
TERAGRID 2007 CONFERENCE, MADISON, WI 1

A Scalable Approach to Deploying and
Managing Appliances

R. Bradshaw, N. Desai, T. Freeman, and K. Keahey

Abstract— The use of virtualization in Grid computing has seen a lot of interest lately. However, while much effort has been expanded on de-
veloping the capabilities of Virtual Machine Monitors (VMMs) and associated tools and services relatively little has been done to investigate the
requirements underlying the scalable production, deployment, and management of VM images. At the same time, the clear understanding of re-
quirements and capabilities in this area is critical to creating progress in exploring the applications of virtualization. In this paper, we investigate
the issues and propose some of the solutions relevant to this question.

Index Terms— virtualization, configuration management

——————————  ——————————

1 INTRODUCTION

One of the main motivations for using virtual machines
is to easily and scalably provide on-demand environments -
- a VM image can be prepared and finely customized ahead
of time and then deployed or taken down in a matter of
milliseconds. This in practice significantly expands the set
of configurations a site can host as we can now switch be-
tween even very complex configurations without seriously
impacting the time in which resources are available for
computation. In practice however, the need to maintain a
large number of VM images – potentially orders of magni-
tude more than physical resources -- as well as the sheer
volume required for the storage of such images would pose
a barrier to the scalability of this approach.

Further, the ability to deploy a pre-configured image de-
couples the (typically long) environment configuration
process from the (now short) process of binding environ-
ments to resources. A VM image can thus be easily and
quickly deployed on any site that happens to have available
resources. This enables the emergence of a new provision-
ing model in which a site does not need to understand in
detail all the configurations required by its users [1]. How-
ever, it poses other problems. First, although the bulk of
configuration can be done ahead of time, a small but critical
amount of configuration has to be carried out when an im-
age is deployed. This includes for example assigning net-
work addresses and adjusting the configuration of applica-
tions relying on them, providing a host certificates for an
image, pointing the appliance at site services, and generally
making it aware of its deployment context. Further, the site
administrator needs to be able to establish trust in an image
– verify that the image configuration complies with site
policies concerning for example offsite root access or pres-
ence of software with known security exploits. Without
mechanisms addressing these issues, in practice only site-
adapted images will be deployable in practice, with effects
opposite to what is desired.

In 2003 Sapuntzakis et al [2, 3] introduced the term vir-

tual appliance, to describe an application combined with an
environment needed by that application to execute in a vir-
tual machine as well as issues relating to the production
and deployment of such appliances. A similar concept of
virtual workspaces [4] was introduced in the context of bind-
ing specific environments to resource allocations in Grid
computing. As virtual appliances become increasingly as-
sociated with resource allocation and workspaces with vir-
tual machine implementation these concepts begin to
merge; within the scope of this paper we will use them in-
terchangeably. In this paper we are building on both efforts
to develop mechanisms that would leverage existing proto-
cols and configuration management tools that would allow
users to build appliances out of VM images and integrate
appliances from multiple providers into deployment fabric
in non-invasive ways.

The goal of this paper is to develop a holistic approach
that would provide scalable and sustainable ways of man-
aging and deploying virtual workspaces implemented as
VM images. We will discuss ways of leveraging existing
configuration management tools, expemplified by the Bcfg2
system [5], for VM image lifecycle management that will
allow systems staff to deploy robust virtualized resources
for their users. We will also describe the process of contex-
tualization – integration of a appliance in its deployment
context -- and discuss its reference implementation using
Bcfg2 and the Workspace Service [1].

The paper is organized as follows. In Section 2 we sum-
marize the requirements and introduce Bcfg2 and the
Workspace Service – two systems we are building on. Sec-
tions 3 and 4 give an overview of VM management and
deployment implementations respectively. We summarize
in Section 5.

2 REQUIREMENTS AND BACKGROUND
The need to generate and manage a pool of configura-

tions potentially vastly exceeding the current pool of physi-
cal resources places a renewed emphasis on configuration
management. We identify the following requirements in
this field:

————————————————
• Author1 information
• Author 2 information
• Author 3 information

2 TERAGRID 2007 CONFERENCE, MADISON, WI

• Image generation. While systems and applications
are often hard to configure, the process of
configuration management has been streamlined
and automated simplifying much of the arduous
and error-prone work involved in putting a system
together – these capabilities can be applied to the
VM image generation process. In addition to
simply generating images in a reliable and
streamlined way, a VM configuration system may
be required to generate reliable attestation
information about an image guaranteeing certain
properties of its configuration. By building on the
ability to reliably repeat a configuration process we
can also avoid storing large amount of pre-
configured images by simply generating the
required configuration (or parts of those
configurations) on the fly.

