
Bursting the Cloud Data Bubble: Towards

Transparent Storage Elasticity in IaaS Clouds

Bogdan Nicolae

IBM Research, Ireland

bogdan.nicolae@ie.ibm.com

Pierre Riteau

University of Chicago, USA

priteau@uchicago.edu

Kate Keahey

Argonne National Laboratory, USA

keahey@mcs.anl.gov

Abstract—Storage elasticity on IaaS clouds is an important
feature for data-intensive workloads: storage requirements can
vary greatly during application runtime, making worst-case over-
provisioning a poor choice that leads to unnecessarily tied-up
storage and extra costs for the user. While the ability to adapt
dynamically to storage requirements is thus attractive, how to im-
plement it is not well understood. Current approaches simply rely
on users to attach and detach virtual disks to the virtual machine
(VM) instances and then manage them manually, thus greatly
increasing application complexity while reducing cost efficiency.
Unlike such approaches, this paper aims to provide a transparent
solution that presents a unified storage space to the VM in the
form of a regular POSIX file system that hides the details of
attaching and detaching virtual disks by handling those actions
transparently based on dynamic application requirements. The
main difficulty in this context is to understand the intent of
the application and regulate the available storage in order to
avoid running out of space while minimizing the performance
overhead of doing so. To this end, we propose a storage space
prediction scheme that analyzes multiple system parameters and
dynamically adapts monitoring based on the intensity of the I/O
in order to get as close as possible to the real usage. We show the
value of our proposal over static worst-case over-provisioning and
simpler elastic schemes that rely on a reactive model to attach and
detach virtual disks, using both synthetic benchmarks and real-
life data-intensive applications. Our experiments demonstrate
that we can reduce storage waste/cost by 30–40% with only 2–5%
performance overhead.

Keywords-cloud computing; elastic storage; adaptive resizing;
I/O access pattern prediction

I. INTRODUCTION

Infrastructure clouds (Infrastructure-as-a-Service, or IaaS

clouds) [1] are increasingly gaining popularity over privately

owned and managed hardware. One of the key features driving

their popularity is elasticity, that is, the ability to acquire and

release resources on-demand in response to workloads whose

requirements fluctuate over time. However, elasticity presents

a different optimization opportunity: rather than molding a

problem to fit a fixed set of resources in the most efficient

way as is the case in traditional high performance computing

(HPC) centers, we now fit resources – from a flexible and

extensible set – to the problem.

To date, most of the efforts have focused on exploiting

the elasticity of computational resources, ranging from lo-

calized virtual clusters [2], [3] to approaches that facilitate

elasticity across cloud federations [4], [5]. However, elasticity

of storage has gained comparatively little attention, despite

continuous explosion of data sizes and, as a response, the rise

of data-intensive paradigms and programming models (such as

MapReduce [6] and its vast ecosystem) that are highly scalable

and capable of processing massive amounts of data over short

periods of time.

In this context, a growing gap is forming between the actu-

ally used storage and the provisioned storage. Since traditional

IaaS platforms offer little support to address storage elasticity,

users typically have to manually provision raw virtual disks

that are then attached to their virtual machine (VM) instances.

All details related to the management of such raw disks,

including what size or type to pick, how to use it (e.g., with

what file system) and when to attach/detach a disk are handled

manually and increase the application complexity. In response,

users often simply over-provision storage, an action that leads

to unnecessarily tied-up resources and, since the user has to

pay for all the provisioned storage, also to overpaying. Thus,

this gap significantly contributes to rising storage costs, adding

to the costs caused by natural accumulation of data.

As a consequence, there is a need for an elastic storage

solution that narrows the gap between the required and pro-

visioned storage described above. For this to be possible,

three major requirements need to be addressed. First, in order

to minimize wasted storage space, elasticity needs to be

implemented in a highly dynamic fashion, such that it can

adapt to large fluctuations over short periods of time and match

the provisioned storage space to the needs of the application as

closely as possible. Second, it must exhibit low performance

overhead, such that it does not lead to a significantly longer

application runtime that threatens performance requirements or

incurs extra costs that offset the savings gained by using elastic

storage. Third, elasticity must be achieved in a transparent

fashion, such that it hides all details of raw virtual disk

management from the users and facilitates ease-of-use.

This paper contributes such a transparent elastic storage

solution that presents a unified storage space to the VM in

the form of a regular POSIX file system that hides all the

details of attaching and detaching virtual disks. Our approach

is designed to deal with data-intensive workloads that exhibit

large fluctuations of storage space requirements over short

periods of time. In addition to technological choices, the main

difficulty in this context is to anticipate the application intent

and proactively attach and detach disks such as to minimize the

wasted storage without significant performance overhead. To

this end, we propose a prediction scheme that correlates differ-

ent I/O statistics in order to optimize the moment when virtual

disks should be attached or detached without compromising

normal application functionality by prematurely running out

of space.

Our contributions can be summarized as follows:

• We describe requirements and design considerations that

facilitate transparent elasticity for cloud storage. In par-

ticular, we show how to leverage multi-disk aware file

systems to circumvent the difficulty of resizing virtual

disks on-the-fly. To this end, we advocate for a pre-

dictive scheme that anticipates near-future storage space

requirements based on fine granularity-monitoring (Sec-

tion III-A)

• We show how to apply these design considerations in

practice through a series of building blocks (along with

their associated algorithmic description and implementa-

tion) that integrate with a typical IaaS cloud architecture.

(Sections III-B, III-C and III-D)

• We evaluate our approach in a series of experiments con-

ducted on dozens of nodes of the Shamrock experimental

testbed, using both synthetic benchmarks and real-life

applications. In this context, we demonstrate a reduction

in waste of storage space of 33% for microbenchmarks

and 42% for applications, all of which is possible with

minimal (2-5%) performance overhead. (Section IV)

II. RELATED WORK

Extensive work exists on elasticity of computational re-

sources, with focus on various aspects including: responsive-

ness to job submissions patterns and performance accelera-

tion [7], automated monitoring and workload adaptation for

OpenStack [8], elasticity of virtual clusters on top of IaaS

clouds [3] and wide area cloud federations [4], [5].

