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Abstract

Virtual  machines provide  a  promising vehicle  for 
controlled sharing of physical resources, allowing us to 
instantiate  a  precisely  defined  virtual  resource,  
configured  with  desired  software  configuration  and 
hardware properties, on a set of physical resources. We 
describe a model of virtual machine provisioning in a 
Grid environment that allows us to define such virtual 
resources and efficiently instantiate them on a physical 
Grid infrastructure. We argue that to properly account 
for,  and  manage,  the  overhead  resulting  from 
instantiating and managing virtual resources, overhead 
must  be  scheduled  at  the  same  level  as  virtual 
resources,  instead  of  being  deducted  from  a  user’s  
resource allocation. We present preliminary results that 
demonstrate the benefits of such an approach.

1. Introduction

In most grid deployments today, clients only have 
limited  control  over  the  resource  platform on  which 
computations are performed. Two types of control are 
often lacking: control over the availability and quantity 
of the resource, on the one hand, and control over its 
software configuration, on the other.

Control over availability and quantity is particularly 
important for deadline-sensitive applications, in which 
a resource needs to be made available in response to a 
specific event, such as data becoming available from a 
sensor, a class starting at a specific time (in educational 
settings), and input from a human client. Such control 
can be provided via reservation mechanisms that allow 
clients  to  request  that  resources  be  available  either 
immediately  (“immediate  reservation”)  or  at  a 
specified time in the future (“advance reservation”).

Control over software configuration can reduce the 
barriers  to  the  use  of  remote  resources  and  thus 
increase  demand  for  remote  computing  resources. 
Various approaches to automated, user-driven software 
configuration have been explored, but virtual machines 
are particularly useful in this regard.

With  these  requirements  in  mind,  Keahey  et  al. 
defined virtual workspaces (VWs) [1], a construct that 
allows  clients  to  negotiate  the  creation  of  a  virtual 
computing  resource  with  specified  software 
environment  and  resource  allocation.  The  workspace 
interface  allows  a  remote  client  to  negotiate  and 
manage  a  virtual  resource  allocation  securely  using 
Web  Services-based  protocols  for  state  access  and 
management [2]. Virtual machines (VMs), such as Xen 
[3]  and  VMware  [4],  with  their  isolation  and 
virtualization  properties,  provide  a  particularly 
promising platform for workspaces. 

In  this  paper,  we  present  and  evaluate  strategies 
designed to enable the accurate and efficient creation 
of  VM-based  virtual  workspaces  with  specified 
availability and configuration. By “accurate,” we mean 
that  a  request  to  create  a  virtual  workspace  at  a 
particular time T (either immediately, or in the future) 
is satisfied at that time T, not later. By “efficient,” we 
mean that the overheads incurred by the server(s) that 
process requests for virtual workspace creation are low. 
As we shall see, the often large size of virtual machine 
images  can  cause  problems  for  both  accuracy  and 
efficiency. We show that by annotating virtual machine 
images  with  descriptive  metadata,  we  can  allow  a 
scheduler to improve both accuracy and efficiency by 
prefetching  images,  caching  images,  and  reusing 
images.

The rest of this paper is structured as follows. We 
begin,  in  Section  2,  by  describing  the  resource 
management scenarios that motivate our work. Section 
3  explains  our  virtual  resource  model,  and  also 
introduces the concept of VM image templates. Section 
4 describes how we implemented our virtual resource 
model,  Section  5  presents  our  experimental  results, 
Section  6  discusses  related  work,  and  Section  7 
presents our conclusions.

2. Resource Management Scenarios

We argue for a model in which a virtual workspace 
associated with a well-defined resource allocation, in 



particular  its  availability,  can  be  procured  by 
negotiating an agreement  with the resource provider, 
via for example WS-Agreement [5]. In other work [7], 
we  focus  on  protocols  and  enforcement  methods 
defining the shape of a resource platform (in terms of 
memory,  CPU%,  etc.).  Here,  we  concern  ourselves 
with availability. 

