

Rebalancing in a Multi-Cloud Environment
Dmitry Duplyakin

University of
Colorado

dmitry.duplyakin
@colorado.edu

Paul Marshall
University of

Colorado
paul.marshall

@colorado.edu

Kate Keahey
Argonne National

Laboratory
University of Chicago
keahey@mcs.anl.gov

Henry Tufo
University of

Colorado
henry.tufo

@colorado.edu

Ali Alzabarah
University of

Colorado
ali.alzabarah

@colorado.edu

ABSTRACT
With the proliferation of infrastructure clouds it is now possible to
consider developing applications capable of leveraging multi-
cloud environments. Such environments provide users a unique
opportunity to tune their deployments to meet specific needs (e.g.,
cost, reliability, performance, etc.). Open source multi-cloud
scaling tools, such as Nimbus Phantom, allow users to develop
such multi-cloud workflows easily. However, user preferences
cannot always be achieved at the outset for a variety of reasons
(e.g., availability limitations, financial constraints, technical
obstacles, etc.). Despite this, it is possible that many preferences
can be met at a later time due to the elastic nature of infrastructure
clouds. Rebalancing policies, which replace instances in lower-
preferred clouds with instances in higher-preferred clouds, are
needed to meet these preferences.

We present an environment that manages multi-cloud deployment
rebalancing by terminating instances, in lower-preferred clouds
and launching replacement instances in higher-preferred clouds to
satisfy user preferences. In particular, users define a preferred
cloud ratio, e.g., 75% instances on one cloud and 25% instances
on another, which we attempt to achieve using rebalancing
policies. We consider three rebalancing policies: 1) only idle
excess instances are terminated, 2) excess instances are terminated
gracefully, and 3) worker instances are aggressively terminated,
even if they are running user jobs. To gauge the effectiveness of
our rebalancing strategy, we evaluate these policies in a master-
worker environment deployed across multiple NSF FutureGrid
clouds and examine the ability of the policies to rebalance multi-
cloud deployments appropriately, and analyze trade-offs.

Categories and Subject Descriptors
H.3.4 [Systems and Software]: Distributed Systems; K.6.2
[Installation Management]: Computing Equipment Management

General Terms
Management, Design, Experimentation

Keywords
Cloud computing, Infrastructure-as-a-Service, Rebalancing, Policies

1. INTRODUCTION
Multi-cloud environments leverage infrastructure-as-a-service
(IaaS) clouds to integrate resources from multiple cloud

infrastructures. These deployments allow users to take advantage
of differences in various clouds, including price, performance,
capability, and availability differences. As an example, a user may
leverage multiple clouds, including community clouds, such as
FutureGrid [14], and for-pay public clouds, such as Amazon EC2
[18]. A community cloud, for example, often is the user’s
preferred cloud because it is provided at a reduced monetary cost,
or possibly even free. However, it may offer significantly fewer
resources than larger for-pay public cloud providers. Users are
then faced with a dilemma of choosing where to deploy their
instances. In such a scenario, a user may choose to delay
deployment, and thus delay processing his workload, until his
preferred cloud is available. However, another option is to define
an explicit preference for the clouds (e.g., specifying that the less
expensive clouds should be used whenever available) but
immediately deploy instances wherever possible and then
rebalance the deployment at a later time as needed. For example,
because community clouds with limited resources are not always
available, especially if demand is high, the environment can
launch instances on lower-preferred clouds, such as public cloud
providers. As clouds with a higher-preference become available,
the environment should rebalance, automatically downscaling,
that is, terminating instances, in lower-preferred clouds, and
upscaling, launching instances in higher-preferred clouds.

Upscaling is typically automated by auto-scaling services, such as
Nimbus Phantom [9] or Amazon’s Auto Scaling Service [13],
which allow users to define the number of instances that should be
deployed in each cloud. Auto-scaling services then launch the
instances and monitor them, replacing them if they crash or are
terminated prematurely. However, downscaling isn’t typically
automated and presents a number of unique challenges that must
be addressed. For instance, users must be able to clearly define
their preferences for different clouds and policies must be created.
These policies should identify which clouds to terminate instances
in, which instances to terminate, and how the instances should be
terminated (e.g., wait until instances are idle or immediately
terminate instances with running jobs, thus causing jobs to be
rescheduled). Rebalancing policies should balance user
requirements as well as workload and environment characteristics
to avoid introducing excessive workload overhead. To accomplish
this, rebalancing implementations must integrate with existing
workload resource managers and provide the functionality
required by the policies, such as identifying the state of instances
(e.g., busy or idle) or marking workers as “offline”.

