



MAKING USE OF DEVICE CAPABILITIES
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A traditional HPC storage architecture
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▪ The traditional HPC storage architecture is 

designed to maximize aggregate bandwidth 

in a disaggregated system.

▪ The resultin  ar hite tural model isn’t  reat 

for response time, though.

– There are many “ho s”, ea h  ith its o n 

serialization, protocol, and buffering.

▪ How can you leverage the strengths of new 

storage devices in this environment?

– This is a known problem, and a variety of 

potential solutions have been deployed. Systems designed to maximize 
aggregate throughput are poorly 
suited to servicing individual 
random reads. 

Figure credit: B. Settlemyer, G. 

Amvrosiadis, P. Carns and R. 

Ross, "It’s Time to Talk About 

HPC Storage: Perspectives on 

the Past and Future," 

in Computing in Science & 

Engineering, vol. 23, no. 6, pp. 

63-68, 1 Nov.-Dec. 2021



MAKING USE OF DEVICE CAPABILITIES
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Burst buffers and local devices
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▪ One obvious solution is to (also) provide locally 

attached scratch devices or a burst buffer tier.

▪ How does this affect the user experience?

– How do they stage data?

– Can they still use shared data structures, or 

only local data structures?

– Is the application still in charge of the mapping 

of data models to local POSIX files?

– Where are the smart devices, and how do you 

use them while retaining portability?

– How portable is the overall data workflow 

across systems with different devices?
Systems designed to maximize 
aggregate throughput are poorly 
suited to servicing  individual 
random reads. 

Scratch/Burst Tier

Figure credit: B. Settlemyer, G. 

Amvrosiadis, P. Carns and R. 

Ross, "It’s Time to Talk About 

HPC Storage: Perspectives on 

the Past and Future," 

in Computing in Science & 

Engineering, vol. 23, no. 6, pp. 

63-68, 1 Nov.-Dec. 2021



STORAGE ARCHITECTURES
FOR MODERN DEVICES

▪ Conventional storage resources are often thought of as distinct silos with 

different properties (latency, bandwidth, sharing, etc.), but this can be 

problematic.

▪ Potential pitfalls:

– Lack of integration: fragmented name spaces and policies

– Over-generalization: least-common-denominator APIs cannot take advantage 

of device properties

– Conservative hardware assumptions: scheduling, replication, and placement 

policies can be too pessimistic for modern devices

▪ Can we go beyond this model to deploy coherent on-demand services, with 

flexible APIs, adapted to available hardware resources… and still be  ortable?
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IS IT PLAUSIBLE?

Screenshots from https://aws.amazon.com/products, April 2022

▪ Cloud services have been very successful 

offering a range of data service types and 

storage device properties. 

▪ They are socializing the concept of choosing 

the solution for the task at hand.
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ONE APPROACH: THE MOCHI MODEL
Composable data services for varying use cases
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Figure credit: P. Carns, M. Dorier, R. Latham, R. Ross, S. Snyder, J. Soumagne, “A 

Case  tudy in Translational Com uter   ien e for HPC  ata  tora e,“ in preparation.

The Mochi project provides a library of robust, 

reusable, modular, and connectable data 

management components and microservices along 

with a methodology for composing them into 

specialized distributed data services.

▪ This was originally envisioned to enable 

specialization for different application needs.

▪ Recent work is also pushing for greater 

architectural adaptability as well:

– Using smart devices when available

– Service elasticity to effectively use resources

PI: Rob Ross, ANL

https://www.mcs.anl.gov/research/projects/mochi



THE CHALLENGE OF

NOVEL DATA USE CASES



DIVERSIFYING STORAGE USE CASES
HPC is now accessible to more problem domains than ever before
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▪ ALCF example: there are over a 

thousand users and hundreds of projects.

▪ DOE Allocation programs are highly 

competitive and span diverse fields.

▪ This is one of the greatest triumphs of 

computer science in HPC: making 

cutting-edge compute resources 

accessible to all researchers.

▪ However, we (computer scientists) do not 

really know how all of these researchers 

are using storage, much less how they 

would like to use the storage.

Table and 

figure 

credit: 

2022 ALCF 

Science 

report



THE EVOLUTION OF COMPUTATIONAL SCIENCE

▪ You can get a feel for application 

trends by looking at user events 

at the ALCF, for example.