With respect to storage, compression [9] and other space

reduction techniques can be used to reduce associated costs.

However, such approaches deal with actually used data and

do not directly address the gap between actually used data

and provisioned space. Thus, building blocks that facilitate

elasticity of storage are crucial. Means to conveniently create

and discard virtual disks of fixed sizes that can be freely

attached and detached to running VM instances are supported

by both open-source platforms [10] and commercial IaaS

clouds [11]. Disk arrays (in various RAID configurations)

have long been used by storage servers in order to aggregate

the storage space of multiple disks. Although growing and

shrinking of RAID volumes is possible, this is a lengthy and

expensive operation because it requires rebuilding the entire

RAID. While several efforts have been made to improve this

process [12], [13], [14], such an approach is not feasible in

our context where we need to grow and shrink storage over

short periods of time. On the other hand, approaches that

manage multiple disks at file system level have demonstrated

scalability and low resizing overhead [15]. We note in this

context our own previous work on multi-versioning [16], of

interest especially if leveraged to reduce remove overhead:

by writing into new snapshots and serving reads from old

snapshots that potentially include the disk to be removed,

blocking during reads can be completely avoided until all

content has been copied to the remaining disks. At this point,

a simple atomic switch to the newest snapshot is enough to

complete the remove operation transparently.

Approaches that aim at automated control of storage elas-

ticity have been proposed before. Lim et al. [17] address

elastic control for multi-tier application services that allocate

and release resources at coarse granularity, such as virtual

server instances of predetermined sizes. In this context, the

focus is on adding and removing entire storage nodes and

rebalancing data across remaining nodes in order to optimize

I/O bandwidth and CPU utilization.

Storage correlations have been explored before at various

granularity. Several efforts analyze correlations at the file

level either in order to detect access locality and improve

prefetching [18] or to conserve energy in a multi-disk system

without sacrificing performance [19]. Other efforts go one

level below and focus on smaller (i.e. block-level) granularity,

under the assumption that it would enable additional disk-

level optimization opportunities in the area of storage caching,

prefetching, data layout, and disk scheduling [20]. Our ap-

proach on the other hand focuses on correlations that help

predict storage utilization, without insisting on any particular

storage unit.

Prediction of I/O and storage requirements have been at-

tempted from the perspective of both storage space utiliza-

tion and behavior anticipation. For example, Stokely et al.

developed forecasting methods to estimate storage needs in

Google datacenters [21]. In this context, the focus is on long

term prediction (the order of months), which is insufficient

for adapting to short term fluctuations that can happen in as

little as the order of seconds. Anticipation of I/O behavior has

been realized mainly by identifying and leveraging I/O access

patterns [22], [23]. Such access pattern-based analysis could

be interesting to explore in our context, as a complement that

facilitates bandwidth-elastic capability in addition to storage

space elasticity.

Our own work focuses on a specific aspect of elasticity:

minimizing waste of storage space transparently without per-

formance degradation. To our best knowledge, we are the first

to explore the benefits of elasticity under such circumstances.

III. SYSTEM DESIGN

This section presents the design and implementation of our

approach.

A. Requirements and Design Considerations

Transparent online elasticity via multi-disk aware file

system: Storage typically is provisioned on IaaS clouds in

the form of virtual disks that can be attached and detached

from running VM instances. While this model provides low-

level control over the storage resources, by itself it has limited

potential for elasticity: a virtual disk is often provisioned by

using a predefined initial size, with no capability of online

resizing (i.e., while being attached to a running VM instance

that potentially uses the disk during the resize operation).

Further, a virtual disk typically is used via a file system rather

than as a raw block device. Therefore, in order to provide

disk elasticity, a corresponding resize of the file system is

necessary as well. This operation is usually not possible in an

online fashion: the file system needs to be unmounted, resized

offline and then mounted again. Since our goal is to achieve

transparent elasticity, the online capability is crucial in our

context. Thus, attempting to resize virtual disks themselves

presents a problem both at the level of the disk itself and at

the level of the file system.

To address both issues simultaneously, we propose to lever-

age a multi-disk aware file system that is able to aggregate the

storage space of multiple virtual disks into a single pool. Using

this approach, we can start with a small virtual disk of fixed

size and then add or remove additional fixed-size virtual disks

(which we will refer to as increments) as needed. While simple

as a principle, such an approach still presents the challenge of

adding and removing disks in an online fashion. Two main

requirements arise in this context: (1) scalability with respect

to the number of disks (i.e. the file system should not become

slower as more disks are added) and (2) minimal overhead on

application performance (i.e. adding and removing disk should

not slow down the file system). Fortunately, as explained in

Section III-D, building blocks that fulfill these requirements

are readily available.

Dynamic adaptation to space utilization using fine-

grained monitoring and preventive reserve: The capability

to add and remove virtual disks to form an elastic pool of

raw storage space is by itself useful only as long as it is

leveraged in a way that matches application requirements.

However, this ability to dynamically adapt to the application

requirements is challenging, especially in the context of data-

intensive applications that frequently exhibit large fluctuations

of storage space utilization over short periods of time. If there

is not enough time to react and add a new disk to the file

system, the application will run out of space and either fail

or slow down. This scenario is unacceptable as a trade-off for

reducing the waste of storage space. Thus, we aim to guarantee

correctness for our approach, which in our context means that

the application should behave when using elastic storage in the

same way as it would when using an infinitely large storage.

To achieve this goal, we propose to monitor changes in

utilization at fine-granularity in order to enable the system to

accurately capture the access pattern and adapt accordingly.

Although such an approach helps alleviate the problem of

fluctuations over short periods of time, by itself it is not

enough because applications often check for free space and

change their behavior if their expectation is not met, even

before attempting an operation that risks failing due to running

out of space. To deal with this issue, we propose to use a

preventive reserve, namely, keep an extra amount of storage

space available at all times, beyond the immediate needs. This

not only solves the expectation issue, but also helps with the

fluctuations, especially if there are dramatic changes between

two consecutive probings.

Minimal waste of storage space and performance over-

head using prediction: While a large enough reserve can guar-

antee correctness, letting it grow too much defeats the purpose

of being economical. Furthermore, even in an ideal scenario

where no storage space is wasted, poorly choosing the moment

to add and remove virtual disks can lead to performance

degradation and longer application runtimes, which in turn

lead to an increase in operational costs. Thus, it is important

to take both reserve and this timing into consideration when

adapting to the space utilization.

