
Traffic-Sensitive Live Migration of Virtual Machines
Umesh Deshpande⇤ and, Kate Keahey†

⇤ Binghamton University, Binghamton, NY
udeshpa1@binghamton.edu

† Argonne National Lab, Lemont, IL
keahey@mcs.anl.gov

Abstract—In this paper we address the problem of network
contention between the migration traffic and the Virtual Machine
(VM) application traffic for the live migration of co-located
Virtual Machines. When VMs are migrated with pre-copy, they
run at the source host during the migration. Therefore the
VM applications with predominantly outbound traffic contend
with the outgoing migration traffic at the source host. Similarly,
during post-copy migration, the VMs run at the destination
host. Therefore the VM applications with predominantly in-
bound traffic contend with the incoming migration traffic at the
destination host. Such contention increases the total migration
time of the VMs and degrades the performance of the VM
application. Here, we propose a traffic-sensitive live VM migration
technique to reduce the contention of migration traffic with the
VM application traffic. It uses a combination of pre-copy and
post-copy techniques for the migration of the co-located VMs
(those located on the same source host), instead of relying on
any single pre-determined technique for the migration of all the
VMs. We base the selection of migration techniques on the VMs’
network traffic profiles so that the direction of migration traffic
complements the direction of the most VM application traffic. We
have implemented a prototype of traffic-sensitive migration on
the KVM/QEMU platform. In the evaluation, we compare traffic-
sensitive migration against the approaches that use only pre-copy
or only post-copy for VM migration. We show that our approach
minimizes the network contention for migration, thus reducing
the total migration time and the application degradation.

Keywords-Virtual Machine, Live Migration, Traffic Sensitivity

I. INTRODUCTION

Live migration of VMs is used in datacenters for quickly
eliminating the hot-spots [37], [17], [6], [33], to free up
resources to save power [9], [5], or to perform system main-
tenance. It can also be used to defragment a datacenter or to
obtain resources with specific properties, for example, specific
network topology critical for HPC applications [14], [15]. Pre-
copy [7], [26] and post-copy [16], [18] are commonly used
live VM migration techniques. Pre-copy provides low service
downtime for the migration of VMs executing read-mostly
workloads. It is used as a default migration technique by
Xen [2], VMware [20], and KVM [25] hypervisors. Whereas,
post-copy is known for its low network overhead and allows
quick consolidation [17] or eviction [13] of VMs.

Live VM migration is a network intensive activity; it re-
quires transfer of Gigabytes of VM memory state from the
source to the destination host over the network. When the
migrating VMs are running network-bound applications, the
applications’ traffic competes with the migration traffic for

the Network Interface Cards (NICs) at the source and the des-
tination hosts. Such a contention prolongs the VM migration,
thus delaying the deprovisioning of resources occupied by the
VM at the source host. Furthermore, prolonged contention of
network flows also degrades the performance of the network-
bound VM applications. When migrating VMs are part of a
group of collaborating VMs, degradation of any single VM
can result in the overall degradation of the application jointly
executed by these VMs.

In this paper, we address the problem of network contention
between the migration and VM application traffic for the VMs
executing network bound applications. The widely used 1
Gigabit NICs provide 1 Gbps bandwidth in each direction.
However, when the migration traffic and the VM application
traffic have the same direction, both network flows contend for
the available bandwidth. Whereas when the direction of the
flows is opposite, they do not compete with each other. Hence
the level of contention depends on the rate of VM traffic in
each direction and the direction of the migration traffic. In
pre-copy migration, the VMs run at the source host during
their migration; therefore the migration traffic contends with
the VMs that predominantly have outbound network flow. In
contrast, in post-copy, the VMs run at the destination host
during their migration; therefore the migration traffic contends
with the VMs that predominantly have inbound network flow.

A common approach to reduce the contention in pre-copy
is by having a limit on the VM’s total migration time or the
amount of data transferred. Pre-copy VM migration techniques
are hard coded with terminating conditions [26], [7]. When
pre-copy exceeds a pre-defined limit for total migration time or
transfers more than a pre-defined amount of data, its execution
is suspended at the source host, and its execution state is
transferred to the destination host. Even though this approach
reduces the network overhead of pre-copy, premature termina-
tion of pre-copy rounds can increase the VM’s downtime. An-
other approach to minimize the contention is to limit the rate
of transfer of the migration traffic. The lower rate of migration
traffic offers a larger share of the available bandwidth to the
VM application, thus reducing their degradation. However, this
increases the VM’s total migration time and is not suitable
when quick deprovisioning of resources is required.

In this paper we propose an approach called traffic-sensitive
live migration. In this approach, we reduce the network
contention for the simultaneous migration of VMs running
network-bound applications with predominantly unidirectional



traffic. VMs often have a skewed network traffic profile. That
is, the rate of their network traffic in one direction is greater
than the rate of traffic in the other direction. For instance,
when the VM is responding to a remote client, where the
response size is larger than the request size or when VM is
checkpointing an application state to remote storage.

In traffic-sensitive migration, we propose to use both pre-
copy and post-copy live VM migration techniques. We select a
migration technique for each VM to reduce the contention at
the source and the destination host. The motivation behind
using two migration techniques is that pre-copy competes
with the outbound VM application traffic at the source host,
whereas post-copy competes with the inbound VM application
traffic at the destination host. Therefore we select one migra-
tion technique over the other depending on the network profile
of the application.

The key contributions of our work are as follows
• In traffic-sensitive migration, we present a mechanism to

calculate the network contention between the migration
and the VM application traffic. Our approach uses a
combination of pre-copy and post-copy for the migration
of co-located VMs to reduce the contention. We monitor
the network traffic on each host to generate a per-VM
network traffic profile. Then we weigh every combination
of pre-copy and post-copy for all the VMs and select the
one that yields the least traffic contention.

• We describe a prototype implementation of traffic-
sensitive migration on the KVM/QEMU [25] platform.

• We evaluate traffic-sensitive migration on an 18-node
cluster, each connected to a switch with a 1 Gbps Ethernet
interconnect. We compare the traffic-sensitive approach
against the traditional approach that uses only pre-copy
or only post-copy for migration.