In this paper, we examine factors that influence rebalancing
decisions. Specifically, we consider master-worker environments
where resources are dedicated to processing user workloads. In
this context, we attempt to identify whether, and if so under what
conditions, we may be justified in causing jobs to be killed by
terminating running instances for rebalancing purposes. We
propose three rebalancing policies that use job and instance

Copyright 2013 Association for Computing Machinery. ACM
acknowledges that this contribution was authored or co-authored by an
employee, contractor or affiliate of the U.S. Government. As such, the
Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government
purposes only.
Science Cloud’13, June 17, 2013, New York, NY, USA.
Copyright © 2013 ACM 978-1-4503-1979-9/13/06...$15.00.

information to determine whether or not an instance should be
terminated. The first policy waits until instances are idle before
they are terminated. The second policy forcibly marks instances
offline, allowing them to finish running jobs but preventing them
from accepting new jobs, and then terminates the instances once
they become idle. The third policy uses a “progress threshold” to
decide whether or not to terminate the instances. For example, if
the threshold is set to 25% and a job is expected to run for two
hours, a node that has been running the job is only eligible for
termination during the first 30 minutes of execution. We also
develop a multi-cloud architecture that incorporates these policies
with master-worker environments.

For experimental evaluation, we deploy our solution using
multiple NSF FutureGrid clouds and use Nimbus Phantom for our
auto-scaling service. Our evaluation examines the benefits and
trade-offs associated with each policy. Less aggressive policies
are able to provide zero-overhead rebalancing at the expense of
leaving the deployment in a non-desired state for longer periods of
time. More aggressive policies, on the other hand, rebalance the
environment quickly but introduce workload overhead and delay
overall workload execution. The most aggressive policy, however,
appears to strike the best balance by rebalancing the environment
quickly, reducing cost by up to a factor of 3, while only increasing
workload execution time by up to 14.7%.

The remainder of the paper is organized as follows. In Section 2
we examine the general approach of rebalancing in multi-cloud
environments and describe our implementation and policies. In
Section 3, we evaluate the policies and identify the trade-offs
associated with each policy. In Section 4, we discuss the related
work and in Section 5 we propose directions for future work. We
conclude in Section 6.

2. APPROACH
2.1 Models and Assumptions
We propose a multi-cloud environment that is capable of
processing user demand and distributing work to resources
deployed across multiple clouds. For example, such an
environment might consists of a pool of web servers, distributed
between different cloud data centers, responding to user requests
for a single website. Another example is an HTCondor pool with
workers distributed between multiple clouds, all pulling jobs from
a single, central queue. When deploying such an environment, a
user may define a desired request for how many resources to
deploy across different clouds throughout the environment. These
requests can be expressed in two forms: 1) in terms of absolute
numbers of instances needed in selected clouds, e.g., R={32
instances in cloud A, 8 instances in cloud B}; 2) in terms of total
numbers of instances and preferred ratios, e.g., R={40 instances
total; 80% in cloud A, 20% in cloud B}. However, such requests
may lead to situations where a deployment cannot be satisfied, at
least initially. For example, instead of matching the request R={32
instances in cloud A, 8 instances in cloud B}, we may have 24
instances in cloud A (which may not be able to launch additional
instances) and, thus, end up with 16 instances in cloud B.
Therefore, as the environment adapts, additional instances should
be launched in cloud A whenever possible and instances in cloud
B should be terminated until the users’ preferences are met.

We assume that the multi-cloud deployment is deployed and
managed by a central auto-scaling service. In particular, we use
the open source Phantom auto-scaling service, which is
responsible for servicing requests to deploy instances across
multiple clouds and monitoring those instances, replacing them if

they crash or are terminated prematurely. We also assume that the
environment uses a master-worker paradigm to process demand,
such as an HTCondor pool, using a “pull” queue model. That is,
workers distributed across multiple clouds request jobs from a
central queue when they are available to execute jobs. The central
scheduler reschedules jobs when workers fail or are terminated for
rebalancing. The job scheduler must also be able to: 1) provide
status information about workers, including job state (e.g., busy or
idle), jobs running on the workers, and up-to-date job runtimes; 2)
provide information about the queue, including a list of running
and queued jobs; 3) add an instance to the worker pool; and 4)
remove an instance from the worker pool, either gracefully by
allowing it to finish running its job or immediately by
preemptively terminating the worker and its jobs. Many modern
job schedulers, including Torque and HTCondor, provide these
capabilities. Because we use a “pull” queue model, only
embarrassingly parallel workflows are considered. In such
workflows, jobs can be terminated, rescheduled, and re-executed
out of order without consideration for other jobs in the set.