To address this issue, we argue for a predictive scheme ca-

pable of anticipating near-future space requirements and other

favorable circumstances that can be used to optimize the mo-

ment when to add and remove disks. Such a scheme ultimately

helps our approach satisfy correctness with a smaller reserve

while minimizing the waste and the performance overhead.

More specifically, we propose to go beyond just looking at

the storage space utilization itself and look at correlations

between several I/O parameters. One such correlation that we

found particularly helpful is the amount of data written in

the near past: under high write pressure, it is likely that the

free space as reported by the file system does not accurately

reflect the real free space, due to pending flushes that were

not yet committed. Thus, factoring the amount of written data

into the prediction helps avoid worst-case scenarios where the

reported free space suddenly jumps by an amount proportional

to the written amount. Furthermore, under high write pressure,

fluctuations in space utilization are more likely to exhibit larger

variability over short periods of time. To address this issue,

we propose to adapt the frequency of probing in order to

increase reactivity: we monitor parameters at finer granularity

when the write pressure grows higher and back off to coarser

granularity when the pressure falls lower. Finally, we also use

I/O pressure (both read and write) to decide when to remove

a disk: under the assumption that a high I/O pressure makes

a removal expensive in terms of performance overhead, we

avoid this operation as long as the pressure stays high (note

that delaying a removal does not affect correctness, unlike the

case when a new disk needs to be added). We describe these

considerations in more detail in Section III-C.

B. Architecture

The simplified architecture of our approach is depicted in

Figure 1. We assume that the VMs are deployed on an IaaS

cloud that enables users to provision raw storage as virtual

disks. Furthermore, we assume that the cloud hypervisor is

capable of dynamically attaching and detaching virtual disks

to the VM instances (a feature that is standard in most

production-ready hypervisors). Finally, we also assume a cost

model that charges users for utilization at fine time granularity,

which can be as little as the order of seconds (providers

increasingly push towards finer granularity, currently as low

as the order of minutes, e.g. RackSpace [24]).

Once deployed on the IaaS cloud, the VM instance ini-

tializes a multi-disk aware file system that is exposed to the

Fig. 1. Integration of our approach into an IaaS cloud architecture; components that are part of our design are highlighted with a darker background.

users using a regular POSIX mountpoint and implements the

requirements described in Section III-A. At the same time,

it launches the predictor and the controller. The controller is

responsible for monitoring the system via a range of sensors,

applying policies, and enactment of suitable actions (i.e.,

attaching or detaching disks). The frequency of monitoring

depends on the intensity of I/O (as detailed in Section III-C);

each sensor collects information about free space utilization

and other parameters. This information is then passed to the

predictor which uses it to estimate near-future storage space

utilization. Based on this estimate, the controller decides its

next action, which can either be to request a new virtual disk

and then add it to the file system pool, or to remove a virtual

disk from the pool and then ask for it to be discarded.

How to provision a virtual disk is open to a wide range

of choices: virtual disk images of various formats (e.g. raw,

QCOW2 [25]) stored either locally on the physical disks of the

hosting node or remotely; dedicated physical disks exported

as block devices (again locally available or exported through,

e.g., iSCSI); specialized virtual disk services, such as Amazon

EBS [11]; or our own previous work [26].

C. Predictor and Controller

In this section, we introduce an algorithmic description of

the predictor and controller. By convention, identifiers in italic

capitals represent constants. These are as follows: INIT is the

size of the initial virtual disk; INC is the size of newly added

virtual disks (although more complex models are possible

that enable growing and shrinking in variable increments,

for the purpose of this work we consider the increment as

a constant); TMAX and TMIN represent respectively the

coarsest and the finest granularity at which the controller

probes for I/O statistics of the file system; R represents the

reserve of space; AD (add delay) represents the expected time

to add a new virtual disk (and is set to a conservative value);

finally RD (remove delay) represents the amount of time that

must elapse after a new virtual disk was added before a remove

is permitted, which is needed in order to enable the newly

added virtual disk to become fully integrated into the file

system.

The main loop of the controller is listed in Algorithm 1.

Algorithm 1 Controller

1: size← ADD DISK(INIT)
2: next← TMAX
3: window ← 2 · TMAX
4: while true do

5: stats←GET FS STATS()
6: pred← PREDICT(stats, window, 2 · next+AD)
7: if pred− used > R or size < pred+R then

8: ts← CURRENT TIMESTAMP()

9: if next > TMIN then

10: next← next/2
11: window ← window + TMAX
12: end if

13: if size < pred+R then

14: size← ADD DISK(INC)
15: end if

16: else

17: if next < TMAX then

18: next← 2 · next
19: window ← window − TMAX
20: end if

21: ct← CURRENT TIMESTAMP()

22: if size > pred + INC + R and ct > ts + RD
and not under I/O pressure then

23: size← REMOVE DISK(INC)
24: end if

25: end if

26: SLEEP(next)
27: end while

The interactions with the multi-disk aware file system takes

place through ADD DISK and REMOVE DISK, both of which

are blocking operations that return the new size of the disk

pool. In a nutshell, the controller constantly probes for new

I/O statistics since the last query (using GET FS STATS) and

then passes these statistics to the predictor in order to find out

an estimation of near-future usage (pred), after which it uses

this estimation to take action. Two additional variables aid the

prediction: the interval of probing (next) and the window,

which represents how much time into the past the predictor

should look in order to anticipate near-future usage. Under

high uncertainty (i.e., when the difference between prediction

and actual usage is large) or when the file system is close to

getting filled up, the intuition is that we need to be “more

careful” and thus we probe twice as frequently (but not at

finer granularity than TMIN) and we need to look more into

the past (window increases). When the opposite is true, the

interval of probing doubles (up to TMAX) and the window

decreases. Thus, the notion of “near-future” becomes more

concretely 2 · next+AD, because in the worst case, it might

happen that next halves and a new disk is added, causing

additional AD overhead.