▪ It’s not just  ortran linear al ebra 

anymore (and hasn’t been for a 

long time now); events focus on 

accelerators, machine learning, 

data, neuromorphic algorithms, 

neural networks, etc.

▪ Scientists are employing a variety 

of data models and programming 

models to reach their objectives.

Screenshot from https://www.alcf.anl.gov/, April 2022
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EVERYTHING, EVERYWHERE, ALL AT ONCE

Pro enan e

 imulation  

   erimental

 ata

Confi uration

Analyti s

In ut

Telemetry

Time
Initial  imulation Refinement Analysis

Pro enan e

 imulation  

   erimental

 ata

Confi uration

Analyti s

In ut

Telemetry

Pro enan e

 imulation  

   erimental

 ata

Confi uration

Analyti s

In ut

Telemetry

Using many computation methods in one workflow
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▪ Not only does the modern scientific computing portfolio include observational 

data mana ement, simulation, ma hine learnin , analyti s, and more…

▪ … but it in reasin ly  ombines se eral of those elements into a sin le  orkflo !

▪ A single workflow may similarly employ a wide range of data management 

methods.



GOING META
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Using many computational methods in one workflow
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▪ The workflow paradigm also introduces a new meta use case: storage and use 

of provenance data about the workflow.

▪ Why this is important:

– How do you reproduce your results?

– What do you do if results are not consistent?

– What do you do if performance is not consistent?



GOING META
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▪ The workflow paradigm also introduces a new meta use case: storage and use 

of provenance data about the workflow.

▪ Why this is important:

– How do you reproduce your results?

– What do you do if results are not consistent?

– What do you do if performance is not consistent?
FAIR logo: CC BY-SA 4.0 Sangya Pundir



ONE APPROACH: RECUP
Scalable Metadata and Provenance Services
for Reproducible Hybrid Workflows
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Line Pouchard (BNL), PI
Bogdan Nicolae (ANL), Co-PI
Tanzima Islam (TXST), Co-PI

Hybrid workflows: addressing 
workflows that include data-
intensive tasks and numerical 
calculations

Performance reproducibility: 
minimal run-to-run variation 
using a consistent set of 
configurations

Result reproducibility: the 
statistical reproducibility of 
results within certain error 
bounds

Nicolae, Bogdan et al. “Building the I (Interoperability) of FAIR for Performance 
Reproducibility of Large-Scale Composable Workflows in RECUP.” 2023 IEEE 
19th International Conference on e-Science (e-Science) (2023): 1-7.



ONE APPROACH: RECUP
Scalable Metadata and Provenance Services
for Reproducible Hybrid Workflows
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This means addressing new 

data use case challenges 

that aren’t  ell-served by 

conventional file systems:

▪ Aggregating diverse, 

telemetry, at scale, in a 

coherent manner

▪ Absorbing not just raw 

data, but also its lineage 

and evolution for 

comparative analysis

▪ Making data Findable, 

Accessible, Interoperable, 

and Reusable



IMPLICATIONS OF NOVEL DATA USE CASES

▪ FAIR / metadata / provenance / reproducibility is just one example of new use 

 ases  ushin  the en elo e of today’s HPC stora e.

▪ There are many other use cases emerging.

▪ We need to do more work to take the needs of the science community into 

account. 

▪  on’t for et that  om uter s ien e is real s ien e too!

▪  aster and lar er  a a ity stora e is  reat, but this isn’t just business as usual.
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THE CHALLENGE OF

EMBRACING NEW USERS
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UNDERSTANDING IO PERFORMANCE

▪ “8 GiB/s sounds good.”

▪ “No, wait; I just Googled the facility 

documentation. I should be getting 

many hundreds of GiB/s!”

▪ “ tunt mode”  latform ben hmarks are 

misleading (at best) for real users.

▪ Tools like Darshan can provide more 

meaningful insight into application I/O 

behavior.

▪ The goal: provide easy-to-interpret 

metrics to users that are relevant to 

their objectives and scale.

21



▪ Context is a crucial to interpretation:

– Spatial: How does this application relate to similar or concurrent 

applications?

– Temporal: How has this workload performed in the past?

– Science objectives: Did good storage throughput

actually contribute to productivity?

▪ Context is crucial… if the data can be interpreted at all.

Scientists are passionate about their chosen field, not 

parallel file system arcana.  We need to bridge this gap.