The rest of this paper is organized as follows. Section II
provides the background on traditional pre-copy and post-copy
techniques. Section III experimentally demonstrates how the
contention of migration traffic with the VM application traffic
increases the total migration time of VM and degrades the
application performance. Section IV describes the design of
traffic-sensitive migration. Section V describes its implemen-
tation on the KVM/QEMU platform. Section VI compares
the performance of the traffic-sensitive approach against pre-
copy and post-copy. Section VII describes related research.
Section VIII presents our conclusions and the direction of our
future research.

II. BACKGROUND

In this section, we describe pre-copy and post-copy live VM
migration techniques and the effect of network contention on
them.

A. Pre-copy VM Migration
Live VM migration primarily involves transfer of VM’s

CPU, memory and I/O state from the source host to the
destination host. In pre-copy live VM migration the source
host transfers the VM’s memory state to the destination host

in iterations. The transfer is performed live; that is, while the
VM is still running at the source host. In the first iteration
the source host transfers the entire memory of the VM to
the destination, whereas in the subsequent iterations only the
pages that are modified by the running VM are transferred.
When the writable working set (WWS) of the VM has been
identified, the VM is suspended at the source host and its
CPU state, and WWS is transferred to the destination host.
The time during which the VM remains inactive is known as
downtime of the VM. The duration of the downtime depends
on the size of the WWS. The more aggressive a VM is in
dirtying its memory state, the longer it takes for pre-copy to
identify the VM’s WWS, which increases its total migration
time. Moreover, when faced with network contention, pre-copy
takes longer to converge on the VM’s WWS.

B. Post-copy VM Migration
In post-copy VM migration, VM is suspended immediately

upon beginning the migration. Its CPU state is transferred to
the destination host, while its memory state is still residing
at the source host. The VM now running at the destination
host, faults upon the pages that have not yet been received by
the destination host. The faulting pages are requested from the
source host. Simultaneously, the source host actively transfers
the remaining VM memory state to the destination host. The
downtime of post-copy is minimal since it transfers only the
VM’s execution state during the downtime. However, it takes
longer for VM to retrieve enough memory state from the
source host to become responsive. Since, post-copy transfers
each VM page over the network only once, it provides lower
total migration time than does pre-copy for write-intensive
applications. Again, however, the network contention with the
migration traffic increases the VM’s total migration time and
slows the retrieval of faulted pages from the source host, thus
degrading the performance of VM applications.

III. DEMONSTRATING THE PROBLEM

In this section, we demonstrate the effect of network con-
tention on the performance of migration and network-bound
VM application through an experiment. We deploy two VMs
on two hosts, each having 5 GB of memory and 2 vCPUs.
The hosts have 16GB of memory and 8 physical CPUs. First
VM executes a Netperf [3] client, which sends a TCP stream
to another VM running a Netperf server. We migrate both
VMs simultaneously while the test is in progress and measure
the effect of the migration on the performance of Netperf. We
compare the following configurations for the migration of both
VMs.

1) When both VMs are migrated simultaneously with pre-
copy.

2) When both VMs are migrated simultaneously with post-
copy.

For the migration of multiple VMs, the total migration time
is defined as the time from the start of their simultaneous
migration to the completion of the last migration. Table I
compares the total migration time and the amount of data



Pre-copy Post-copy Pre-copy Idle-VM Without Migration
Total Migration Time (seconds) 79.2 (79.2, 47.2) 92.1 (45.8, 92.1) 47.5 -

Amount of Data Transferred (MB) 10280 10277 10270 -
Netperf Performance (Mbps) 690.47 660.05 - 940.1

TABLE I
COMPARISON OF THE PERFORMANCE FOR THE MIGRATION OF TWO VMS FROM TWO HOSTS WITH PRE-COPY AND POST-COPY. THE INDIVIDUAL TOTAL

MIGRATION TIME FOR EACH VM IS INCLUDED IN THE PARENTHESES IN THE FOLLOWING FORMAT : (VM1, VM2).

20 40 60 80 100 120
Time (seconds)

0
200
400
600
800

1000

Th
ro

ug
hp

ut
 (M

bp
s)

Pre-copy Post-copy Migration Start Pre-copy End Post-copy End

Fig. 1. Comparison of Netperf throughput for the migration of two VMs using pre-copy and post-copy. The first VM executes a Netperf client, and the
second VM executes a Netperf server.

transferred for the migration of two idle VMs with that of two
busy VMs running Netperf. When both VMs are migrated with
pre-copy, the migration traffic for the VM running the Netperf
client competes with the outgoing Netperf traffic. Therefore
the total migration time of the VM increases compared with
that of the other VM for which the direction of the Netperf
traffic complements the direction of the migration traffic.
Similarly, when both VMs are migrated with post-copy the
VM running the Netperf server has a higher total migration
time compared with that of the other VM because of the
incoming network traffic contention at the destination host.
Note that the performance of Netperf also suffers with pre-
copy and post-copy by 27% and 30%, respectively, compared
with its performance without migration.

Because of the small writable working set of the VM, the
amount of data transferred with all three approaches is almost
equal. Since pre-copy re-transfers the dirtied VM pages, pre-
copy transfers more data than post-copy. Figure 1 shows
the throughput of Netperf during VMs’ migration. When
we migrate both VMs with pre-copy, for the VM running
Netperf server, the direction of the Netperf traffic complements
the direction of the migration traffic. Therefore it completes
migration earlier (at the 57 seconds mark) than the VM
running the Netperf client. However, due to contention of
traffic for the VM running the Netperf client, the throughput
of Netperf remains low until it completes the migration. With
post-copy, the performance of Netperf drops to 150Mbps right
after starting the migration. During this time VM requests
its minimal working set from the source host to become
responsive. Once the VM becomes responsive its performance
recovers to about 500 Mbps; however it remains lower than
the maximum performance due to the contention of incoming
application traffic at the VM running the Netperf server with
the migration traffic.

The experiment demonstrates that the contention of the VM
application traffic with the migration traffic increases the total

migration time of the VMs and degrades the performance of
the network-bound VM application.