Based on the prediction, if the current size of the disk pool is

not enough to cover the near-future utilization (size < pred+
R), then a new disk is added. Conversely, if the size is large

enough to cover a removal of an increment (size > pred +
INC+R), then there is potential to remove a disk. However,

we set two additional conditions for actual disk removal: (1)

there is no I/O pressure (such that a removal does slow the

application), and (2) the file system has spent enough time

(RD) in a non-uncertain state to make a removal safe.

Note that the reserve R is assumed constant, which implies

some a priori knowledge about application behavior and

requirements. when R is unknown, our algorithms require an

extension (e.g., start with a large R that gradually is reduced

when enough information about the past access pattern was

collected to justify taking bigger risks). However, this aspect

is outside the scope of this work.

Algorithm 2 Predictor

1: function PREDICT(stats, window, future)

2: t← CURRENT TIMESTAMP()
3: if stats.used > (tmax, s.used) ∈ History then

4: for all (ti, si) ∈ History|ti + window < t do

5: History ← History \ {(ti, si)}
6: end for

7: else if stats.used < (tmax, s.used) ∈ History then

8: (lt, lstats)← (tmax, s) ∈ History
9: History ← ∅

10: end if

11: History ← History ∪ {(t, stats)}
12: if |History| > 1 then

13: (ti, si)← (tmax, s) ∈ History
14: (tj , sj)← (tmax, s) ∈ History \ {(ti, si)}
15: extra← future · (ti − tj)/(si.wb − sj .wb)
16: (a, b)←LINREGRESS((t, s.wb) ∈ History)
17: extra← max(extra, a · future+ b)
18: else

19: extra← future · (t− lt)/(stats.wb− lstats.wb)
20: end if

21: return stats.used+ s.wbmax − s.wbmin + extra
22: end function

The predictor is listed in Algorithm 2. It centers around

the idea of keeping a history of recent statistics labeled with

the corresponding timestamp (History) that gets updated

according to the utilization. More specifically, if there is no

change in utilization, then we assume the worst case (i.e. all

written data to the disk might represent new data that was

not flushed yet) and keep accumulating statistics. Otherwise,

if we see an increase in utilization, then we assume that

write operations were at least partially flushed, so we discard

all entries in the history that are older than the window.

Finally, if we observe a decrease in utilization, we assume

it is safe to discard the whole history, under the intuition that

the application will move to a new phase and thus change its

behavior.

Once the history has been updated as described above,

the predictor calculates the estimated utilization in the near

future (extra). In this context, the most relevant parameter to

consider is the amount of written data (wb). The calculation

relies on a conservative approach that takes the maximum of

two evaluations: (1) the most probable evolution based on the

whole history of writes (entries denoted (t, s.wb)), and (2) a

possible short term evolution based only on the latest entries in

the history ((ti, si.wb) and (tj , sj .wb)). The reasoning behind

(2) is the fact that (1) alone might not capture write-intensive

bursts that follow right after a period of write inactivity, thus

presenting the risk of unexpectedly running out of space. To

calculate (1), we use linear regression [27]. As mentioned in

the previous paragraph, the amount of free space might not

accurately reflect all previous writes due to pending flushes.

Thus, as a final step, we take an additional measure of caution

and increase our prediction by the number of written bytes

starting from the earliest moment recorded in the history up

to the present (smax.wb−smin.wb), in order to cover the worst

case where all written data corresponds to new data. Once all

steps have finished, the final predicted value is returned.

D. Implementation

In this section, we briefly introduce a prototype that imple-

ments the components presented in Section III-B.

We rely on Btrfs [15] to fulfill the role of the multi-disk

aware file system. Our choice was motivated by several factors.

First, Btrfs implicitly supports online adding and removing

of new disks and can do so in a scalable fashion. Second,

thanks to its B-Tree centered design, it can efficiently mask

the overhead of adding and removing disks asynchronously

in the background, causing minimal performance degradation

for the application. Third, Btrfs is part of the official Linux

kernel and is widely accepted as a viable candidate to replace

the current generation of file systems (such as ext4).

The predictor and the controller were implemented as a

Python daemon. We found the rich ecosystem of libraries

around Python to be particularly helpful: the psutil package

offers out of the box support to get per-disk I/O statistics, while

the scipy package implements several optimized numerical

algorithms and techniques, including linear regression.

We also note certain non-trivial aspects related to the

attaching of virtual disks, in particular how to detect inside the

guest when the disk is recognized by the kernel. To this end,

we rely on pyudev, which implements an accessible interface

to libudev, including asynchronous monitoring of devices in a

dedicated background thread.

IV. EVALUATION

This section presents the experimental evaluation of our

approach.

A. Experimental Setup

Our experiments were performed on the Shamrock testbed

of the Exascale Systems group of IBM Research in Dublin.

For the purpose of this work, we used a reservation of 30 nodes

interconnected with Gigabit Ethernet, each of which features

an Intel Xeon X5670 CPU (6 cores, 12 hardware threads),

HDD local storage of 1 TB and 128 GB of RAM.

We simulate a cloud environment using QEMU/KVM

1.6 [28], [29] as the hypervisor. On each node, we deploy a

VM that is allocated two cores and 8 GB of RAM. Each VM

instance uses a locally stored QCOW2 file as the root partition,

with all QCOW2 instances sharing the same backing file

through a NFS server. The guest operating system is a recent

Debian Sid running the 3.10 Linux kernel. Both the root disk

and any other virtual disks that are added or removed dynam-

ically, use the virtio driver for best performance. The process

of adding and removing virtual disks from VM instances is

handled directly through the hypervisor monitor, using the

device add and the device remove command respectively.

Each virtual disk that is part of the Btrfs pool is hosted as

a RAW file on the local HDD. To avoid unnecessary caching

on both the host and the guest, any newly added virtual disk

has host-side caching disabled (cache=none). Furthermore,

the network interface of each VM uses the virtio driver and

is bridged on the host with the physical interface in order

to enable point-to-point communication between any pair of

VMs.