Within that model we define availability as a period 
defined  by  agreed-upon  events  happening  anytime 
while  the  agreement  is  valid.  Such  events  may 
constitute  for  example  the  arrival  of  data,  a  user 
submitting  a  request,  a  scheduling  event,  or  the 
expiration of a timer. The resource availability will be 
more  or  less  strict  depending  on  the  definition  and 
priority  assigned  to  these  events.  Depending  on  the 
strictness of the definition, we encounter the following 
frequently occurring definitions of availability:
• Batch  platforms:  virtual  resources  suitable  for 

running  batch  jobs  have  loosely  defined 
availability  requirements  with  open-ended  start 
requirements and a variety of stop conditions. One 
particular case, which we explore in this paper, is 
platforms where the resources must be provisioned 
as soon as possible (“ASAP”)

• Advance Reservation (AR) platforms,  where  both 
the  start  and  stop  of  resource  availability  are 
clearly  defined  in  advance  by  a  time  event,  as 
described above.

We focus in this paper on AR platforms, and discuss 
the management of ASAP deployments only briefly.

3. Modeling Virtual Resources

We  describe  how  we  model  virtual  resources  and 
overhead,  and  introduce  the  concepts  of  workspace 
metadata and image templates.

3.1. Virtual Resources and Overhead

Our  scheduling  model  assumes  a  set  of  physical 
resources providing a set of resource slots (e.g., all the 
physical  memory  is  one  resource  slot,  each  CPU  is 
another resource slot, etc.). A quantum of a slot (e.g., 
512 MB of memory, out of the 4 GB available) may be 
bound to a virtual workspace to provide it with some 
hardware resources needed to support the workspace’s 
activities for a well-defined period of  time. We term 
such  a  binding  of  a  portion  of  a  slot  to  a  virtual 
workspace a virtual resource.

However, deploying and managing virtual resources 
involves two types of overhead: preparation overhead 
and runtime overhead. The former refers to the cost of 
preparing the environment where the virtual workspace 
will  run  (most  notably,  deploying  the  VM  images 
required by that workspace), while the latter refers to 
the memory,  CPU and I/O overhead incurred by the 

VM hypervisor itself. Furthermore, these overheads are 
not necessarily constant, and may depend on the size of 
the  requested  virtual  resources,  the  hypervisor  used, 
and the quality of base resources. 

To adequately manage this overhead, we propose a 
model in which portions of resource slots can be bound 
either  to  virtual  resources  or to  overhead  associated 
with  the  creation  or  maintenance  of  those  virtual 
resources.  This approach is  distinct  from the idea of 
having  overhead  deducted from  a  user’s  resource 
allocation,  which  burdens  the  users  with  having  to 
factor  in  overhead  when deciding  how many virtual 
resources  to  request.  Since  this  model  treats 
preparation and runtime overhead in the same way as 
virtual resources, the resource provider can thus budget 
a  slot  for  overhead  in  the  same  way  that  virtual 
resource slots are budgeted. As discussed in previous 
work  [1],  resources  can  be  subdivided  in  this  way 
across many different layers.

The management of runtime overhead for the Xen 
hypervisor  was  explored  by  Keahey  et  al.  [7].  We 
concern  ourselves  here  primarily  with  preparation 
overhead.  In  particular,  workspace  deployment  can 
involve the (potentially  expensive)  transfer  of  a  VM 
image to a node, a task that requires I/O and network 
usage that has to be accounted for by our scheduler. 

3.2.Workspace Metadata and Image Templates

A virtual workspace is composed of three elements 
[1]: a VM image (or images), the workspace metadata, 
and the deployment request. 

The workspace metadata contains information about 
the  workspace  that  may be  preserved  between 
deployments (such as the IP address of each node in 
the  workspace),  and  is  therefore  deployment-
independent.  The  deployment  request  describes  the 
resource  allocation  that  should  be  assigned  to  the 
workspace (such as memory and CPU%), which will 
generally vary between deployments.