In this context, we define the following terms:
• Multi-cloud request: a request that specifies the configuration

of a multi-cloud deployment either using absolute numbers
(e.g., 32 instances in cloud A and 8 instances in cloud B) or as a
ratio (e.g., 40 instances with 80% in cloud A and 20% in cloud
B). It is specified by the user and typically represents his
desired preferences for various clouds.

• Desired state: when the multi-cloud deployment matches the
specified multi-cloud request. For example, if the user specifies
a multi-cloud request with 32 instances in cloud A and 8
instances in cloud B and the running deployment matches this
request, then it is in the desired state.

• Rebalancing: the process of transitioning the deployment in an
attempt to reach the desired state. This occurs when the
deployment is not in the desired state so instances are
terminated in some clouds and replacement instances are
launched in other clouds in order to reach the desired state.
Even after the desired state is reached, the system must
maintain it. However, it is possible for the system to return to
an undesired state. For example, if failed instances cannot be
replaced on the preferred cloud and are instead deployed on a
less-preferred cloud, then the system will again attempt to reach
the desired state.

• Downscaling: the termination of running instances that occurs
during rebalancing. Depending on the difference between the
current deployment and the request, there may be a need to
terminate many instances (e.g., terminate all instances in cloud
A) or only a particular one (e.g., terminate an instance in cloud
A with a particular ID). Selecting the appropriate instance to
terminate is a non-trivial task. This process has two main
components: 1) real-time information about all instances is
required, such as jobs currently running on those instances, and
2) specific instances need to be identified for termination
according to the policy. For example, a policy may select an
instance for termination based on the progress of the job it is
executing. An instance that is close to completing its job is
considered to be more valuable than an instance that has just
started execution of its job. Additionally, if an instance is idle
(i.e., it’s not currently executing a job) then it may be
terminated immediately.

• Upscaling: the process of deploying instances throughout the
multi-cloud environment to ensure that the total number of

instances specified in a multi-cloud request is satisfied.
Upscaling attempts to launch instances on clouds with a higher
preference, however, if such clouds are unavailable then
upscaling will deploy instances on clouds with lower
preferences.

• Excess instances: instances in a particular cloud that exceed the
desired amount. For example, if a multi-cloud request specifies
that 15 instances should be deployed with 10 instances in cloud
A and 5 instances in cloud B, but at the given time all 15
instances can only be deployed in cloud B, then cloud B would
have 10 excess instances.

While there may be cases where it is crucial for multi-cloud
deployments to satisfy user preferences before job execution
begins, we believe stalling job execution until the environment is
in the desired state is not necessary. Instances that are already
deployed in less desirable clouds can yield partial results while
rebalancing occurs instead of delaying deployment and providing
no results at all. A multi-cloud deployment that is running jobs
should continue to process jobs in less desirable clouds and rely
on rebalancing to achieve the desired state.

2.2 Architecture
The multi-cloud architecture that we designed extends the
architecture presented in [15]. It deploys workers across several
cloud resource infrastructures and dynamically balances this
deployment based on user-defined preferences. The architecture is
depicted in Figure 1 and consists of four main components: (1) a
workload management system (including a job scheduler and
workers), (2) sensors to monitor demand, (3) policies to scale the
number of deployed instances up or down, and (4) an auto-scaling
service to enforce the chosen policy.
In this environment, the master node hosts the job scheduler for
the workload management system that accepts user jobs and
schedules them to run on worker nodes deployed across multiple
clouds (see Figure 1). The sensor periodically queries the job
scheduler and gathers information about the queued jobs and their
runtimes as well as worker status. The sensor provides this
information to the decision engine, which then executes a policy
that decides how to adjust the deployment, potentially
downscaling it on one cloud and upscaling on another, to satisfy
user preferences.

Users define their preferences for different clouds in their multi-
cloud requests, e.g., specifying that they want 20 instances, with
half deployed on one cloud and half on another cloud. The
decision engine also includes per-cloud timers and predefined
time-outs to avoid undesired scenarios where upscaling and
downscaling are performed on the same cloud within a short
period of time.