B. Methodology

We compare four approaches throughout our evaluation:

1) Static worst-case pre-allocation: In this setting, a large,

fixed-sized virtual disk is attached to each VM instance from

the beginning, in order to cover all storage requirements

throughout the runtime of the VM. Inside the guest, a Btrfs

file system is created and mounted on this single large virtual

disk. This setting corresponds to a typical static worst-case pre-

allocation that is the most widely used on IaaS clouds when

a user might mount e.g., an EBS partition. We will call this

setting prealloc and use it as a baseline for our comparisons.

2) Incremental additive using free space reserve: In this

setting, a small 1 GB virtual disk is initially attached to the

VM instance and used as a Btrfs file system, same as in the

previous setting. The file system usage is monitored by using a

fixed window of 5 seconds throughout the runtime of the VM.

Whenever the remaining free space is smaller than a predefined

fixed amount, a new virtual disk is attached to the VM instance

and added to the Btrfs pool. This predefined fixed amount

corresponds to the reserve, as explained in Section III-A.

Throughout our experiments, we pick the reserve such that it

corresponds to the minimal amount that satisfies correctness

(i.e. leads to failure-free execution that does not generate out-

of-space and other related errors). The size of each new virtual

disk (which we denote increment) is fixed at 2 GB. We denote

this setting as reactive−add.

3) Incremental add-remove using free space reserve: This

setting is similar to the previous setting, except that it also

removes the last added virtual disk from the Btrfs pool

whenever the free space grows higher than the reserve and

the increment size (in order for the free space not to shrink

below the reserve size after removal). We denote this setting

as reactive−addrm. Both this setting and the previous setting

were chosen in order to underline the importance of prediction

(as featured by our approach) in minimizing the wasted space

throughout the application runtime.

4) Incremental add-remove using our approach: We start

in this setting from the same initial Btrfs configuration (1 GB

virtual disk) and use the same increment size (i.e. 2 GB).

However, the monitoring granularity and decision when to

attach/detach a virtual disk are based on our adaptive pre-

dictor, as detailed in Section III-C. We fix TMIN = 1s,

TMAX = 5s, AD = 10s, RD = 60s. We denote this setting

as predictive−addrm.

These approaches are compared based on the following

metrics:

• Impact on application performance is the difference in

performance observed due to the overhead of attaching

and detaching virtual disks dynamically compared to the

baseline (i.e., prealloc). Ultimately, this metric reveals

how much longer the VMs need to stay up and running

(and thus potentially generate extra compute costs) as

a compensation for reducing storage costs. This metric

is based on application completion time; clearly, lower

values are better.

• Allocated and used storage is the total allocated/used

storage space of the Btrfs pools of all VM instances at a

given time. These metrics are relevant to determine how

much storage space is wasted.

• Cumulated waste is the accumulation of the difference

between the allocated and the used storage, as the ap-

plication progresses in time. This metric is expressed in

GB × hours (GBh) and is calculated in the following

fashion: the runtime is divided at fine granularity in

5 second intervals, in order to accurately capture fluc-

tuations over short periods. Note that we intentionally

assume a cost model that charges users at fine gran-

ularity in order to explore the limits of our approach.

Given this assumption, for each interval, the sum of all

space differences corresponding to the participating VM

instances is calculated and converted to GBh. Finally, the

sums are accumulated as the application progresses from

one interval to the next. This metric is relevant because

it directly corresponds to the extra unnecessary costs

incurred by provisioning unused storage space. Again,

lower values are better.

• Expected usage is the expected storage space utilization in

the near future (based on the previous experience), includ-

ing the reserve. For reactive−addrm and reactive−add,

which do not use prediction, it simply represents the

used space plus the reserve. For predictive−addrm, it

represents the predicted usage plus the reserve. When

multiple VMs are involved, we calculate the expected

usage in the following fashion: we divide the runtime in

5-second intervals and sum up the expected usage of all

individual VMs for each interval. This metric is important

because it shows how accurate our prediction compares

to the other approaches. Naturally, a value as close as

possible to the actual usage is preferred.

C. Microbenchmarks

Our first series of experiments aims to push all approaches

to the limit in order to better understand the trade-offs involved

in attaching and detaching virtual disks dynamically. To this

end, we implemented a benchmark that writes a large amount

of data over a short period of time, waits for the data to be

flushed to the file system and then scans through the generated

dataset while keeping a predefined amount of it and discarding

the rest. This is a common pattern encountered in data-

intensive applications, especially those of iterative nature that

refine a dataset until a termination condition is reached [30].

More specifically, the benchmark works as follows: we use

dd to continuously generate files of 128 MB until we reach

more than 6.5 GB (which ideally should trigger an addition

of 3 virtual disks of 2 GB in addition to the initial disk of

1 GB). After the data is flushed (using sync), we proceed to

read all generated data while at the same time removing files

for a total of 4 GB, which makes the remaining data fit into

the initial disk plus an additional 2 GB disk.

For this set of experiments we deploy a single VM and run

the benchmark three times for each of the approaches, aver-

aging the results. To enable a fair comparison, an important

condition that we set is to achieve failure-free execution on

all three attempts using a minimal reserve of space. Thus,

we run the experiments and gradually increase the reserve

until we satisfy this condition for all approaches. Our findings

are as follows: both reactive approaches require a reserve of

2 GB to survive the initial write pressure, while our approach

accurately predicts near-future requirements and is able to

achieve failure-free execution with a reserve of 0. For prealloc,

we fix the initial disk size at 8 GB, enough to fit any additional

space requirements beyond useful data (e.g. system reserved

space, metadata, etc.).

Results are depicted in Figure 2. First, we focus on comple-

tion time (left hand side of Figure 2(a)). As can be observed,

all approaches perform closely to the baseline (prealloc): an

increase of less than 2% in completion time is observable,

which leads to the conclusion that the process of attaching

and detaching virtual disks can be efficiently masked in the

background by Btrfs. These results are consistent throughout

all three runs: the error bars show a difference of less than 1%

in both directions. As expected, prealloc is the fastest, followed

by reactive−add. Although minimal, a wider gap is observable

 186

 188

 190

 192

 194

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

T
im

e
 (

s
)

W
a
s
te

 (
G

B
h
)

prealloc
reactive-add

reactive-addrm

predictive-addrm

Cumulated wasteCompletion time

(a) Completion time and cumulated waste (lower is better, error bars
represent min and max)

 0

 2

 4

 6

 8

 10

 12

 0 50 100 150 200 250 300 350 400

S
p
a
c
e
 (

G
B

)

Time (s)

prealloc
reactive-add

reactive-addrm
predictive-addrm

actually-used

(b) Allocated space (lower is better)

Fig. 2. Benchmark: single VM writes 6.5 GB worth of data in files of
128 MB, waits for the data to be flushed, then reads it back while deleting
4 GB of it

between reactive−add and reactive−addrm, hinting at larger

disk remove overhead.