• Image management. The need to maintain a
potentially large fleet of personalized images also
requires the ability to automatically discover and
apply updates. In particular, the ability to maintain
security properties of an image is critical for the
resource providers to verify it against site policies
when deciding on whether to deploy it.
Management functions thus need not only to
ensure that updates are applied, but also correctly
regenerate and sign any attestation information
that may be supplied with the image. Additional
testing services may be developed to ensure that
patched images can be tested for functionality.

• Image deployment. A certain amount of
configuration sometimes needs to be done at
deployment time. This is because some of the
configuration information may be assigned late in
the deployment process. This includes all the IP
address information, or security certificates
assigned to a virtual machine.

The methods discussed in this paper assume that we are
operating on bootable images only – this gives us the flexi-
bility to customize the image in ways that, based on our
experience to date, are required in a typical VM deploy-
ment.

In the rest of this section, we describe two systems that
our current work is based on: the Bcfg2 system and the
Workspace Service.

2.1 The Bcfg2 System
A Bcfg2 system is composed of a configuration server

and clients. The server keeps track of various configuration
specifications which include information ranging over the
OS specification for the configuration, the packages it con-
tains, and the services it runs. The clients are able to re-
trieve those specifications and operate on them to achieve
the required configuration, update a configuration (apply
patches, etc.) or validate and diagnose its state. A Bcfg2
client operates by comparing its state against the configura-
tion obtained from the server – the results of that compari-
son can trigger a variety of actions ranging from applying
various mechanisms to resolve differences between the ex-
pected and actual state to simply reporting such differ-
ences.

A Bcfg2 server operates on a number of incrementally

constructed configuration profiles. A basic Bcfg2 profile
may for example include an operating system, various se-
curity services, and an application. This basic profile may
be further refined by including more packages and applica-
tions.

In a typical interaction, a client fist authenticates and
authorizes to the server – the server will then either identify
the clients profile or allow the client to assert its profile.
Once the client’s profile has been established, the server
presents it with a set of probes collecting local information
about the client, such as for example its hardware parame-
ters. The information collected by the probes is then up-
loaded to the server and allows it to build a configuration
for the client customizing the generic specification corre-
sponding to the client’s profile. This customized target con-
figuration is then downloaded by the client. Comparing the
target configuration with its state, the client can then (1)
make changes, (2) report the differences, or (3) communi-
cate with other entities on actions that should be taken. At
the end of the interaction the client communicates to the
server the description of actions taken, configuration errors,
things that still need to be done, etc.

2.2 The Workspace Service
The Workspace Service allows authorized users to dy-

namically deploy and manage workspaces, implemented as
Xen virtual machines [6]. The Workspace Service has been
developed within the Globus framework and provides
WSRF interfaces to Xen functions: clients can deploy, shut-
down, pause, and reactivate VMs. A workspace is deployed
based on two types of information: (1) a pointer to an image
and meta-data describing deployment (contextualization)
information and (2) a resource allocation (memory, CPU
share, etc.) that is requested for that image. Once deployed,
a client can discover relevant information about the image
(such as the assigned IP address), manage the image (e.g.
increase the time-to-live of a VM), adjust its resource alloca-
tion, or terminate the image.

The Workspace Service provides authentication and
authorization mechanisms. Among others, we allow a client
to authorize based on virtual organization (VO) role infor-
mation contained in the VOMS [7] credentials. For VM in-
stances that require host certificates of their own the Work-
space Service can provde them. These certificates are gen-
erated on startup, after the IP address has been assigned to
the appliance, and are currently based on the workspace
host certificate.

The Workspace Service allows a client to configure net-
working for the VM accommodating several flexible op-
tions (allocating new network address, bridging existing
address, etc.). In particular, a client can request configuring
a VM on startup with several different NICs allocating dif-
ferent addresses from different pools (e.g., one public and
one private). We provide mechanisms for a site to set aside
such address pools for the VMs.