To enact upscaling or downscaling, the auto-scaling decision
engine instructs the service to deploy, maintain, or terminate
workers across the different clouds. The job master and workers
operate relatively independently of the multi-cloud architecture,
integrating new workers that are deployed, processing jobs on
available instances, and rescheduling any jobs that are terminated
prematurely. However, in some cases, the decision engine may
need to make specific requests of the workload management
system. For example, policies that elect to mark workers offline,
allowing them to finish their jobs and preventing them from
accepting new jobs, must be able to communicate with the
workload management system. In our architecture this is

accomplished by communicating the request through the sensor,
which then performs the operation on the master node.

2.3 Rebalancing Policies
Rebalancing alters multi-cloud deployments and may be
disruptive from the workload’s perspective. For example,
terminating an instance may cause a running job to be terminated
prematurely, causing the job to be rescheduled for execution on a
new worker. The workload’s total execution time may increase as
a result. On the other hand, executing a user’s workload in a
multi-cloud environment that is not in the desired state might lead
to other problems, including overall performance degradation,
unexpected expenses, additional data transfers, etc. Therefore,
rebalancing policies are needed for multi-cloud environments;
their objective is to achieve the desired state, if possible, and only
minimally impact user workloads.

In this work, the existing auto-scaling decision engine performs
upscaling and tries to maintain the total number of instances as
specified in the multi-cloud request. For downscaling, we propose
the following policies:

• Opportunistic-Idle (OI): waits until excess instances in less
desired clouds are idle (i.e., not running jobs according to
information from the sensor) and then terminates them. This
policy continues to terminate excess idle instances until the
deployment reaches the desired state. It begins with clouds that
have the most excess instances before proceeding to the clouds
with fewer.

• Force-Offline (FO): is similar to OI but excess instances are
terminated gracefully, that is, jobs are allowed to complete
before the instances are terminated. To terminate instances
gracefully, the auto-scaling service notifies the jobs scheduler
which instances are to be terminated, and the job scheduler then
marks them “offline”. Graceful termination allows those
instances to complete currently running jobs. Once the jobs
complete, the workers do not accept any new jobs and can be
terminated. This policy requires that the job scheduler support
the ability to “offline” workers. FO does not terminate instances
once the desired number of instances is reached in each cloud.

• Aggressive Policy (AP): sacrifices work cycles and discards
partially completed jobs in order to satisfy requests in the
shortest amount of time possible. This policy terminates excess
instances even if those instances are currently running jobs. To
minimize overhead associated with job re-execution, this policy

Figure 1. Multi-cloud architecture with workload and
management components where rebalancing is guided by
upscaling and downscaling policies.

proceeds in termination from instances with jobs that have been
running for the least amount of time to instances with jobs that
have been running for a longer time. Additionally, since the
amount of work to discard may vary, we include a tunable
parameter, work threshold (measured in percent). Work
threshold specifies how much progress on its current job with
respect to the job’s walltime (i.e., expected job’s runtime) an
instance has to make before this instance may no longer be
terminated. For example, if we choose the 25% threshold and
one of the instances executes a two-hour job, the policy is only
allowed to terminate it for up to 30 minutes after beginning of
execution. While job runtimes may be predictable, we avoid
relying on the accuracy of such predictions and consider
walltimes that are explicitly provided. Job walltimes are
typically limited by the cluster administrator (e.g., to 24 hours),
and prevent users from specifying excessive walltime requests.

2.4 Implementation
We leverage a number of existing technologies for our multi-
cloud deployment. Specifically, we use infrastructure clouds, such
as Nimbus [17] and Amazon EC2 [18], which provide on-demand
resource provisioning. Our environment integrates with the open
source Phantom service for auto-scaling. Phantom [9] is
responsible for servicing multi-cloud requests and deploying the
instances across the specified clouds. It also continually monitors
the deployment and maintains the requested number of instances.
We also rely on a master-worker workload management system,
specifically HTCondor [19], which monitors and manages a pool
of workers across distributed resources. This includes the ability
to submit jobs to a central queue and schedule jobs across
distributed workers. HTCondor also includes job resubmission
and migration capabilities, which guarantee that every job
eventually completes even if some workers are terminated
prematurely. Lastly, HTCondor provides the required information
about workload execution, specifically, which jobs are queued or
running, as well as the amount of time they have been running.