This approach allows workspaces to be described in 
terms  of  VM image templates,  generic  reusable  VM 
images with the system software and tools for  some 
specific  purpose  (e.g.  a  worker  node  for  an  Open 
Science Grid cluster), but lacking all the configuration 
specific  to  a  particular  type  of  deployment.  This 
configuration, contained in the metadata file, is  bound 
to  the  VM  image  at  runtime  to  produce  an  image 
instance, which is allocated the resources specified in 
the deployment request.

The reusability of image templates enables certain 
optimizations because an image template, deployed to 
a physical worker node, can be used multiple times by 
making  local  copies  and  binding  those  copies  to 
different  metadata  files  and  deployment  requests. 
Without image templates, each distinct image instance 



would have to be transferred to the physical nodes; we, 
in  contrast,  can  potentially  reuse  already  deployed 
image  templates.  Workspace  metadata  itself  is  an 
appealing feature because it contains information that a 
VW scheduler can use to adequately manage overhead. 
More  specifically,  our  scheduler  uses  the  (1)  image 
descriptor  (currently  the  location  of  the  image  file 
within an image repository node), (2) image size, and 
(3) number of nodes in the VW to estimate what the 
preparation overhead will be. 

In the following sections we show how workspace 
metadata  and image templates  enable  us  to  optimize 
VW scheduling  in  ways  that  are  not  possible  when 
deploying VM images with hardcoded configurations.

4. Scheduling Workspaces

We have developed the Workspace Service, a Web 
Service  interface  that  allows  clients  to  request  the 
creation,  monitoring,  and  control  of  virtual 
workspaces. This service,  implemented on top of the 
Globus Toolkit version 4 [7], enables authorized users 
to  submit  virtual  workspace  creation  requests  to  a 
resource provider via a Web Services interface. In this 
section  we  describe  how  we  extend  the  Workspace 
Service  to  support  the  AR  and  ASAP  scenarios 
described in Section 2. 

4.1 Service Interface

We extend the Workspace Service interface to allow 
the user to specify the time constraints of the virtual 
resources  required by a VW. Specifically,  we extend 
the ResourceAllocation element of a VW request [7] to 
include  the  start  time  and  end  time  of  the  virtual 
resource(s)  to  be  allocated  to  the  workspace.  These 
times can be expressed as exact timestamps, as a time 
interval  within which an asynchronous  event  can be 
received (triggering the start or end of the workspace), 
or  omitted  (indicating  an  immediate  reservation,  in 
which case the workspace must be scheduled as soon 
as possible).

4.2 Implementation

We modify the Workspace Service implementation 
to use Sun Grid Engine (SGE) [8] as a local resource 
manager  backend.  Our extensions provide SGE with 
application-specific  information  that  will  allow  it  to 
arrive at better scheduling decisions for the VMs that 
we are concerned to schedule. Specifically, we (a) use 
deadline-driven  file  staging  to  schedule  a  separate 
resource  slot  to  accommodate  the  overhead  of 
transferring  VM  images,  instead  of  having  that 
overhead absorbed by the virtual resource allocated to 
the client, and (b) add image caches to worker nodes in 

an  effort  to  reduce  the  number  of  image  transfers 
performed.

4.2.1. Deadline-driven file staging. Jobs submitted to 
batch schedulers  generally  assume that  required files 
are available in the worker nodes (e.g., through an NFS 
drive)  or  that  the  input  files  will  be  staged  to  the 
worker  nodes  when  the  job  starts.  This  assumption 
presents problems for deploying time-sensitive VWs, 
VM images can be large  and costly  to  transfer,  and 
transfer times can consume a significant portion of the 
time allocated to the user. Thus, even if a resource is 
made available at  a  requested time T,  it  may not be 
ready for use until a significantly later time T+D.

These  problems  can  be  solved  in  some  cases  by 
providing  the  scheduler  with  application-specific 
information  (selected  metadata  information,  as 
described in Section 3.2) about what data needs to be 
transferred  for  each  deployment.  We  modified  our 
Workspace  Service  to  provide  this  information,  and 
extended  SGE  to  support  the  following  file  staging 
strategies:
• Just  In  Time  (JIT).  The  scheduler  estimates  the 

time required to transfer the image and starts the 
transfer  before  the  start  time,  allocating  just 
enough time to transfer the image.