Finally, the Workspace Service allows the client to spec-
ify resource allocation (comprising memory allocation and
CPU share) to be assigned to a VM and manage that re-
source allocation during deployment. The Workspace Serv-
ice also provides a local resource manager that has the
capability to manage a pool of nodes on which edge

TERAGRID 2007 CONFERENCE, MADISON, WI 3

pability to manage a pool of nodes on which edge services
are deployed to accommodate the service deployment
model (as opposed to a batch deployment model). To use it,
the nodes are configured with a very lightweight manager
client. In particular, this pool of physical nodes can be used
as platform for the deployment of virtual clustes.

3 APPLIANCE LIFECYCLE DEPENDENCIES
We define appliances (or workspaces) as environments

that can support specific functionality and are portable, i.e.
can be automatically adapted to many different deploy-
ment contexts. In this section, we will describe the lifecycle
of an appliance and discuss the role of appliance providers
and their high-level interdependencies with deployment
services; the next section will discuss specific dependencies
between them.

3.1 Appliance Lifecycle
In the first state of appliance lifecycle, an appliance is

creted by an appliance provider. We may have providers
dedicated to the creation and maintenance of appliances for
specific communities, or virtual organizations (VOs), such
as the OSG [8] or an application group within that organi-
zation. In addition to the configuration and maintenance,
the providers attest to the soundness of appliances.

In the second stage of the lifecycle, the appliance is re-
fined and customized. For example, deriving from the
original community appliance, an end-user may want to
customize by associating it with specific datasets by mount-
ing additional data partitions (attested by this user) or cre-
ate additional accounts.

The resulting appliance will then be submitted to a
deployment service, such as the Workspace Service, which
will make a deployment decision in conformance with re-
source provider’s policies based on the provenance of the
workspace as well as its attested properties (ranging from
assertions on root access to the workspace to its state with
respect to security) and provision resources for the appli-
ance.

On deployment, the appliance will be contextualized to
put it in a specific deployment context, and producing an
appliance instance that is ready for use. As time passes and
the configuration policies of various sites change, e.g. in
response to known security exploits, the appliance can be
updated to conform to such policies and maintain its de-
ployment range.

3.2 Appliance Management and Deployment
One of the major costs of virtualization is the initial cost

of appliance creation, and eventually also of storing many
appliances with similar or redundant configuration. Hence
the need for appliance providers enabling a cookbook-style
approach to configuration construction to make configuring
new appliances easier for the end user. The viability of this
model has already been illustrated by rPath [9] in devel-
opment of appliances for high energy physics applications.

As appliances are shared between various sites, trust in
an appliance configuration becomes an issue. The work-
space service currently provides mechanisms allowing a
site to admit applians only coming from a particular VO or

application group, but more is needed in practice for an
appliance to be admitted to a site – an appliance may be
admitted only if it was configured with a given set of secu-
rity requirements (i.e., only trusted entities have root access
to the appliance) and recently patched. These can be gener-
ated again based on automatic configuration management
tools. As the appliance is initially created, attestation in-
formation, including configuration parameters, appliance
creator, modification times and appliance origin can be at-
tached in the form of assertions referring to specific soft-
ware packages as well as to the appliance as a whole. As
appliances are modified, fine-grained attestation informa-
tion will need to be augmented to reflect subsequent recon-
figuration operations.

While the Workspace Service already implements meth-
ods for authorizing VM deployment requests coming from
specific clients or communities (through the use of VOMS
credentials or SAML attributes), fine-grained methods are
required to process full information about the image itself.
Here, we are planning to use the attestation information
generated or updated by the appliance generation tools and
signed to the image. In [10] we have prototyped the ways of
integrating the processing of such information into the ap-
pliance deployment process. It is critical however, that this
information itself comes from a trusted source and prefera-
bly be automatically generated in sync with configuration
information on the imge – in practice attestation informa-
tion coming even from a trusted source may not be as accu-
rate (and therefore as trustworthy) as information gener-
ated by trusted software running on a trusted platform.