Figure 2(b) helps understand these results better by depict-

ing the variation of allocated space in time. This variation

directly corresponds to adds (rise) and removes (fall) and also

shows their overhead in terms of how long the operation takes:

sudden rise/fall means low overhead, gentle rise/fall means

higher overhead. As can be observed, our approach is more

aggressive in predicting future storage space requirements,

since it relies on information about past written data, which

in this case amounts to large quantities. Thus, it decides to

add virtual disks earlier to the Btrfs pool, which enables it to

behave correctly without a reserve. This is noticeable due to

a higher slope for additions and the presence of flat regions

that approximate the used space much better as opposed to the

reactive approaches, where a flat region is missing completely

between the addition of the third and fourth disk. We suspect

that the gentle slope exhibited by the reactive approaches

is caused by spending more time in a state where the file

system is close to being full, explaining the high add overhead

and thus the need for a high reserve. Ultimately, this effect

combined with a delayed removal of virtual disks enables

predictive−addrm to finish slightly faster than reactive−addrm,

despite adding more disks overall.

The benefits of eliminating the need for a reserve thanks

to prediction are especially visible when observing the cumu-

lated waste (right hand side of Figure 2(a)). The cumulated

waste is calculated for the duration of the benchmark plus

a “cool-down” period, to enable the file system to stabilize

and complete all pending asynchronous operations (removes

in particular; total duration is 400s). As expected, prealloc

generates the largest waste of space at almost 0.6 GBh. Next

is reactive−add, which manages to save almost 0.17 GBh. It is

followed by reactive−addrm, which thanks to its last removal

saves an additional 0.1 GBh. The winner is predictive−addrm:

because of accurate prediction and lack of reserve, it manages

to remove all extra allocated disks. This amounts to an addi-

tional 0.1 GBh compared to reactive−addrm, which represents

a relative reduction of 33% and brings the total reduction

compared to prealloc to 66%.

D. Case Study: MapReduce K-Means

Our next series of experiments focuses on real-life data-

intensive scenarios. As an illustrative application, we use K-

Means [31], which is widely used in a multitude of contexts:

vector quantization in signal processing, cluster analysis in

data mining, pattern classification and feature extraction for

machine learning, and so forth. It aims to partition a set

of multi-dimensional vectors into k sets, such that the sum

of squares of distances between all vectors from the same

set and their mean is minimized. This is typically done by

using iterative refinement: at each step the new means are

calculated based on the results from the previous iteration,

until they remain unchanged (with respect to a small epsilon).

K-Means was shown to be efficiently parallelizable and scales

well using MapReduce [32], which makes it a popular tool

to analyze large quantities of data at large scale. Furthermore,

due to its iterative nature, it generates fluctuating storage space

utilization. This fact, combined with the inherent scalability,

makes K-Means a good candidate to illustrate the benefits of

our proposal.

For the purpose of this work, we use the K-Means im-

plementation of the PUMA set of Hadoop benchmarks [33],

which applies K-Means on a real-life problem: clustering

movies according to their ratings from users. The experiment

consists in deploying a Hadoop cluster (Hadoop version 1.2.1)

of 30 VMs (1 jobtracker/namenode and 29 tasktrackers/datan-

odes), each on a dedicated node. All Hadoop data (both HDFS

data and intermediate data) is configured to be stored on a

Btrfs file system that we use to compare each of the four

approaches mentioned in Section IV-B. Once the Btrfs file

system is mounted, in the first phase the input data (standard

30 GB movie database that is part of the PUMA benchmarks)

is copied into HDFS. Then, five iterations are computed

starting from this input data. Each iteration consists of two

parts: the K-Means computation itself and the extraction of

the new centroids at the end of the computation for the next

iteration. To speed up the extraction, which in the original

implementation is done in a serial fashion on the master

(and thus does not scale for our purposes), we expressed this

process itself as MapReduce grep job.

 0

 0.5

 1

 1.5

 2

 1 2 3 4 5

C
o
m

p
le

ti
o
n
 t
im

e
 (

h
)

Iteration #

prealloc
reactive-add

reactive-addrm
predictive-addrm

(a) Completion time (lower is better)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 1000 2000 3000 4000 5000 6000 7000 8000

W
a
s
te

 (
G

B
h
)

Time (s)

prealloc
reactive-add

reactive-addrm
predictive-addrm

(b) Cumulated waste (lower is better)

Fig. 3. K-Means: trade-off between achieved performance and waste of
storage space for a Hadoop cluster made out of 30 VMs

The experiment is repeated three times for each of the four

approaches and the results are averaged. As in the case of

the microbenchmarks, we first established the minimal reserve

of space necessary to achieve a failure-free execution on all

three runs. Both reactive approaches require a reserve of 4 GB,

while predictive−addrm can handle a 1.5 GB reserve thanks to

prediction. For prealloc, we fix the initial disk size at 32 GB,

which is the maximum observed throughout the lifetime of

any of the VM instances.

As can be observed in Figure 3(a), the completion times for

all four approaches are again close, demonstrating that Btrfs

efficiently handles attaching and detaching of virtual disks in

an asynchronous fashion. More specifically, the performance

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 1000 2000 3000 4000 5000 6000 7000 8000

S
p
a
c
e
 (

G
B

)

Time (s)

Used
Expected
Allocated

(a) Reactive incremental add-remove (reactive−addrm) with a preven-
tive reserve of 4 GB

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 1000 2000 3000 4000 5000 6000 7000 8000

S
p
a
c
e
 (

G
B

)

Time (s)

Used
Expected
Allocated

(b) Predictive incremental add-remove (predictive−addrm) with a pre-
ventive reserve of 1.5 GB

Fig. 4. K-Means: aggregated evolution of used, expected and allocated storage space for a Hadoop cluster made out of 30 VMs

overhead of reactive−addrm and predictive−addrm is 6.3%

and 5.5% respectively when compared to prealloc. This is a

small price to pay when considering the large reduction in

cumulated waste: at the extreme, reactive−addrm manages

a five-fold reduction, while predictive−addrm manages an

almost ten-fold reduction (which itself is 42% relative to

reactive−addrm). We note the small relative difference in

cumulated waste between reactive−add and reactive−addrm,

which can be traced back to the fact that a large reserve limits

the opportunities of disk removal.