▪ It’s also im ortant to re o nize that the user  ommunity

keeps scaling, but the I/O expert community does not.

THE NEXT FRONTIER: INTERPRETATION
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IO PERFORMANCE IN CONTEXT: SPATIAL

▪ Platform: what workloads are present, and can you group them to gain insight?

▪ Workflow or domain: how do similar jobs behave and why are some faster?

▪ Application: how is the I/O distributed within the job?

Image credits: Isakov 2020, Del Rosario 2020, Awtrey 2021
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IO PERFORMANCE IN CONTEXT: TEMPORAL

▪ Previous executions (of your own 

application or similar applications) 

can also serve as a reference 

point.

▪ Understand if current 

performance is normal or 

anomalous.

▪ Gain insight into variability and 

correlated system factors that 

impact performance.

▪ Sometimes performance changes 

for reasons beyond the user’s 

control.
Lo k ood et al. “UMAMI: a re i e for  eneratin  meanin ful 

metri s throu h holisti  I/O  erforman e analysis” in P  W 2017
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IO PERFORMANCE IN CONTEXT:
SCIENCE OBJECTIVES

▪ The I/O te hnique that yields the shortest simulation runtime doesn’t 

necessarily yield the highest science productivity.

▪ Users must consider their data management and analysis needs as well.

▪ How does the data management strategy impact the overall workflow?

Image credit: 

Rob Ross, ANL
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ENGAGING AND EMPOWERING STAKEHOLDERS
How do we turn this wealth of contextual information into something easily 

usable?

There are many publications about I/O tuning, but we as a community 

ha en’t distilled it and transferred it  ell to stakeholders.

What if we could automatically identify concise, salient features that would 

 i e users the best “ban  for the bu k”?

• “The  orkload for this file  ould  erform better on /mnt/foo”

• “This file is not stri ed  ell; set hint “abra adabra””

• “Writes are interlea ed and unali ned; try a  olle ti e  rite.”

Can we go even further and quantify potential

gains and costs to help users game the system?

26



ONE APPROACH: DRISHTI
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Drishti (by Jean Luca Bez, 

LBNL) is an example of 

taking the next step in 

interpretation:

Giving users actionable 

recommendations in 

addition to characterization 

and analysis.

This example shows a 

human-readable 

interpretation of I/O issues 

within an application.

J. L. Bez, H. Ather and S. Byna, "Drishti: Guiding End-

Users in the I/O Optimization Journey," 2022 IEEE/ACM 

International Parallel Data Systems Workshop (PDSW), 

Dallas, TX, USA, 2022, pp. 1-6



ONE APPROACH: DRISHTI
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Drishti can also recommend remedies; in this case with a code snippet.

J. L. Bez, H. Ather and S. Byna, "Drishti: Guiding End-

Users in the I/O Optimization Journey," 2022 IEEE/ACM 

International Parallel Data Systems Workshop (PDSW), 

Dallas, TX, USA, 2022, pp. 1-6



FUTURE OPPORTUNITIES IN AI FOR SERVICES

▪ What if you need to tune not just an application, but an entire on-demand 

storage architecture?

▪ Ima ine this: “A t like an HPC I/O e  ert.  The follo in  is a des ri tion of my 

 orkload and  om osition.  Write a  ood startin   onfi uration.”

▪ LLMs might not be ideal for something as esoteric as HPC storage 

configurations, but ML methods can produce surrogate models that help us 

e  lore the  arameter s a e to find “ ood” solutions more qui kly, re eatably, 

and predictably.
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RECAP
▪ Storage device technology, data 

use cases, and the HPC user 

community are all rapidly evolving. 

These are great opportunities!  

▪ The HPC storage community must 

embrace this evolution and strike a 

balance between research and 

practice to maximize impact.

▪ Look to conceptual frameworks like 

“translational  om uter s ien e1” 

for inspiration on how to turn 

research into practice.
 rift ood  ea h, Jekyll Island, Geor ia, U A.  It’s not a tually 

“drift ood” at all; the bea h is an oak forest that failed to ada t to 

change in the form of saltwater encroachment.  Very pretty, though!

30

1D. Abramson and M. Parashar, "Translational Research in 

Computer Science," in Computer, vol. 52, no. 9, pp. 16-23, 

Sept. 2019
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