• Aggressive:  This  strategy  attempts  to  transfer 
images  immediately  after  the  request  has  been 
accepted, regardless of the deadline for the image 
transfer.

• Hybrid: This approach is a combination of JIT and 
Aggressive.  Although  the  image  transfer  can 
potentially  start  when the  VW is  submitted,  the 
transfer  is  scheduled  based  on  a  priority 
assignment  that  is  a  function  of  proximity  to 
deadline  and  estimated  transfer  time  relative  to 
other  images.  In  this  way,  transfers  with  loose 
deadlines  can  give  way to  transfers  with  tighter 
deadlines.  This  approach  involves  actually 
scheduling a  resource  slot  for  the  preparation 
overhead. In contrast, JIT and Aggressive are naïve 
file staging strategies.

4.2.2.  Image  caches. The  strategies  just  described 
benefit clients, who are interested in accuracy, that is, 
getting the virtual resources at the start time they are 
promised. The provider, on the other hand, is interested 
in efficiency, that is, optimizing resource usage. 

To  address  resource  provider  optimization,  we 
include an image template cache in every worker node. 
This cache keeps a  copy of  a subset  of all  available 
template images according to a caching strategy. (For 
now, we support LFU and LRU, with a configurable 
cache size.) When an image has to be deployed to a 
worker node, the scheduler favors nodes that already 
have  a  cached  copy of  the  required  template  image. 



Because  caches  enable  some  images  to  be  instantly 
available  in  the  nodes,  they  benefit  both  AR 
deployments, since it will be possible to accept starting 
times that would ordinarily be unfeasible if the image 
first  had  to  be  transferred  to  the  nodes,  and  ASAP 
deployments, by allowing workspaces to start running 
sooner. As described in Section 3.2., this optimization 
is possible because an image template can be reused 
several  times  on  the  same  node  by  binding  it  to 
different  configurations  (different  metadata  files). 
Additionally,  our  image  caches  are  implemented  to 
avoid redundant transfers when deploying a new image 
template  to  a  node,  as  for  example  when  the  same 
image  template  is  required  to  produce  two  image 
instances  on  a  node,  in  which  case  the  template  is 
transferred only once.

5. Experiments

We present a series of experiments that illustrate the 
effect  of  using  the  scheduling model  and techniques 
discussed in the previous section.  These experiments 
focus on evaluating our techniques for managing the 
overhead  of  transferring  VM  images  to  the  nodes 
where they are deployed.

Our experiments were run on a testbed composed of 
10 dual-CPU Pentium III 500 MHz systems, each with 
512 MB of RAM and 9G of local disk. One node was 
used  as  a  cluster  head  node,  eight  nodes  for  VM 
deployment,  and  the  remaining  node  as  an  image 
repository node, from which the VM images would be 
transferred to the worker nodes. Nodes were connected 
using 100 Mb/s switched Ethernet. 

Virtual  machine  images  were  deployed  using  the 
SGE scheduler  with  the  extensions  described  above, 
based on traces that we developed for both the advance 
reservation  (AR)  and  batch  (ASAP)  cases.  For  the 
ASAP cases, we used real workload traces, while for 
the AR cases, lacking real AR submission workloads, 
we produced artificial traces using a trace generator.

For all our experiments, we assumed that all virtual 
workspace  requests  involved  the  same  amount  of 
CPU% and memory for each virtual node. We allowed 
at  most  2  VMs  to  be  deployed  to  a  single  physical 
node. Since we focus on preparation overhead, the VW 
remains idle during its runtime, and we assume that the 
VM  generates  no  network  traffic  that  would  share 
bandwidth with preparation overhead. This assumption 
is reasonable in the case of highly parallel applications. 