A persuasive case for automatic management of appli-
ances is made in [3]: appliances need periodic maintenance,
much as classical unix systems do. The ability to selectively
apply updates, allow the execution of maintenance tasks
and perform a periodic re-attestation of an appliance's
soundness is of critical importance. Seamlessly performing
updates implies the ability to test appliances after mainte-
nance operations have been performed and thus allowing
appliance functionality to be validated prior to redeploy-
ment minimizing surprises for end users. This requires a
test suite attached to an appliance capable of providing
such maintenance – in practice such test suite would have
to be agreed upon between the appliance provider and the
user.

4 CONTEXTUALIZATION ON DEPLOYMENT
Appliances cannot be shipped with ready-to-run con-

figurations, because several aspects of configuration are
either site dependent (site binding) or depend on the par-
ticulars of a given instantiation of a virtual appliance (in-
stance binding): IP addresses need to be assigned, an appli-
ance may need to be pointed at existing services such as
DNS, a batch system head node, or a database. We will call
this process contextualization as it makes the appliance
aware of its deployment context.

To illustrate the need for various steps of contextualiza-
tion, let’s first consider what is required for manual de-
ployment of a 5 node cluster configured with Torque [11]
(one headnode and four worker nodes). Typically, we’d

4 TERAGRID 2007 CONFERENCE, MADISON, WI

begin the process by assigning required IP addresses to the
nodes. We’d then create accounts, point the nodes at a DNS
server, configure ssh/scp keys for the cluster nodes, as well
as modify Torque configuration files (both depend on IP
addres assignment). Additionally, if the headnode is Grid-
enabled we might equip it with a host certificate as de-
scribed in [12], and modify the configuration relevant to the
installed Grid services. We will now describe the design
and tools required to automate this process.

4.1 Preparing Virtual Appliances for Deployment
As defined in section 3, an essential feature of an appli-

ance is that it can be deployed in many different contexts.
Thus, in order turn for example a VM image into an appli-
ance a virtual appliance provider needs to adapt an envi-
ronment (e.g., represented as a VM image) to consume con-
figuration parameters that are only available after an appli-
ance has been deployed in a specific context. We note that
such configuration process consists of two components: (a)
configuration parameters specific to a deployment context
and (b) a set of environment-specific non-declarative ac-
tions that integrate these parameters into a specific envi-
ronment. We therefore define a virtual appliance as an en-
vironment that (a) provides a definition of the contextuali-
zation information it requires (contextualization template)
and (b) contains mechanisms capable of integrating this
information into the appliance (contextualization agent).

<Parameters>
 <Param name='DNSServer'>
 <List>
 <Item value='192.168.1.2'/>
 <Item value='192.168.1.3'/>
 </List>
 </Param>
 <Param name='nodenames'>
 <List>
 <Item value='192.168.7.1'/>
 <Item value='192.168.7.2'/>
 <Item value='192.168.7.3'/>
 <Item value='192.168.7.4'/>
 </List>
 </Param>
</Parameters>

<Param name='users'>
 <List>
 <Item name='user1' value='sad8hgewjnb'/>
 <Item name='user2' value='saasd2sjnb'/>
 </List>
 </Param>
</Parameters>

Figure 1: Contextualization information for the Bcfg2 example.

As an example, here are the actions required to turn our
Torque VM image into an appliance using the Bcfg2 system
as the contextualization agent. The contextualization tem-
plate for this example (instantiated with information) is
shown in Figure 1. The contextualization agent that con-
sumes this information inside the appliance is implemented
by Bcfg2 -- a natural choice as it is supplied out of the box
with many Linux distributions and implements all of the

commands needed to integrate configurations inside of
virtual appliances. The contextualization process simply
invokes the Bcfg2 agent included in the appliance to con-
sume the parameters provided by the deployment service.
The Bcfg2 agent is self-contained, and configured to pro-
vide the goal configuration states, taking the supplied pa-
rameters into consideration. The appliance creator has in-
cluded a series of templates that render these parameters
into appliance configuration directives.

4.2 Contextualization
On deployment, a deployment service needs to be able

to interpret the contextualization template file and provide
the expected information values for the required fields. In
doing so, the deployment service may need to work with
mechanisms that generate the required information, such as
a certificate authority generating certificates for appliances.
We distinguish between site binding parameters (generated
by the deployment service once for every site, such as
available networks) and instance binding parameters (gener-
ated for every deployed appliance instance). Once the in-
formation is compiled, the deployment service produces a
parameter file – a template file associated with the required
contextualization information.