To understand why predictive−addrm reduces the waste

almost twice as much as reactive−addrm, we depict in Figure 4

the evolution of used, expected and allocated storage space

for both approaches. As can be observed, both approaches

have a similar storage space utilization pattern that clearly

delimits the initial phase where the input data is copied into

HDFS (steady growth in the beginning) and the K-Means

phase with its five iterations (a “bump” for each iteration).

Thanks to the accuracy of our prediction scheme and the

resulting small required reserve, the expected utilization (Fig-

ure 4(b)) is much closer to the real utilization than in the

case of reactive−addrm (Figure 4(a)). Notice the amplified

effect of accumulating a large reserve for reactive−addrm:

the difference between expected and used space grows to

100GB, which for our approach stays well below 50 GB.

Ultimately, this large difference in expected utilization enables

a much more flexible allocation and removal of virtual disks

for predictive−addrm: the allocated space stays throughout the

application runtime much closer to the expected utilization

and exhibits steeper fluctuations compared to reactive−addrm,

which in turn explains the reduction in cumulated waste.

V. CONCLUSIONS

The ability to dynamically grow and shrink storage is crucial

in order to close the gap between provisioned and used storage.

Even now, due to lack of automated control of provisioned

storage resources, users often over-provision storage to accom-

modate the worst-case scenario, thereby leading to waste of

storage space and unnecessary extra costs. Thus, a solution that

adapts to data-intensive workloads and handles growing and

shrinking of storage transparently to minimize wasted space

while causing minimal performance overhead is an important

step towards leveraging new cloud capabilities.

In this paper we have described such a solution in the

form of a regular POSIX file system that operates with virtual

disks of small fixed sizes, while hiding all details of attaching

and detaching such disks from VM instances. Rather than

relying solely on a reactive model, our approach introduces

a prediction scheme that correlates different I/O statistics in

order to optimize the moment when to attach and detach

virtual disks. This scheme lowers wasted storage space without

compromising normal application functionality by prematurely

running out of space.

We demonstrated the benefits of this approach through

experiments that involve dozens of nodes, using both mi-

crobenchmarks and a widely used, real-life, data-intensive

MapReduce application: K-Means. Compared with traditional

static approaches that over-provision storage in order to ac-

commodate the worst-case scenario, we show reduction of

wasted storage space over time that ranges from 66% for

microbenchmarks up to 90% for K-Means. We also quantify

the importance of prediction: compared with a simple reactive

scheme, our approach reduces cumulative waste by 33% for

microbenchmarks and 42% in real-life for K-Means. All these

benefits are possible with minimal performance overhead:

compared to static worst-case over-provisioning, we show a

performance overhead of less than 2% for microbenchmarks

and around 5% for K-Means.

Seen in a broader context, our results demonstrate that the

concept of elastic storage is not only efficient but also cost-

effective. This observation potentially removes a constraint

from the development of systems that up to now have been

designed to work with fixed storage space: while total storage

available from a cloud provider is fixed, in many configura-

tions that fixed value will be many times higher than what can

be reached in practice by specific applications. In addition, this

observation also makes the implementation of systems with

small average but high worst-case storage requirements po-

tentially cheaper. Overall, a logistical constraint (fixed storage)

has become a cost constraint (how much storage an application

can afford in practice).

This work can be extended in several directions. One direc-

tion concerns our predictor: we plan to investigate how lever-

aging additional correlations and access patterns can further

improve the accuracy of our near-future predictions. Another

direction is bandwidth elasticity, namely, how to allocate

more/less I/O bandwidth according to workload requirements

in such way as to consume as little bandwidth as possible.

Such an approach has potential especially in the context

of multi-tenancy, enabling, for example, a cloud provider

to oversubscribe available I/O bandwidth without violating

quality-of-service constraints. Other interesting questions also

arise in the context of data partitioning and reliability schemes

that relate to storage elasticity.

ACKNOWLEDGMENTS

The experiments presented in this paper were carried out

using the Shamrock cluster of IBM Research, Ireland. This

material is based in part on work supported in part by the

Office of Science, U.S. Department of Energy, under Contract

DE-AC02-06CH11357.

REFERENCES

[1] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner, “A break
in the clouds: Towards a cloud definition,” ACM SIGCOMM Computer

Communication Review, vol. 39, no. 1, pp. 50–55, Jan. 2009.

[2] M. Mao and M. Humphrey, “Auto-scaling to minimize cost and meet
application deadlines in cloud workflows,” in SC ’11: Proc. 24th

International Conference for High Performance Computing, Networking,
Storage and Analysis, Seattle, USA, 2011, pp. 49:1–49:12.

[3] M. Caballer, C. De Alfonso, F. Alvarruiz, and G. Moltó, “EC3: Elastic
cloud computing cluster,” J. Comput. Syst. Sci., vol. 79, no. 8, pp.
1341–1351, Dec. 2013.

[4] K. Keahey, P. Armstrong, J. Bresnahan, D. LaBissoniere, and
P. Riteau, “Infrastructure outsourcing in multi-cloud environment,” in
FederatedClouds ’12: Proceedings of the 2012 workshop on cloud

services, federation, and the 8th OpenCirrus summit, San Jose, USA,
2012, pp. 33–38.

[5] R. N. Calheiros, A. N. Toosi, C. Vecchiola, and R. Buyya, “A
coordinator for scaling elastic applications across multiple clouds,”
Future Gener. Comput. Syst., vol. 28, no. 8, pp. 1350–1362, Oct. 2012.

[6] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,” in 6th Symposium on Operating Systems Design and

Implementation, 2004, pp. 137–149.