IV. DESIGN

In this section, we present the design of the traffic-sensitive
migration; we present our approach for the selection of mi-
gration techniques for co-located VMs and we describe the
method to calculate the possible network contention at the
source and destination hosts.

We make the following assumptions in the design. First,
we address the network contention at the migration endpoints,
that is, the source and the destination hosts. The core network
switches also experience additional load during the migration.
Although traffic-sensitive migration relieves the load on the
core switches due to reduction in the amount of data trans-
ferred during migration, reducing the core network congestion
is not the primary focus of our work. Second, we use 1 Gbps
NICs that provide full bi-directional bandwidth. The 1 Gbps
NICs are widely used in datacenters [32], which often become
a bottleneck especially during network intensive operations,
such as VM migration. Even though our approach can benefit
high bandwidth interconnects, such as 10 GbE NICs currently
adopted in many datacenters, it is only a question of degree.
Third, our prototype considers the migration of VMs between
same source and destination hosts. In a datacenter environ-
ment, the VMs that communicate with each other [35], [23]
or complement each other’s services [37] are often hosted on
the same machine. Such VMs are migrated together between
the same source and destination hosts in order to preserve the
locality of VMs.

A. Selection of VM Migration Techniques for Co-located VMs
To calculate the network contention, we consider the rate

of outbound VM traffic at the source host and the rate of
inbound VM traffic at the destination host. The outgoing traffic
from all the VMs migrated by using pre-copy contends with
the migration at the source host whereas the incoming traffic



towards all the VMs migrated using post-copy contends with
the migration at the destination host. Since the performance
of migration depends upon the slower of the two endpoints,
the maximum of the traffic contending at the source and
the destination host decides the severity of contention. We
periodically measure the incoming and outgoing traffic for
each VM before the migration. The monitoring allows traffic-
sensitive migration to estimate the contending traffic during
the migration. Then we consider all the combinations of
pre-copy and post-copy for all the VMs migrating from the
same host, and we measure the possible contention with each
combination. The combination of migration techniques that
yields the lowest traffic contention is selected for migration.
For pre-copy migration, reduction in the network contention
at the source host allows it to quickly converge on its WWS,
which reduces the amount of data transferred during the
migration. The reduction in the network traffic also reduces
the load on datacenter switches during the migration.

When some of the co-located VMs are migrated by using
pre-copy while others by using post-copy, the traffic between
the co-located VMs can also contend with the migration traffic.
The VMs migrated with post-copy immediately switch their
execution state to the destination host. They communicate with
the VMs at the source host that are migrating with pre-copy.
When the traffic between them is in the same direction as
that of migration, it competes with the migration traffic. We
address this problem by accounting for the traffic from the
VMs migrated with pre-copy toward the VM migrated with
post-copy. Since this traffic is outgoing for the source host
and incoming for the destination host, we account it for both
the contention at the source and destination hosts.

B. Calculating the Network Contention
In this section we describe the model used by traffic-

sensitive migration to calculate the network traffic contention
for the migration of co-located VMs. We define the contending
traffic as any network traffic that competes with the migration
traffic for available bandwidth at the source or the destination
host. On a machine hosting VMs this traffic consists mainly
of incoming and outgoing traffic of the network-bound VM
application. VMs that cooperate and communicate with each
other to jointly provide a certain service, such as multi-tier
applications, often show a traffic pattern that persists for a
long time [19]. Even though the rate of the VM network
traffic may suddenly vary during the migration, such changes
may not be entirely predictable. Therefore our model uses the
profile of network traffic monitored just before the migration
in order to calculate the possible contention at the source and
the destination hosts.

To calculate the level of contention, we individually con-
sider each source host and calculate the contention resulting
from all the VMs running on that host. We calculate the net-
work contention by considering both pre-copy and post-copy
techniques for every VM on the same host. Figure 2 shows
the equations used for calculating the contention. Equation
(1) calculates the possible contention at the source host with a

given combination of migration techniques for all VMs from
the same host. The contention is calculated by adding rate of
all the outgoing traffic from the VMs migrated with pre-copy.
Similarly, Equation (2) gives the contention at the destination
host, which is calculated by adding the rate of incoming traffic
towards the VMs migrated with post-copy. Other background
outgoing traffic at the source and incoming traffic at the
destination is also accounted toward the contention at the
respective hosts. All the traffic from the VMs migrated pre-
copy towards the VMs migrated with post-copy is added
in both the source and the destination contentions, whereas
all the traffic between two VMs migrating with pre-copy or
two VMs migrating with post-copy is disregarded. Then we
consider the maximum of the traffic at the source and the
destination as the contending traffic for a given combination.
The motivation behind considering the maximum of the two is
that the endpoint with the least available bandwidth becomes
a bottleneck for the migration and slows the migration, thus
delaying the deprovisioning of the resources at the source
host. Once the network contention for every combination of
migration techniques is calculated, the combination yielding
the least contention is selected for migration.

The time complexity of considering every combination of
pre-copy and post-copy for n number of co-located VMs is
O(2n). Even though our current algorithm yields the best
combination for up to 20 VMs within 0.2 seconds, it may
not be suitable for large number of VMs. In such cases, we
can use an approach that considers only a limited number
of combinations and select the best among them that yields
the lowest contention. For instance, when n is large, for the
first n � 20 VMs, we can select a VM migration technique
individually according to their predominant traffic direction,
whereas for the remaining 20 VMs, we can compare different
combinations of migration techniques to reduce the overall
contention. Various industry surveys, however, show that this
level of consolidation is not common. The average consolida-
tion ratio in datacenters is around 6 VMs per host and rarely
exceeds 15 [34], [8].