To integrate with the leveraged technologies, we develop two
additional components for the implementation: the sensor and the
rebalancing policy. The sensor, written in Python, communicates
with HTCondor master nodes and obtains necessary job and
worker information for the policies using the condor_status and
condor_q commands. This provides three pieces of information:
1) the number of HTCondor workers running in each cloud (e.g.,
condor_q -run), 2) information required to identify idle workers
(e.g., condor_status), and 3) a list of workers and their current
runtimes and walltimes. However, some policies require that the
sensor also communicates with the workload management system
(e.g., when marking nodes offline). Therefore, the sensor is both
able to send information to the policy and receive instructions
from it. When the policy instructs the sensor to remove a worker
from the pool, the sensor issues the condor_off command. To
terminate an instance gracefully (e.g., when using FO), the sensor
executes the following command: condor_off –peaceful
<hostname>. AP removes instances from the pool instantly using:
condor_off –fast <hostname>.

In addition to workload information, the system must also query
the auto-scaling service, Phantom, and the individual IaaS clouds
to identify all of the instances in the auto-scale group as well as
their distribution across the clouds. The instance IDs reported by
Phantom also need to be compared with the instance IDs reported
by individual clouds in order to identify the specific clouds auto-
scale instances are running on. This information is used by the
policy, along with workload information, to guide rebalancing

decisions. The policies, written in Python, collect the necessary
information and then attempt to match the deployment with the
user’s multi-cloud request, downscaling on clouds with excess
instances and upscaling on high-preferred clouds when needed.
To accomplish this, the downscaling component of the policy
communicates with the auto-scaling service, using the Python
boto library [7], and makes adjustments to the configuration in
order to satisfy the request. Phantom then provides an ordered
cloud list and capacity parameters that can be adjusted for this
purpose. The ordered cloud list specifies the maximum number of
instances in each cloud and can be set to match the request for a
specific cloud, while the capacity parameter controls the total
number of instances across all clouds and can be set
independently from the ordered list.
Upscaling is performed by an existing Phantom decision engine,
which tries to maintain a total number of instances deployed
across the preferred clouds. Phantom implements its own
n_preserving policy, which allows it to maintain the requested
number of running instances, replacing failed instances when
needed. When Phantom replaces failed or terminated instances, it
does so according to the ordered cloud list, meaning that if
instances are terminated in a lower-preferred cloud, it first
attempts to deploy replacement instances in a higher-preferred
cloud. It only resorts to lower-preference clouds if it is unable to
deploy instances in higher-preferred clouds (e.g., due to
unavailability).

3. Evaluation
To evaluate proposed rebalancing policies, we examine the ability
of the environment to rebalance the deployment in order to satisfy
multi-cloud requests and reach the desired state. That is, the
policies attempt to adjust the deployment to match user
preferences as quickly as possible while avoiding excessive
workload overhead. Specifically, we consider the scenario where
cloud availability changes over time due to external factors. For
example, when other users terminate instances it may be possible
to deploy additional instances in higher-preferred clouds and
downscale in lower-preferred clouds. We choose not to simulate
this type of unexpected change in availability directly; instead we
focus on the behavior of our policies once such changes in
availability occur. Therefore, in each of our experimental
evaluations, we assume that the evaluation begins with the
deployment in an undesired state but that higher-preferred clouds
now have additional capacity available, allowing the policies to
attempt to reach the desired state.

For our environment, we use NSF FutureGrid [14] and two
workload traces from the University of Notre Dame’s Condor Log
Analyzer [8]. HTCondor is used as the workload management
system. We leverage its ability to reschedule jobs that are
terminated prematurely. On FutureGrid we use the Hotel cloud at
the University of Chicago (UC) and Sierra at the San Diego
Supercomputer Center (SDSC). Both clouds use Nimbus as the
IaaS toolkit and Xen for virtualization. The master node and all
the worker nodes run Debian Lenny images, approximately 1 GB
compressed, with HTCondor 7.8.0 as the workload manager. The
master node VM has two 2.93GHz Xeon cores and 2 GB of RAM.
Workers have one 2.93GHz Xeon core and 2 GB of RAM.
Instances are contextualized as the master or a worker
automatically at boot. In particular, the IaaS userdata field is used
to provide the hostname of the master, in which case, the node
configures itself as a worker and attempts to join the master. If the
field is empty, the instance configures itself as the master.

In this evaluation, we differentiate between Hotel and Sierra by
specifying different costs for their instances. Specifically, we
assume instances on Hotel have 1 unit of cost and instances on
Sierra have 2 units of cost. We also specify a multi-cloud request
for a total of 64 instances with 100% of the instances on Hotel and
0% on Sierra, representing the case where a user desires that all of
his instances be deployed in the less expensive cloud. However,
for each experiment, we initialize the environment to have 75% of
the instances in Hotel (48 instances) and 25% of the instances in
Sierra (16 instances), requiring rebalancing to occur in order to
reach the desired state.