5.1. Scheduling Jobs versus Scheduling VMs

Our  first  set  of  experiments  investigates  to  what 
extent using information on the relatively manageable 
overhead of VM scheduling can improve the accuracy 
of providing a virtual resource to a deadline-sensitive 

client. We assume that the client requests the resource 
for a fixed time interval and we calculate accuracy (or 
“client satisfaction”) as the ratio of the time the client 
actually  got  to  the  requested  time.  Lacking  any  AR 
traces or AR trace generator,  we developed a simple 
trace generator capable of generating a large number of 
requests according to a set of parameters. We then ran 
an offline admission control  algorithm (derived from 
Earliest-Deadline  First  [22])  on  those  requests  to 
ensure  that  there  exists  a  feasible  schedule  for  the 
submissions in the trace.  Each submission represents 
the deployment of a virtual cluster configured with the 
software required to applications commonly run on the 
Open  Science  Grid  (OSG),  and  includes  (1)  the 
descriptor of the image template to use, (2) the number 
of nodes, (3) the starting time of the workspace, and 
(4) its duration. The Xen VM image with OSG worker 
node support  that  we used in this experiment is 600 
MB in size [6].

Table 1 describes the two traces (I and II) used in 
this  experiment.  These  two  traces  differ  in  how the 
starting times of  the VWs are distributed throughout 
the duration of the experiment. In Trace I, the starting 
times are  distributed uniformly  throughout  the  trace, 
while in Trace II the starting times appear only during 
100s windows (each occurring every 900s), simulating 
VWs that are submitted in a bursty fashion.

Figure 1 shows the results of running Trace I with 
the three scheduling strategies described in Section 4.3 
(JIT, Aggressive, and Hybrid) and pits them against the 
baseline unmodified SGE (Job-Style) that does not seek 
to prestage VM images but instead stages required files 
during  the  availability  of  the  physical  resources.  We 

Table 1: Traces used in experiments

Trace I Trace II Trace 
III 

Trace 
IV 

Trace 
duration (s) 7200 4700

# VW 
submissions 

36 35 62 

Nodes per 
VW

2-4
(Uniformly distributed)

2-16
(Derived from 
original trace)

Total images 
to deploy

110
(66.0GB)

106
(63.6GB)

114
(86.4GB)

VW
Duration 1800s

Avg=53.0s
StDev=4.24s

Starting 
times

Uniformly
Distributed

Clustered 
in 100s 

windows,
every 900s

ASAP

Images used
6 600MB images,

uniformly distributed See Table 2



see  that  Hybrid and  JIT achieve  100%  client 
satisfaction in most cases, followed by Aggressive with 
most submissions in the 96%-100% range. Since this 
trace  represents  a  best-case scenario,  where  the start 
times  are  uniformly  distributed  throughout  the 
experiment,  even  the  naïve  JIT and  Aggressive 
strategies achieve good performance.

Figure  2  shows  results  with  Trace  II.  Since  JIT 
allows  just  enough  time  to  transfer  the  image, 
regardless  of  what  other  VWs  are  scheduled,  this 
strategy can  result  in  multiple  image transfers  being 
scheduled during the same period of time (right before 
the  “window”).  As  those  transfers  share  available 
bandwidth,  they  take  longer  than  estimated.  Hybrid 
addressed this problem by prioritizing image transfers 
and making use of network idle time, resulting in the 
best  performance,  with  few  non-100%  satisfaction 
instances  (and  always  at  the  end  of  a  “window”). 
Aggressive, on average, also has good performance, but 
the images with tighter deadlines suffer as the result of 
having to share bandwidth with other transfers.

As described in  Section 4.2.1,  Hybrid  is  the only 
approach that actually schedules a resource slot for the 
preparation  overhead  with  the  goal  of  maximizing 
client  satisfaction,  while  the  other  strategies  naïvely 
start the image transfers at fixed times. By scheduling 
overhead in the same way as virtual resources, instead 
of assuming that overhead should be absorbed into the 
client’s requested virtual resource, Hybrid achieves the 
best client satisfaction in the two submission patterns 
present in traces I and II.