C. Disk I/O Intensive VMs

Cloud providers allow customers to select the storage type
for their VM instances. The customers can choose local
storage, which does not require network access or they can
choose a shared storage connected with a dedicated high-
bandwidth interconnect to meet high I/O requirement. In such
cases, the migration traffic does not contend with the disk
I/O traffic. However, when the network card is shared by the
I/O traffic of the shared storage and the migration traffic,
the contention between them can also adversely impact the
performance of migration. Although here we focus on the
migration network intensive VMs, traffic-sensitive migration
can potentially be employed to reduce the contention between
disk I/O and migration traffic. In traffic-sensitive migration,
we can detect the inbound and outbound per-VM disk I/O
traffic rates and account them to select a migration technique
for each VM using the above approach.



Source Contention =
nX

i=1

Rate of outgoing traffic in Mbps for VMi, if migrated with pre-copy + Outgoing background traffic (1)

Destination Contention =
nX

i=1

Rate of incoming traffic in Mbps for VMi, if migrated with post-copy + Incoming background traffic (2)

Contending traffic = Max (Source contention, Destination contention) (3)

Fig. 2. Calculating the network contention using the network traffic information of the co-located VMs.

V. IMPLEMENTATION

Here we present the implementation of the traffic-sensitive
virtual cluster migration on the KVM/QEMU platform. Our
implementation consists of the following components.

1) Migration manager is responsible for performing the
VM migration. A migration manager at the source
host establishes a TCP connection with the migration
manager at the destination host and transfers the VM
state over the connection. It coordinates with the central
server to begin the migration.

2) Traffic monitoring module at the source host periodically
monitors the VM traffic with the help of iptables and
updates the central server.

3) Central server calculates the network contention and
selects a migration technique for each VM.

1) Migration Manager: On the KVM/QEMU platform each
VM is created as a user process. A part of process’s address
space is used as a physical memory for the VM. For the
migration of the VM, the KVM/QEMU process spawns a
thread, referred to as the migration manager. Since the migra-
tion manager is created by the KVM/QEMU process, it can
access the VM’s memory. During the migration, the migration
manager at the source host establishes a TCP connection
with the migration manager running at the destination host
and transfers the VM’s memory and execution state over the
connection. The KVM/QEMU provides a command console
to configure a migration technique for the VM.

Traffic-sensitive migration is implemented on the
KVM/QEMU platform. We use the pre-copy migration
provided in the code-base of the KVM/QEMU, whereas
we use the publicly available post-copy migration code
from Yabusame [18]. We modify the migration manager
to implement traffic-sensitive migration. In traffic-sensitive
migration, upon beginning the migration, the migration
manager establishes a TCP connection with the central server.
The central server instructs each VM to begin the migration
with the instructed migration technique; either pre-copy or
post-copy. The central server select a migration technique for
each VM depending on the selected combination of migration
techniques that yields the least contention.

2) Traffic Monitoring Module: Traffic monitoring module
monitors the traffic for the VMs configured by using a bridged
network. The bridged network allows all VMs to become a
part of the same subnet as the host and makes them appear
as normal hosts to the rest of the network. A bridge is a link
layer device that directs the traffic between networks based on

Host

Bridge

Tap3Tap1 Tap2

VM1

Eth

NIC

Tapn

VM2 VM3 VM4

Fig. 3. Virtual networking in KVM/QEMU through bridging.

the MAC addresses on the packets. Within a host, a software
bridge emulates the hardware bridge and allows the packets
to be directed to and from the VMs. The VMs are connected
to the bridge through network tap (TAP) devices, which act
as network channels and provide networking capability to the
VMs. The TAP devices receive networking packets from the
host network stack and pass them to the VMs. Figure 3 shows
how VMs communicate with the external network using TAP
devices.

We monitor the incoming and outgoing network traffic
passing through the TAP device. Every 3 seconds, the module
for each VM updates the central server with the rate of
incoming and outgoing traffic. Our evaluation indicates that
such periodic monitoring of network traffic has negligible
overhead and does not adversely impact VMs’ performance.
The traffic monitoring is performed at the source host for
all VMs using iptables. iptables is a program that allows the
system administrator to configure a firewall. It maintains a
tables of IP packet filter rules in the Linux kernel. Each table
consists of chains and each chain consists of a list of rules.
A rules defines an action to be performed on the packet that
matches the specified criteria. This action is referred to as the
target. For instance an action can be a jump to a different chain
in the same table or dropping the packet. When the packet
does not match, the next rule in the chain is considered. The
iptables rules continuously monitor the incoming and outgoing
packets from each VM.

Figure 4 shows the rules used for monitoring the traffic.
First two instructions create two chains, IN and OUT. The
third instruction defines a jump to the target chain OUT when
the outgoing packets directed from a TAP device (tap1) to the
NIC (eth0) are encountered. Similarly, the fourth instruction
defines a jump to the target IN when incoming packets (eth0
to tap1) are encountered. The instruction 5 shows an example
of a rule to monitor the traffic between co-located VMs (tap1



iptables -N IN (1)

iptables -N OUT (2)

iptables -I FORWARD -m physdev --physdev-in tap1 -m physdev --physdev-out eth0 -j OUT (3)

iptables -I FORWARD -m physdev --physdev-in eth0 -m physdev --physdev-out tap1 -j IN (4)

iptables -I FORWARD -m physdev --physdev-in tap1 -m physdev --physdev-out tap2 -j OUT (5)

iptables -L -vnx (6)

Fig. 4. iptables rules used to capture the incoming and outgoing packet to and from the VMs.

to tap2). The chains, IN and OUT are empty, that is they
do not contain any rules. Therefore packets continue further
without any further filtering. The sixth instruction extracts the
information about the number of packets encountered. We use
this information to monitor the rate of incoming and outgoing
traffic for each VM.

To monitor the traffic, we use timer of the KVM/QEMU.
We register a timer handler routine, which is called every 3
seconds by the KVM/QEMU process. The handler extracts the
rate of incoming and outgoing traffic using iptables instruc-
tions described above and calculates an exponential moving
average. This average is sent to the central server over a TCP
connection.