After the parameter file is assembled, the information
needs to be made available (delivered) to the appliance. In
the case of VM images, one option is to use kernel parame-
ters to pass this information – however, only a limited
amount of information can be passed in this way, and also
in standard Linux, kernel parameters are world readable
after the image is deployed making this method unsuitable
for passing sensitive information. A more flexible option
(and generic across different operating systems) is for the
deployment service to simply “patch” the appliance by
mounting the VM disk partition and copying the parameter
file where it will be expected by the contextualization
agent. While this can be time-consuming it is currently the
most generic and flexible option and is used by the Work-
space Service uses it as the contextualization delivery
method.

In our Bcfg2 adaptation, the Bcfg2 agent consumes the
parameters supplied by the Workspace service as a file via
such an appliance patch. In the example of a Torque appli-
ance, the Bcfg2 agent will first render the list of node names
into file contents for "/etc/resolv.conf" to configure domain
name resolution. Once this is finished, name resolution
functions properly on the appliance for all of the relevant
hostnames. Next, the first node in the allocation will be
identified as the head node (Bcfg convention), which runs
the Torque server and configured to know which resources
it controls (the data will be derived from the parameter
"nodenames" in Figure 2). The values in this list are in-
cluded in the Torque configuration. Each client node places
the server IP address in the Torque configuration file. At
this point, Torque is operational. Bcfg2 is natively capable
of setting up ssh keys and trust between nodes and this
step is completed next. Finally, user access is configured.
Entries for each user included in the users parameter are
included in “/etc/passwd”. This allows users login access
and the ability to execute programs. Once these facets are

TERAGRID 2007 CONFERENCE, MADISON, WI 5

configured, the appliance is fully contextualized and opera-
tional.

4.3 Generalizing the Approach
In the previous sections we described how a generic VM

image can be turned into an appliance by providing contex-
tualization information and a contextualization agent. The
question now arises how invasive this process is and to
what extent it can be made transparent and easy to use to
an appliance developer and user.

First, we note that contextualization agents are already
present in many appliances as part of standard system tools
and can be leveraged as long as the corresponding contex-
tualization information template can be specified, and com-
patible delivery methods implemented. The standard
DHCP broadcast call which is a part of a typical boot se-
quence is one such agent. The Workspace Service provides
the contextualization information template as part of the
workspace meta-data information [1]. In addition the
Workspace Service suite of tools also provides a DHCP de-
livery tool executing on a hypervisor nodes and responding
to a VM's boot-up sequence DHCP broadcast. The Work-
space Service can dynamically manage DHCP policies as-
signed to this delivery tool to give a defined set of network
configurations to a specific MAC address; MAC address
spoofing is controlled, so only the intended information
will make it into the image. Further, there is a daemon on
each hypervisor node so that the DHCP broadcasts do not
escape on to the physical network and interfere with a site's
pre-deployed DHCP server's operations. The advantage of
using this mechanism is that it allows users to deploy sim-
ple appliances with practically no appliance adaptation
because DHCP client libraries are virtually ubiquitous and
easy to configure in the appliance.

In practice, the need to cover multiple (and often rare)
application-specific configurations requires a more flexible
if heavier-weight approach. In those cases, existing configu-
ration tools which are often included as part of guest oper-
ating system distribution provide a convenient solution –
leveraging them facilitates the adaptation process as it
eliminates the need to install additional software. In this
paper, we used the example of Bcfg2 included with multi-
ple versions of Linux: the user had to configure a Bcfg pro-
file as part of the adaptation process, but the resulting ac-
tions were carried out automatically.

5 RELATED WORK
The term virtual appliance was introduced by Sapuntzakis

et al [2, 3] and their work describes the first attempts at de-
fining contextualization information as well as explaining
the requirements for appliance management. We build on
this work and extend it to generalize the method and en-
able the use of generic tools and protocols for configuration
management.

rPath [9] is a company that creates software appliances,
including virtual appliances compatible with popular
VMMs via the rBuilder service. They provide methods of
configuring and maintaining appliances; we are currently
collaborating with them on defining contextualization serv-

ices.
Zeroconf [13] is a collection of techniques for establish-

ing networking configurations and service discovery with-
out a centralized information systems. While useful, in the
context of dynamically deployed appliances on the grid, the
particular networking and service configurations are virtu-
ally always either subject to the policies of the deployer
and resource provider (and intermediaries if they exist) or
desired to be published externally from the VM by the in-
frastructure.