5.2. Optimizing Image Transfer

Our  second  set  of  experiments  investigate  two 
things: (1) how much in terms of bandwidth usage the 
resource  provider  can  save  through judicious  use  of 
image caching based on workspace metadata and (2) to 
what  extent  image caching  can  improve  deployment 
time  (and  thus  also  client  satisfaction)  in  situations 
where VM availability is requested to start ASAP. 

Since  this  experiment  focuses  on  ASAP 
submissions, the same type of submissions commonly 
found in  batch  systems,  we were  able  to  use  a  real 
workload.  In  particular,  we  used  the  San  Diego 
Supercomputer Center (SDSC) DataStar log, available 
at the Parallel Workloads Archive [21]. We chose this 
workload  because  it  explicitly  distinguished 
submissions for the DataStar’s express queue (eight 8-
CPU nodes, accepting jobs lasting at most 2 hr), which 
allows  us  to  test  a  scenario  in  which  minimizing 
deployment  overhead  is  specially  important:  short-
lasting  jobs.  Since  the  SDSC  DataStar  log  spans 
several  months,  we selected an 80 minute  stretch of 
submissions (submissions #21543 to #21665 on queue 
#1) which we could run on our testbed. This extract 

was selected because it represented a flurry of short-
lasting  jobs,  which  would  allow us  to  test  how our 
system  copes  with  the  bandwidth  requirements  of 
deploying a large amount of VM images.

When adapting the trace to our own experiments, 
each  submission  was  converted  to  a  virtual  cluster 
submission  in  which  the  number  of  nodes  was  the 
number of requested processors in the original  trace, 
scaled  down  by  four  (the  express  queue  has  64 
processors; our testbed has 16), with submission times 
and VW duration left unaltered. Each submission was 
furnished with one of six 600 MB images. Two traces 
where  produced,  with  the  only  difference  being  the 
distribution  of  images  assigned  to  each  submission. 
The  first  trace  (Trace  III)  has  images  uniformly 
distributed  amongst  the  submissions,  while  in  the 
second trace (Trace IV) two images account for more 
than  80% of  the  submissions.  The  characteristics  of 
theses  traces  are  summarized  in  Table  1,  while  the 
distribution of images is shown in Table 2. The rate at 
which VWs are submitted is shown in Figure 3.

To  minimize  deployment  time  and  increase 
throughput, we used a 1.8 GB LFU cache in each node 
(enough to cache three  images).  Figure  4 shows the 

Figure 1: Client satisfaction (Trace I)

Figure 2: Client satisfaction (Trace II)



cumulative  number  of  MB transferred,  overlaid  with 
the VW submissions.  We can observe how, after  the 
2000s  mark,  the  rate  at  which  images  are  deployed 
starts to increase, thanks to the reduced transfer time 
resulting from the  use  of  a  cache.  The  difference  in 
effectively deployed MB is greatest at the 3550s mark, 
where  the  cached  approach  results  in  a  25.2  GB 
“advantage” over the non-cached approach. Figure 5, 
shows the same data from running trace IV, where the 
distribution of images favors a much larger number of 
cache  hits.  Throughput  is  slightly  better,  with  a 
difference of 27.6 GB at that same 3550s mark.  

Deployment  time  (not  shown  in  graphs)  is  also 
improved. The average deployment time for  a single 
image, when not using a cache, is 440s for both traces. 
This time is reduced to 305s and 247s, in Trace III and 
IV respectively, when using an image cache.

These two experiments highlight how using the VW 
metadata  to  cache  image  templates  and  avoid 
redundant  transfers  benefits  both  the  provider,  by 
offering  a  better  utilization  of  resources  leading  to 
higher throughput, and the consumer, by reducing the 
deployment time of ASAP workspaces. 

5.3. Effect of cache size

When  submitting  workspaces  set  to  begin  ASAP, 
preparation  overhead  may  prevent  short-duration 
workspaces  from  being  cost-effective.  Our  final 
experiment  explores the impact  of  cache size on the 
costs  associated  with  short-duration  workspaces. 
Although  these  results  are  not  exhaustive,  they 
nonetheless  allow  us  to  extract  some  useful 
information regarding the use of image caches.