3) Central Server: Figure 5 shows the communication
between the KVM/QEMU process, the migration manager
and the central server for traffic-sensitive migration of VMs.
The KVM/QEMU process on each source host establishes a
TCP connection with the central server to periodically update
it with the corresponding VM’s network traffic information.
The central server keeps track of the per VM information.
When the administrator initiates the migration of the VMs,
each VM’s migration manager establishes a TCP connection
with the central server and waits for the instruction from
the central server to begin the migration. The central server
uses the network traffic information to select the best possible
combination of migration techniques for each host to minimize
the network contention. With a given combination, each VM is
migrated either using pre-copy or post-copy migration. Then
the central server simultaneously instructs all the migration
managers to initiate the migration with a given migration
technique. The central server can run on any server running
VMs, and it need not be a dedicated server. The network
overhead of communication between the network monitoring
modules of VMs and the central server is negligible. The
central server receives only 18 bytes per-VM every 3 seconds.

VI. EVALUATION

In this section we present an evaluation of the traffic-
sensitive migration by comparing it against pre-copy only
and post-copy only approaches. Our testbed consists of hosts,
each equipped with 8 CPUs and 16 GB of physical memory.
Each host is connected to a top of the rack switch with a 1
Gbps Ethernet link. The VM images are stored using network
attached storage, thus their migration is not required.

Source Host1
Iptables

QEMUMM

VM1

Central 
Server

Source Hostn
Iptables

QEMUMM

VM1

init_migration(technique); 

Traffic 
monitoring 
information 

Gather traffic 
information 
periodically

MM

VMn

QEMU

MM

VMn

QEMU

MM -- Migration Manager

init_migration(technique); 

Traffic 
monitoring 
information 

Gather traffic 
information 
periodically

Fig. 5. Communication between central server and QEMU for traffic-sensitive
migration of a VM

A. Effect of Network Contention on the Migration of a Single
VM

In this section we evaluate the effect of the direction of
VM traffic on the total migration time and the performance
of the VM application by migrating a single VM. The VM
is configured with 5 GB of memory and 2 vCPUs. It ex-
ecutes a Yahoo! Cloud Serving Benchmark (YCSB) [4], a
benchmarking system to evaluate the performance of key-value
stores. The YCSB client running inside the VM queries a
REmote DIctionary Server (Redis) [28], an in-memory key-
value store, running on an external host. We load the Redis
server with 5GB of dataset and submit read and insert queries
from the YCSB client. We migrate the VM while the test
is in progress, and we measure the total migration time and
the application’s performance over 1.5 million requests. We
use both pre-copy and post-copy techniques for migration and
compare their performance.

1) Read Operations: The read queries from the YCSB are
smaller in size compared to their response (request:response
== 1:29). Therefore VM experiences more incoming traffic
from the Redis server compared with the outgoing traffic
toward it. Figure 6 shows the total migration time for the
migration of the VM with an increasing rate of read queries.
For pre-copy migration, the migration traffic and the read



7000 8000 9000 10000 11000
Rate of queries (Operations/Second)

40

50

60

70

80

90
To

ta
l M

ig
ra

tio
n 

Ti
m

e 
(S

ec
on

ds
)

Pre-copy
Post-copy

Fig. 6. Comparison of total migration time for pre-copy and post-copy
migration of a 5 GB VM running a YCSB client. YCSB client queries an
external dataset with read requests.

7000 8000 9000 10000 11000
Rate of queries (Operations/Second)

90

92

94

96

98

100

Pe
rc

en
t Y

CS
B 

Pe
rfo

rm
an

ce

Pre-copy
Post-copy

Fig. 7. Comparison of percent YCSB performance for pre-copy and post-
copy migration of a 5 GB VM running a YCSB client. YCSB client queries
an external dataset with read requests.

response traffic have opposite directions, and both flows can
use full available bandwidth in each direction. Therefore the
total migration time remains constant for an increasing number
of requests. However, with post-copy, the migration traffic
contends with the read response traffic, and the total migration
time of the VM increases. With 11000 read requests/second,
the total migration time is 75% higher than that with pre-copy.

Figure 7 shows the corresponding performance of YCSB in
terms of the percentage of the target rate of requests. With
increasing rate of requests, the performance of YCSB de-
creases with both pre-copy and post-copy. But the degradation
is higher with post-copy. For 11000 requests/second, it can
deliver only 91% of the performance.

7000 8000 9000 10000 11000
Rate of queries (Operations/Second)

40

60

80

100

120

140

To
ta

l M
ig

ra
tio

n 
Ti

m
e 

(S
ec

on
ds

)

Pre-copy
Post-copy

Fig. 8. Comparison of total migration time for pre-copy and post-copy
migration of a 5 GB VM running a YCSB client. YCSB client queries an
external dataset with insert requests.

7000 8000 9000 10000 11000
Rate of queries (Operations/Second)

75

80

85

90

95

100

Pe
rc

en
t Y

CS
B 

Pe
rfo

rm
an

ce

Pre-copy
Post-copy

Fig. 9. Comparison of the percentage of the YCSB performance for pre-copy
and post-copy migration of a 5 GB VM running a YCSB client. The YCSB
client queries an external dataset with insert requests.

2) Insert Operations: Here we submit insert requests to
the Redis server from the YCSB client executing inside the
VM. For insert requests, the request size is higher than that
of the response. Therefore with pre-copy the migration traffic
contends with the application traffic whereas with post-copy
the direction of the migration traffic complements the direction
of the application traffic. Figure 8 shows the total migration
time of the VM with an increasing rate of insert requests. It can
be seen that the total migration time with post-copy remains
constant whereas it increases with pre-copy. For 11000 insert
requests/second the total migration time with pre-copy is 180%
more than that with post-copy. Figure 9 shows the performance
of the application. With a lower rate of requests (less than
9000 operations/second), the application performs worse with
post-copy than with pre-copy. This is because with post-copy
the VM executing at the destination host has to retrieve its
pages from the source host on encountering a page fault.
The delay in retrieval of pages over the network degrades the
performance of the VM application. However, as the rate of
requests increases the performance of YCSB degrades quickly
with pre-copy, whereas post-copy yields better performance.

These results demonstrate that a VM migration technique
that contends with the VM application traffic not only de-
grades the application performance but also increases the total
migration time of the VM. On the other hand, selecting a
migration technique so that the direction of the application
traffic complements the direction of the migration traffic,
reduces the contention and yields a lower total migration time
and application degradation.