[7] P. Marshall, K. Keahey, and T. Freeman, “Elastic site: Using clouds
to elastically extend site resources,” in CCGrid’10: Proceedings of the

10th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing, Melbourne, Australia, 2010, pp. 43–52.

[8] L. Beernaert, M. Matos, R. Vilaça, and R. Oliveira, “Automatic elasticity
in OpenStack,” in SDMCMM ’12: Proceedings of the Workshop on
Secure and Dependable Middleware for Cloud Monitoring and

Management. Montreal, Quebec, Canada: ACM, 2012, pp. 2:1–2:6.

[9] B. Nicolae, “On the benefits of transparent compression for cost-
effective cloud data storage,” Transactions on Large-Scale Data- and

Knowledge-Centered Systems, vol. 3, pp. 167–184, 2011.

[10] S. A. Baset, “Open source cloud technologies,” in SoCC ’12:
Proceedings of the 3rd ACM Symposium on Cloud Computing, San
Jose, USA, 2012, pp. 28:1–28:2.

[11] “Amazon Elastic Block Storage (EBS),” http://aws.amazon.com/ebs/.
[12] J. L. Gonzalez and T. Cortes, “Increasing the capacity of RAID5

by online gradual assimilation,” in SNAPI ’04: Proceedings of the

international workshop on Storage network architecture and parallel

I/Os, Antibes Juan-les-Pins, France, 2004, pp. 17–24.
[13] W. Zheng and G. Zhang, “FastScale: Accelerate RAID scaling by

minimizing data migration,” in FAST’11: Proceedings of the 9th USENIX

conference on File and Storage Technologies, San Jose, USA, 2011.
[14] C. Wu and X. He, “GSR: A global stripe-based redistribution approach

to accelerate RAID-5 scaling,” in ICPP ’12: Proceedings of the 41st

International Conference on Parallel Processing, Pittsburgh, USA, 2012,
pp. 460–469.

[15] O. Rodeh, J. Bacik, and C. Mason, “BTRFS: The linux b-tree
filesystem,” Trans. Storage, vol. 9, no. 3, pp. 9:1–9:32, Aug. 2013.

[16] B. Nicolae, G. Antoniu, L. Bougé, D. Moise, and A. Carpen-
Amarie, “BlobSeer: Next-generation data management for large scale
infrastructures,” Journal of Parallel and Distributed Computing, vol. 71,
no. 2, pp. 169–184, Feb. 2011.

[17] H. C. Lim, S. Babu, and J. S. Chase, “Automated control for elastic
storage,” in ICAC ’10: Proceedings of the 7th international conference

on Autonomic computing, Washington DC, USA, 2010, pp. 1–10.
[18] P. Xia, D. Feng, H. Jiang, L. Tian, and F. Wang, “FARMER: A novel

approach to file access correlation mining and evaluation reference
model for optimizing peta-scale file system performance,” in HPDC ’08:

Proceedings of the 17th international symposium on High performance

distributed computing, Boston, MA, USA, 2008, pp. 185–196.
[19] M. Iritani and H. Yokota, “Effects on performance and energy reduction

by file relocation based on file-access correlations,” in EDBT-ICDT

’12: Proceedings of the 2012 Joint EDBT/ICDT Workshops. Berlin,
Germany: ACM, 2012, pp. 79–86.

[20] Z. Li, Z. Chen, and Y. Zhou, “Mining block correlations to improve
storage performance,” Trans. Storage, vol. 1, no. 2, pp. 213–245, May
2005.

[21] M. Stokely, A. Mehrabian, C. Albrecht, F. Labelle, and A. Merchant,
“Projecting disk usage based on historical trends in a cloud envi-
ronment,” in ScienceCloud ’12: Proceedings of the 3rd International

Workshop on Scientific Cloud Computing, Delft, The Netherlands, 2012,
pp. 63–70.

[22] J. He, J. Bent, A. Torres, G. Grider, G. Gibson, C. Maltzahn, and
X.-H. Sun, “I/O acceleration with pattern detection,” in HPDC ’13:

Proceedings of the 22nd International Symposium on High-Performance
Parallel and Distributed Computing, New York, USA, 2013, pp. 25–36.

[23] J. Oly and D. A. Reed, “Markov model prediction of I/O requests for
scientific applications,” in ICS ’02: Proceedings of the 16th international
conference on Supercomputing, New York, USA, 2002, pp. 147–155.

[24] “RackSpace,” http://www.rackspace.com/.
[25] “The QCOW2 Image Format,” https://people.gnome.org/∼markmc/

qcow-image-format.html.
[26] B. Nicolae, J. Bresnahan, K. Keahey, and G. Antoniu, “Going back and

forth: Efficient multi-deployment and multi-snapshotting on clouds,” in
HPDC ’11: 20th International ACM Symposium on High-Performance
Parallel and Distributed Computing, San José, USA, 2011, pp.
147–158.

[27] N. Draper and H. Smith, Applied regression analysis, ser. Probability
and mathematical statistics. New York: Wiley, 1966.

[28] F. Bellard, “QEMU, a fast and portable dynamic translator,” in ATEC

’05: Proceedings of the 2005 USENIX Annual Technical Conference,
Anaheim, USA, 2005, pp. 41–46.

[29] “KVM: Kernel Based Virtual Machine,” http://www.linux-kvm.org/.
[30] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst, “The HaLoop

approach to large-scale iterative data analysis,” The VLDB Journal,
vol. 21, no. 2, pp. 169–190, Apr. 2012.

[31] H.-H. Bock, “Clustering methods: A history of K-Means algorithms,” in
Selected Contributions in Data Analysis and Classification, ser. Studies
in Classification, Data Analysis, and Knowledge Organization. Springer
Berlin Heidelberg, 2007, pp. 161–172.

[32] W. Zhao, H. Ma, and Q. He, “Parallel K-Means clustering based on
MapReduce,” in CloudCom ’09: Proceedings of the 1st International

Conference on Cloud Computing, Beijing, China, 2009, pp. 674–679.
[33] “PUMA: Purdue MapReduce benchmarks suite,” http://web.ics.purdue.

edu/∼fahmad/benchmarks.htm.