Configuration management tools such as LCFG [14],
Quattor [15] and Smartfrog [16] are somewhat similar in
nature to Bcfg2 and could also potentially be used as con-
textualization agnets. Bcfg2 is our reference implementa-
tion of choice due to its availability and convinience.

6 SUMMARY
This paper describes the requirements and services re-

quired to ensure the scalable management and deployment
of appliances implemented as VM images. We make the
case for developing methods of automatic generation and
maintenance of VM images – important to achieve scalabil-
ity as well as develop methods to manage trust and enable
more images to be deployed on more platforms in a secure
manner taking into account site policies. The issue of estab-
lishing methods for trust management between VM image
developers and sites supporting their deployment is par-
ticularly critical at this stage of technology adoption –
applying automatic configuration methods and ensuring a
system of timely management and updates will go a long
way towards resolving it.

Finally, we described methods of adapting VM images
to produce appliances and contextualizing such appliances
on deployment. Our preliminary investigation indicates
that it is critical for those methods to be lightweight yet
flexible to cover the range of required specifications. We
also point out that in practice the appliance producer and
the appliance deployer have to collaborate on the format-
ting of the contextualization template: the provider to cor-
rectly integrate contextualization information into the ap-
pliance and the deployer to correctly interpret them when
supplying contextualization information.

In future work we hope to extend the methods described
here to provide recontextualization for appliances on mi-
gration. Another topic we are investigating is the deploy-
ment-time composition of appliances out of components
supplied by different parties.

ACKNOWLEDGEMENTS
We are grateful to Brett Adams, Frank Siebenlist, Ed Smith,
Ravi Subramaniam, and Marty Wesley for interesting dis-
cussions of the concepts described here. This work was
supported by NSF CSR award #527448 and in part, by the
Mathematical, Information, and Computational Sciences
Division subprogram of the Office of Advanced Scientific
Computing Research, SciDAC Program, Office of Science,
U.S. Department of Energy, under Contract W-31-109-ENG-
38.

6 TERAGRID 2007 CONFERENCE, MADISON, WI

REFERENCES

1. Keahey, K., et al., Virtual Workspaces: Achieving Quality
of Service and Quality of Life in the Grid. Scientific
Progamming Journal, 2005.
2. Sapuntzakis, C., et al. Virtual Appliances for Deploying
and Maintaining Software. in Proceedings of the 17th Large
Installation Systems Administration Conference (LISA '03).
2003.
3. Sapuntzakis, C. and M.S. Lam. Virtual Appliance in the
Collective: A Road to Hassle-free Computing. in 9th Work-
shop on Hot Topics in Operating Systems. 2003.
4. Keahey, K., et al. Virtual Workspaces in the Grid. in Eu-
ropar. 2005. Lisbon, Portugal.
5. Desai, N., et al. BCFG: A Configuration Management
Tool for Heterogeneous Environments. in IEEE Interna-
tional Conference on Cluster Computing (CLUSTER'03).
2003.
6. Barham, P., et al. Xen and the Art of Virtualization. in
ACM Symposium on Operating Systems Principles (SOSP).
7. The Virtual Organization Management System:
http://infnforge.cnaf.infn.it/projects/voms.
8. Open Science Grid (OSG). 2004:
www.opensciencegrid.org.
9. rPath: www.rPath.com.
10. Lu, W., et al., Making your workspace secure: establish-
ing trust with VMs in the Grid. SC05 Poster Presentation,
2005.
11. Torque:
http://www.clusterresources.com/pages/products/torqu
e-resource-manager.php.
12. Freeman, T., et al., Division of Labor: Tools for Growth
and Scalability of the Grids. ICSOC 2006
13. Zeroconf. www.zeroconf.org
14. LCFG: http://www.lcfg.org.
15. Quattor: http://cern.ch/quattor.
16. SmartFrog:
http://www.hpl.hp.com/research/smartfrog/.