B. Migration of Multiple Communicating VMs
Recall that in Section III we demonstrated the effect of

network contention on the performance of migration and
the VMs running network-bound application. In this section
we show that traffic-sensitive migration reduces the network
contention for the migration of multiple communicating VMs
by selecting a VM migration technique according to each
VM’s traffic profile. This reduces the total migration time of
the VMs and the adverse impact of migration on the VM
applications. We use the same setup; that is, we migrate two
5 GB VMs from the two source hosts to the two destination



20 40 60 80 100 120
Time (seconds)

0

200

400

600

800

1000

Th
ro

ug
hp

ut
 (M

bp
s)

Pre-copy Post-copy Traffic-sensitive Migration
Migration Start Pre-copy End Post-copy End
Traffic-sensitive Migration End

Fig. 10. Throughput of Netperf during the migration of two communicating VMs executing Netperf client and server with pre-copy, post-copy and traffic-
sensitive migration.

hosts. The first VM executes a Netperf client while the second
VM runs a Netperf server. We migrate both VMs while
the TCP stream test is in progress with pre-copy and post-
copy. The traffic-sensitive migration selects pre-copy for the
Netperf server with incoming traffic and selects post-copy
for the Netperf client with outgoing traffic. We compare the
total migration time and the amount of data transferred with
traffic-sensitive migration with those of pre-copy and post-
copy. As we observed in Section III, with pre-copy and post-
copy the outgoing and incoming Netperf traffic contends with
the migration traffic, respectively. Therefore for the VM with
same direction of traffic as the migration, the total migration
increases. In contrast, with traffic-sensitive migration, selection
of a migration technique for each VM always complements the
direction of its application traffic and therefore has the lowest
total migration time.

Figure 10 shows the throughput of Netperf during VMs’
migration. When we migrate both VMs with pre-copy or
post-copy, the performance of Netperf degrades during the
migration due to the network contention. With traffic-sensitive
migration the throughput of Netperf degrades at the beginning
of the migration due to transfer of the second VM’s (running
Netperf server) CPU context to the destination. However per-
formance recovers quickly as the VM retrieves its working set
from the source host. Also note that without traffic contention,
the VM becomes responsive sooner than with post-copy. Then
onwards the Netperf client and server can communicate with
each other at maximum throughput through the migration.
At 55 seconds the first VM (running the Netperf client)
experiences a downtime phase leading to slight degradation
before recovering again to the maximum performance.

Table II compares the performance of migration and appli-
cation with all three techniques. On average Netperf shows
5% throughput degradation with our approach as opposed to
27% and 30% with pre-copy and post-copy, respectively. Also
the total migration time with traffic-sensitive migration time
is 42% and 49% lower than with pre-copy and post-copy
respectively.

C. Migration of Multiple VMs from Multiple Hosts
In this section we migrate 16 VMs from 8 hosts, i.e. 2 VMs

per host. Each VM is configured with 2 GB of memory and 2
vCPUs. We run Redis servers in 12 VMs each containing a 1.5
GB in-memory dataset. The remaining 4 VMs run the YCSB
client to query the dataset, each querying 6 VMs. The queries
include read, insert, and update operations. Therefore each VM
has a predominant incoming or outgoing network flow. The
setup represents a scenario when the VMs that communicate
and co-operate to jointly provide certain service are migrated
simultaneously.

With pre-copy and post-copy, we migrate all 16 VMs
using respective migration technique, whereas with traffic-
sensitive migration the migration technique for each VM is
selected based on its traffic profile. We simultaneously migrate
all 16 VMs while the test is in progress using pre-copy,
post-copy, and traffic-sensitive migration. Table III shows the
performance of the migration.

1) Total Migration Time: The total migration time of a
VM depends upon the amount of data transferred and the
available bandwidth. The total migration time for the migration
of multiple VMs is the time measured from the start of the
migration of the first VM to the end of the migration of the
last VM. Whereas the average migration time is the average
of individual total migration times calculated over all the
migrating VMs. When all VMs are migrated with pre-copy the
total migration time of VMs increases due to retransmission
of dirtied pages and contention of the migration traffic with
the outgoing VM traffic. When all the VMs are migrated with
post-copy the average and total migration times increase due
to contention of the incoming VM traffic with the migration
traffic. The increase in the total migration time with post-copy
is in spite of transferring each VM page only once. In contrast,
traffic-sensitive VM migration technique reduces the traffic
contention by selecting a suitable migration technique for each
VM. Thus, it has the lowest average and total migration times
among the three techniques.

2) Amount of Data Transferred: Table III shows the ag-
gregate amount of data transferred for the migration of 16
VMs. It can be observed that pre-copy transfers more data
than other two techniques. As noted previously, with pre-



Pre-copy Post-copy Traffic-sensitive Migration
Total Migration Time (seconds) 79.1 92.1 48.2

Amount of Data Transferred (MB) 10280 10277 10278
Netperf Performance (Mbps) 690.47 660.05 894.65

TABLE II
COMPARISON OF THE PERFORMANCE OF MIGRATION WHEN THE COMBINATION OF PRE-COPY AND POST-COPY IS USED IN TRAFFIC-SENSITIVE

MIGRATION AGAINST THE PERFORMANCE OF PRE-COPY AND POST-COPY.

Without Migration Pre-copy Post-copy Traffic-sensitive Migration
Average Migration Time (seconds) - 50.56 60.48 37.79

Total Migration Time (seconds) - 74.5 139 57.75
Amount of Data Transferred (GB) - 50.90 30.18 34.07

YCSB Performance (Operations / second) 4802 3875 4161 4126

TABLE III
PERFORMANCE COMPARISON FOR THE MIGRATION OF VMS FROM 8 HOSTS, WITH 2 VMS PER HOST. OUT OF 16 VMS, 4 VMS RUN YCSB CLIENTS

WHEREAS 8 VMS RUN THE REDIS SERVERS.

copy the traffic contention increases the total migration time
and more pages are dirtied. Therefore it transfers significantly
more data than post-copy. In contrast, post-copy transfers
each VM page only once, therefore it has the lowest amount
of data transferred. With traffic-sensitive migration, the VMs
migrated with pre-copy face less network traffic contention
than with the pre-copy (for all VMs) approach. Therefore
VMs can quickly converge on their WWS. Therefore traffic-
sensitive migration only slightly increases the amount of data
transferred as compared to post-copy.

