Traffic-Sensitive Live Migration of Virtual Machines

Umesh Deshpande Computer Science, Binghamton University

Dr. Kate Keahey Mathematics and Computer Science Division, Argonne National Lab

Contact: <u>umesh.deshpande@binghamton.edu</u>

STATE UNIVERSITY OF NEW YORK

Funded by

Background: Live VM Migration

- Migration of a running Virtual Machine between hosts
- Transfer

Memory Disk Image

Pre-copy live VM migration

• Post-copy live VM Migration

Motivation: Migration of VMs

- Shutting down rack for cluster maintenance
- Imminent failures
- Power Saving

Problem

- Migration of Network-bound VMs
 - Transfer of Gigabytes of memory
 - Contention between VM application and migration traffic at the NICs

Migration VM traffic traffic

- Contention depends upon direction of traffic
 - Flows in the same direction **compete**
 - Flows in opposite direction **complement**

Problem

- Migration traffic competes with
 - Pre-copy: Outbound VM application traffic at source
 - Post-copy: Inbound VM application traffic at destination

- Effect of contention
 - Prolongs Migration
 - Degrades VM applications

Problem

Contention during migration depends upon
VM's predominant traffic direction
VM migration technique selected

- Effect of contention
 - Prolongs Migration
 - Degrades VM applications

Solution: Traffic-sensitive migration

• **Goal:** Reduce contention at migration endpoints for migration of co-located VMs

- Select migration technique for each VM
 - Direction of most VM traffic complements the direction of migration traffic

Existing Solutions

- Post-copy: Transfers each page only once
- Content optimization:
 - Shrinker, Gang Migration, VMFlock
 - Compression, Differential compression, Deduplication
- Migration of Virtual Clusters
 - VCT: Non-live migration of VMs and disk images
 - VC Migration: Compares different strategies for migration of multiple VMs

Design

- Periodically measure TX and RX traffic rate for each VM
- 2. Calculate severity possible contention with every combination of pre-copy and post-copy
 - E.g. (vm1, vm2, vm3) : (pre, pre, post), (pre, post, pre)...
- 3. Select the one that yields the least contention

Design: Calculating Contention

For each combination

- Source contention = \sum Rate of outgoing traffic for VMs migrated with pre-copy + Outgoing background traffic
- Destination contention = Σ Rate of incoming traffic for VMs migrated with post-copy + Incoming background traffic
- Contending Traffic = Max (Source contention, Dest. Contention)

Design (Example)

Two co-located VMs	Tx Rate	Rx Rate
VM1	200 Mbps	400 Mbps
VM2	300 Mbps	500 Mbps

- 1. VM1 pre-copy, VM2 pre-copy
 - Source contention = 500 Mbps
 - Destination contention = 0
 - Contention = Max (500, 0) = 500 Mbps
- 2. VM1 post-copy, VM2 pre-copy
 - Source contention = 300 Mbps
 - Destination contention = 400 Mbps
 - Contention = Max (300, 400) = 400 Mbps

Implementation: Networking

- Implemented on KVM/QEMU platform
- 1Gbps Ethernet interconnect

Virtual Networking in KVM/QEMU

Implementation

13

- Compare Against : Pre-copy only, Post-copy only
- Configuration
 - Host : 8 CPUs, 16GB memory, VM: 2 vCPUs, 5GB memory
- VM1: Netperf client, VM2: Netperf server (VM1 \rightarrow VM2)

- Compare Against : Pre-copy only, Post-copy only
- Configuration
 - Host : 8 CPUs, 16GB memory, VM: 2 vCPUs, 5GB memory
- VM1: Netperf client, VM2: Netperf server (VM1 \rightarrow VM2)

- Compare Against : Pre-copy only, Post-copy only
- Configuration
 - Host : 8 CPUs, 16GB memory, VM: 2 vCPUs, 5GB memory
- VM1: Netperf client, VM2: Netperf server (VM1 \rightarrow VM2)

	Pre-copy	Post-copy	Traffic-sensitive Migration
Total Migration Time (seconds)	79.1	92.1	48.2
Amount of Data Transferred (MB)	10280	10277	10278
Netperf Performance (Mbps)	690.47	660.05	894.65

- TMT: 42% and 49% lower than pre-copy and post-copy
- Performance: 29% and 35% higher than pre-copy and postcopy

- 8 Source Hosts, each host runs 2 VM
- 12 VMs run Redis database server
- 4 VMs query with YCSB workload
 - Insert, read, update queries

	Without Migration	Pre-copy	Post-copy	Traffic-sensitive Migration
Average Migration Time (seconds)	3.5	50.56	60.48	37.79
Total Migration Time (seconds)	1.5	74.5	139	57.75
Amount of Data Transferred (GB)	15	50.90	30.18	34.07
YCSB Performance (Operations / second)	4802	3875	4161	4126

- TMT reduction: 23% vs pre-copy, 59% vs post-copy
- Vs. Pre-copy: 6% lesser degradation, 68% lower network traffic overhead

Future Work

- Migration from same source host to different destination hosts
 - Scattering or consolidation of VMs
 - Considering the combinations across the hosts
- Account for the traffic at the destination host to selecting a suitable destination

Conclusions

- Combination of pre-copy and post-copy to reduce network contention
 - Esp. for VMs with unidirectional traffic
- Reduces total migration time
 - Allows faster eviction
- Minimizes application network-bound degradation

Thanks!

Contact: <u>umesh.deshpande@binghamton.edu</u>

Website:

http://www.umeshhome.com

STATE UNIVERSITY OF NEW YORK

Funded by