For  this  experiment  we  used  two  artificial  stress 
traces  in  which a  series  of  VWs,  of  size  one  to  six 
nodes  each,  were  submitted  at  random  intervals 
(between 5s and 30s) for 20 minutes. Given the limited 
disk space in our testbed machines, and to allow for a 
configuration  where  all  possible  images  could  be 
cached in a node, we used eight 256 MB images. In the 
first trace, 257 images had to be deployed, with images 

being selected according to a uniform distribution. In 
the second trace, 235 images had to be deployed, and 
two  of  the  images  accounted  for  77%  of  all 
submissions.

Table 3 shows the result of running these two traces 
both  without  a  cache  and  with  a  cache  capable  of 
holding 25%, 50%, 75%, or 100% of the images. Note 

Table 2: Distribution of images in traces III, IV

Trace III Trace IV

Submissions Images Submissions Images

img.1 23% 21% 55% 60%

img.2 18% 15% 27% 25%

img.3 15% 12% 6% 6%

img.4 18% 15% 5% 4%

img.5 24%  14% 3% 3%

img.6 3%  12% 3% 3%

Figure 5: MB Deployed (Trace IV)

Figure 3: VW Submissions (Traces III and IV)

Figure 4: MB Deployed (Trace III)



that, when a redundant transfer is avoided (as described 
in Section 4.2.2) it is not counted as a hit or a miss. 

We see that the first trace produces similar results 
when using a 50%, 75%, or 100% cache, but the 25% 
configuration is worse than not using a cache at all, due 
to  the  large  number  of  cache  misses  (a  cache  miss 
results  in  both  a  download  of  the  image  and 
performing a local copy of the image). In the second 
trace, on the other hand, all cache sizes produce similar 
results,  since  the  25%  cache  is  already  capable  of 
holding the two most used images. 

To  make  short-duration  cost-effective,  caches  can 
help to reduce the deployment time of images, but this 
time will still be bound by the time of making a local 
copy in the case of a cache hit. In this experiment, the 
average time to do a local copy is 60s. By precaching 
images  typically  used  for  short-term  deployments, 
locking them in the image caches, and optimizing the 
local  copy  time,  the  cost-effectiveness  of  short-
duration VWs can be improved.

6. Related Work

Many projects  tackle  the  problem of  dynamically 
overlaying  virtual  resources  on  top  of  physical 
resources by using virtualization technologies, and do 
so  with  different  resource  models.  These  models 
generally  consider  overhead  as  part  of  the  virtual 
resource  allocated  to  the  user,  or  do  not  manage  or 
attempt to reduce it. A common assumption in related 
projects  is  that  all  necessary  images  are  already 
deployed on the worker nodes. Our requirements for 
dynamic  deployment  of  AR  and  ASAP workspaces 
make it impossible to make this assumption.

The  Shirako  system  [12]  developed  within  the 
Cluster-On-Demand  project  [10,  11]  uses  VMs  to 
partition a physical cluster into several virtual clusters. 
Their interfaces focus on granting  leases on resources 
to users, which can be redeemed at some point in the 
future.  However  since  their  model  focuses  on  batch 
cases the adopted overhead management model is to 
absorb it into resources used for VM deployment and 
management.  As  we  have  shown,  this  model  is  not 
sufficient for AR-style cases. 

The VIOLIN and VioCluster projects [13, 14, 15] 
allow users to overlay a virtual cluster over more than 
one physical cluster, leveraging VM live migration to 
perform load balancing between the different clusters. 

The  VioCluster  model  assumes  that  VM images  are 
already deployed on potential hosts, and only a “binary 
diff” file (implemented as a small Copy-On-Write file), 
expressing  the  particular  configuration  of  each 
instance,  is  transferred  at  deploy-time.  This  is  less 
flexible than using image metadata, as COWs can be 
invalidated  by  changes  in  the  VM  images. 
Furthermore,  our  work  focuses  on  use  cases  where 
multiple image templates might be used in a physical 
cluster, which makes it impractical to prestage all the 
templates on all the nodes.