3) Application Degradation: We measure the performance
of the application by calculating the average performance of
all the YCSB workload clients. The application performs the
best with post-copy among the three techniques. Post-copy
transfers the lowest amount of data; therefore the application
suffers the least. With pre-copy, the retransmission of dirtied
pages adversely impacts the performance of the migration,
yielding the lowest performance. Traffic-sensitive migration
performs slightly worse than post-copy since more data is
transferred for the migration. However, due to significant
reduction in the amount of data transferred the application
performs notably better than with pre-copy.

VII. RELATED WORK

In this section we review the literature that optimize the
migration of a single VM or multiple VMs by reducing the
network overhead.

Post-copy [16], [18] transfers each VM pages only once
over the network, thus reducing the total migration time and
network traffic overhead for write-intensive VM applications
compared with pre-copy [7], [26]. Content-optimizations such
as compression [21], deduplication [40], [36], and differential
compression [31] are used to reduce the amount of data
transferred for VM migration. Jo et al. [22] avoid the transfer
of VM memory pages that are identical to the disk blocks
from network attached storage. Shrinker [30], [29], Gang
Migration [11], [10], [12] optimize live migration of multiple
VMs over datacenter and wide area networks. The above
approaches reduce the network traffic for live VM migration
and hence reduce the network contention. However, they rely
on a single VM migration technique, which may not be
best suited for a given VM traffic profile. Moreover, since

traffic-sensitive migration uses both pre-copy and post-copy,
any content optimization for these migration techniques is
orthogonal to the approach and may further reduce the network
contention.

VMFlock [24] performs non-live migration of VM images
over wide area networks. Redundancy-aware virtual disk mo-
bility [27] also migrates VM images between datacenters. It
uses a peer-to-peer approach to gather the identical VM image
blocks from multiple data centers. Adaptive live migration over
WAN [39], presents a fractional hybrid pre-copy approach for
memory and storage over WAN. It transfers only a fraction of
the memory and storage during the pre-copy phase whereas
the remaining state is demand-paged. The fraction is adjusted
to quickly restore the migrating VM’s performance back to its
original level. The above approaches focus on the migration of
VMs over WAN, where migration of storage is a main concern.
For intra-datacenter migration of VMs over LAN often the
storage is shared between the source and the destination hosts.

VCT [1] performs synchronized migration of a HPC vir-
tual clusters running data-driven applications by reducing the
amount of data transferred for their migration using compres-
sion. However, the main focus of this work is non-live migra-
tion of VMs and their disk images, when the VM memory and
disk states are suspended to a file and resumed at a later time.
Ye et al. [38] perform live migration of virtual clusters. They
compare the performance of different migration strategies for
virtual cluster, including concurrent, sequential, unidirectional,
bi-directional migration of virtual clusters. However, they do
not focus on the contention of migration and VM application
traffic. Further, they only consider the simultaneous migration
of VMs using pre-copy. In contrast, our work employs both
pre-copy and post-copy migration to minimize the mutual
adverse impact of VM application traffic and migration traffic.

To the best of our knowledge traffic-sensitive migration is
the first approach to take into account the traffic direction
of the VM applications in order to to reduce the network
contention for the migration of co-located VMs.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a traffic-sensitive approach
for migration of co-located VMs that predominantly have



unidirectional network traffic. Our approach reduces the con-
tention of VM application traffic with the migration traffic by
selecting a suitable migration technique for each VM. The
selection is based on each VM’s network traffic profile. We
have implemented a prototype of traffic-sensitive migration
in the KVM/QEMU environment. We demonstrate through
evaluation that by reducing the network traffic contention
for migration, traffic-sensitive migration reduces the total
migration time of VMs and minimizes the adverse impact of
migration on the performance of the VM application.

We plan to extend the traffic-sensitive migration in the
following way. Currently, traffic-sensitive migration addresses
the problem of the migration of VMs from the same source
host to the same destination host. In the future, we plan to
extend traffic-sensitive migration for migration of VMs from
the same source host to different destination hosts. Second,
we plan to account for the traffic at the destination hosts to
select a suitable destination host for each VM to minimize the
network contention.

ACKNOWLEDGEMENTS

We thank Pierre Riteau for his help in setting up the testbed
and for his valuable suggestions that helped improve this
paper. This material is based in part on work supported in
part by the U.S. Department of Energy, Office of Science,
under contract DE-AC02-06CH11357.

REFERENCES

[1] Paolo Anedda, Simone Leo, Simone Manca, Massimo Gaggero, and
Gianluigi Zanetti. Suspending, migrating and resuming hpc virtual
clusters. In Future Generation Computer Systems, volume 26 - 8, 2010.

[2] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield. Xen and the art of virtualization.
SIGOPS Operating Systems Review, 37(5):164–177, 2003.

[3] Network Performance Benchmark. http://www.netperf.org/netperf.
[4] Yahoo! Cloud Serving Benchmark. http://labs.yahoo.com/news/yahoo-

cloud-serving-benchmark.
[5] N. Bila, E. de Lara, K. Joshi, H. A. Lagar-Cavilla, M. Hiltunen, and

M. Satyanarayanan. Jettison: Efficient idle desktop consolidation with
partial VM migration. In Eurosys, April 2012.

[6] N. Bobroff, A. Kochut, and K. Beaty. Dynamic placement of virtual
machines for managing sla violations. In Proc. of Integrated Network
Management, page 119–128, May 2007.

[7] C. Clark, K. Fraser, S. Hand, J.G. Hansen, E. Jul, C. Limpach, I. Pratt,
and A. Warfield. Live migration of virtual machines. In Network System
Design and Implementation, May 2005.

[8] VMWare: Server Consolidation and Containment.
http://www.vmware.com/pdf/server consolidation.pdf.