The  Maestro-VC  system  [18]  also  explores  the 
benefits  of  providing  a  scheduler  with  application-
specific  information  that  can  optimize  its  decisions 
and,  in  fact,  also  leverages  caches  to  reduce  image 
transfers.  However,  Maestro-VC  focuses  on  clusters 
with long lifetimes, and their model does not schedule 
image  transfer  overhead  in  a  deadline-sensitive 
manner,  and  just  assumes  that  any  image  staging 
overhead will be acceptable given the duration of the 
virtual  cluster.  Our  work  includes  short-lived 
workspaces  as  a  case  that  must  perform  efficiently 
under our model.

The  Virtuoso  Project  [19]  and,  in  particular,  its 
VSched component [17], is  capable of co-scheduling 
both  interactive  and  batch  workloads  on  individual 
machines in a deadline-sensitive manner, but does not 
factor  in  the  overhead of  deploying the  VMs to  the 
nodes where they are needed.

The  In-VIGO  project  [16]  proposes  adding  three 
layers  of  virtualization over  grid  resources to  enable 
the creation of virtual grids. Our work, which relates to 
their first layer (creating virtual resources over physical 
resources), is concerned with finer-grained allocations 
and enforcements than in the In-VIGO project. Some 
exploration of cache-based deployment has also been 
done with VMPlant [20], focusing on batch cases. 

7. Conclusions

We described a virtual resource model, and a set of 
scheduling  strategies  for  that  model,  based  on 
scenarios that, in our experience, frequently arise in the 
Grid. These scenarios combine batch job platforms as 
well  as  platforms  whose  deployment  is  deadline-
sensitive,  such  as  interactive  platforms.  VM 
deployment  and  management  overhead  can  be  both 
large and highly variable, factors that conflict with the 

Table 3: Effect of Cache Size

Stress Trace I Stress Trace II

No cache 25% 50% 75% 100% No cache 25% 50% 75% 100%

Cache hits - 48 123 150 165 - 144 169 167 159

Cache misses - 126 80 60 54 - 59 36 39 42

Avg. image deploy time 141s 163s 103s 96s 94s 124s 89s 80s 81s 86s



deadline-sensitive availability needs of interactive and 
time-critical  platforms.  Thus,  our  proposed  model 
separates resource use devoted to the overhead of VM 
deployment from resources available to the VM itself, 
enabling us to schedule overhead resource slots equally 
with VM slots. 

Our results show that by modifying a scheduler to 
schedule workspace preparation overhead, rather than 
leaving  workspace  preparation  to  the  user,  we  can 
achieve  significantly  better  adherence  to  requested 
availability times. (One may argue that the user could 
simply  request  start  times  sooner  than  required,  to 
allow  time  for  image  staging,  but  this  in  effect 
corresponds to the JIT scenario, which we show is not 
always  effective.)  Providing  the  scheduler  with 
information about the VM images needed by a virtual 
workspace can have two benefits.  First,  the required 
transfer  operations  can  be  scheduled  in  advance. 
Second, we can use information about a VM image as 
defined  in  the  workspace  metadata  to  optimize  the 
resource usage devoted to VM deployment by caching 
the  bulk  of  the  data  associated  with  frequently  used 
images. Both strategies have benefits for the resource 
provider and for the client in the case of heavy load 
and/or  immediate  reservations.  Further,  by  reducing 
preparation  overhead,  these  strategies  also  make  the 
deployment of short-lived VMs more cost-effective. 

Interesting challenges arise when one considers that 
the network bandwidth has to be shared not only with 
other  VM  image  transfers  but  also  with  virtual 
resources  allocated to applications.  Our further  work 
on this subject will involve developing models that will 
accommodate such sharing, as well as managing other 
resource overhead arising in the hypervisor context.
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