[9] T. Das, P. Padala, V. Padmanabhan, R. Ramjee, and K. G. Shin.
LiteGreen: Saving energy in networked desktops using virtualization.
In USENIX Annual Technical Conference, 2010.

[10] U. Deshpande, U. Kulkarni, and K. Gopalan. Inter-rack live migration of
multiple virtual machines. In Virtualization Technologies in Distributed
Computing, June 2012.

[11] U. Deshpande, B. Schlinker, E. Adler, and K. Gopalan. Gang migration
of virtual machines using cluster-wide deduplication. In International
Symposium on Cluster, Cloud and Grid Computing, May 2013.

[12] U. Deshpande, X. Wang, and K. Gopalan. Live gang migration of virtual
machines. In High Performance Distributed Computing, June 2011.

[13] U. Deshpande, Y. You, D. Chan, N. Bila, and K. Gopalan. Fast server
deprovisioning through scatter-gather live migration of virtual machine.
In IEEE International Conference on Cloud Computing, July 2014.

[14] Pei Fan, Zhenbang Chen, Ji Wang, Zibin Zheng, and Michael R.
Lyu. Topology-aware deployment of scientific applications in cloud
computing. In Proc. of International Conference on Cloud Computing,
2012.

[15] Abhishek Gupta, Dejan Milojicic, and Susanne M. Balle. Hpc-aware vm
plancement in infrastructure clouds. In Proc. of International Conference
on Cloud Engineering, 2013.

[16] M. R. Hines, U. Deshpande, and K. Gopalan. Post-copy live migration
of virtual machines. SIGOPS Operating System Review, 43(3):14–26,
2009.

[17] T. Hirofuchi, H. Nakada, S. Itoh, and S. Sekiguchi. Reactive consol-
idation of virtual machines enabled by postcopy live migration. In
Virtualization Technologies in Distributed Computing, June 2011.

[18] T. Hirofuchi and I. Yamahata. Yabusame: Postcopy Live Migration for
Qemu/KVM. In KVM Forum 2011, Vancouver, Canada, August 2011.

[19] Liting Hu, Karsten Schawan, Ajay Gulati, Junjie Zhang, and Chengwei
Wang. Net-cohort: detecting and managing vm ensembles in virtualized
data centers. In Proc. of International Conference on Autonomic
computing, 2012.

[20] VMware Inc. http://www.vmware.com.
[21] H. Jin, L. Deng, S. Wu, X. Shi, and X. Pan. Live virtual machine

migration with adaptive memory compression. In Cluster Computing
and Workshops, August 2009.

[22] C. Jo, E. Gustafsson, J. Son, and B. Egger. Efficient live migration of
virtual machines using shared storage. In Virtual Execution Environ-
ments, March 2013.

[23] K. Kim, C. Kim, S-I. Jung, H Shin, and J-S. Kim. Inter-domain
socket communications supporting high performance and full binary
compatibility on xen. In Proc. of Virtual Execution Environments, March
2008.

[24] S. A. Kiswany, D. Subhraveti, P. Sarkar, and M. Ripeanu. Vmflock:
Virtual machine co-migration for the cloud. In High Performance
Distributed Computing, June 2011.

[25] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori. KVM: the
linux virtual machine monitor. In Linux Symposium, June 2007.

[26] M. Nelson, B. H Lim, and G. Hutchins. Fast transparent migration for
virtual machines. In USENIX Annual Technical Conference, 2005.

[27] C. Peng, M. Kim, Z. Zhang, , and H. Lei. Vdn: Virtual machine image
distribution network for cloud data centers. In International Conference
on Computer Communications, March 2012.

[28] Redis. http://redis.io.
[29] P. Riteau, C. Morin, and T. Priol. Shrinker: Efficient wide area live

virtual machine migration using distributed content-based addressing.
In http://hal.inria.fr/inria-00454727/en/, February 2009.

[30] P. Riteau, C. Morin, and T. Priol. Shrinker: Improving live migration
of virtual clusters over WANs with distributed data deduplication and
content-based addressing. In EURO-PAR, September 2011.

[31] Petter Svrd, Benoit Hudzia, Johan Tordsson, and Erik Elmroth. Eval-
uation of delta compression techniques for efficient live migration of
large virtual machines. In Proc. of International Conference on Virtual
Execution Environments, 2011.

[32] Arista: Upgrading the Data Center to 10 Gigabit Ethernet.
http://www.arista.com/assets/data/pdf/10gige whitepaper.pdf.

[33] A. Verma, P. Ahuja, and A. Neogi. pMapper: power and migration cost
aware application placement in virtualized systems. In Middleware’08.

[34] V-Index: virtualization industry quarterly survey.
http://www.veeam.com/news/veeam-launches-v-index-to-measure-
virtualization-penetration-rate.html.

[35] Jian Wang, Kwame-Lante Wright, and Kartik Gopalan. XenLoop: a
transparent high performance inter-VM network loopback. In Proc.
of High Performance Distributed Computing, Boston, MA, USA, pages
109–118, 2008.

[36] T. Wood, K. K. Ramakrishnan, P. Shenoy, and J. van der Merwe.
Cloudnet: Dynamic pooling of cloud resources by live wan migration
of virtual machines. In Virtual Execution Environments, March 2011.

[37] T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif. Sandpiper:
Black-box and gray-box resource management for virtual machines. The
International Journal of Computer and Telecommunications Networking,
53(17), December 2009.

[38] Kejiang Ye, Xiaohong Jiang, Ran Ma, and Fengxi Yan. Vc-migration:
Live migration of virtual clusters in the cloud. In Proc. of International
Conference on Grid Computing, 2012.

[39] W. Zhang, K. T. Lam, and C. Wang. Adaptive live vm migration over a
wan: Modeling and implementation. In IEEE International Conference
on Cloud Computing, July 2014.

[40] X. Zhang, Z. Huo, J. Ma, and D. Meng. Exploiting data deduplication
to accelerate live virtual machine migration. In Proc. of International
Conference on Cluster Computing, September 2010.