For a job trace, we combine two traces from the HTCondor Log
Analyzer [8], one consisting primarily of smaller jobs and another
that contains longer running jobs. The traces are combined into a
single workload that is submitted immediately at the beginning of
the evaluation by selecting jobs randomly from each trace. With
this approach we consider a workload that consists of a variety of
job runtimes. Individual jobs are submitted as sleep jobs, which
sleep for the runtime specified in the trace. The combined
workload consists of 1120 jobs, with a minimum runtime of 54
seconds and a maximum runtime of 119 minutes. The median
runtime is 106 seconds and the mean is 443 seconds.

The system can be configured to execute the policy at any user-
defined interval. For this evaluation, we configure the policy to
execute every 30 minutes, beginning 30 minutes after the initial
job submission, in order to rebalance the deployment regularly
while still allowing for some jobs to complete between
rebalancing intervals. Exploring different policy execution

intervals and their impact is left for future work. We expect overly
aggressive intervals (i.e., a short policy execution interval) and
relatively passive intervals (i.e., a long policy execution interval)
to negatively impact the environment by either rebalancing too
frequently and preventing jobs from finishing or not rebalancing
often enough, causing high excess cost. However, further
experimentation is needed to identify the appropriate balance
between the policy execution interval and workload
characteristics, including the rate that jobs are submitted and the
duration they execute.

For experimental evaluation, we define the following metrics:
• Workload execution time: the amount of time required for the

entire workload to complete, that is, the amount of time from
when the first job is submitted until the time the last job
completes.

• Workload overhead percent: the total percent of time jobs run
before being terminated prematurely. For example, if a two-
hour job runs for 30 minutes before it is terminated, causing it
to be re-queued and needing to be rerun, then the job
experiences 25% overhead (assuming that the second run
finishes).

• Convergence time: the amount of time it takes for the
deployment to rebalance from a non-desired state to the desired
state once the evaluation begins. For example, if the system is
operating in an undesired state at the moment the first job starts
execution, convergence time is the time from that moment until
the system reaches the desired state (i.e., the specified multi-
cloud preference is satisfied).

Figure 2. OI terminates 16 instances after most jobs complete. Figure 3. Gradual downscaling with FO.

Figure 4. Considerate aggressive downscaling with AP-25. Figure 5. Fast aggressive downscaling with AP-100.

• Excess cost (EC): the total user-defined cost associated with
running excess instances. EC is described as:

EC = cr * pr(ti ! li)
i

Ir

"
r

R

"

The variables are defined as:
R: set of all cloud resources used for the deployment,
Ir: set of all excess instances for every cloud resource, r,
cr: user-defined instance cost for cloud resource, r,
pr: time accounting function for cloud resource, r,
ti: termination time for instance, i,
li: launch time for instance, i.

R consists of all clouds that have running instances. Ir is a set
containing all of the excess instances for cloud resource r. cr
represents the user’s definition of cost associated for an excess
instance in cloud resource, r, for one unit of time. Depending
on the cloud resource, r, pr may differ to represent various time
accounting methods, such as per-second usage or rounding up
to the nearest hour, etc. ti and li are the specific instance
termination and launch times. Intuitively, EC is intended to
represent the cost of running excess instances, that is, using
instances on clouds beyond the amount specified in the multi-
cloud request. EC offers a fine-grained metric compared to
convergence time, which only provides a course representation
of when the environment finally reaches the desired state.

In addition to these metrics, we also include a set of job traces that
show the number of instances running as well as the number of
jobs submitted, running, and complete. As described earlier, we
specify a multi-cloud request with a preference for 64 workers in
Hotel and 0 in Sierra, but the environment is initialized in an
undesired state with 48 workers running in Hotel and 16 workers
in Sierra. Therefore, the rebalancing policies attempt to terminate
all workers in Sierra, while Phantom replaces the instances in
Hotel until it has 64 running worker instances.

3.1 Understanding Deployment Transformations
All policies pursue the same goal: downscaling 16 instances on
Sierra, the lower-preferred cloud, and upscaling on Hotel, the
higher preferred cloud. Traces are included for the four different
policies, OI (Figure 2), FO (Figure 3), AP-25 (Figure 4), and AP-
100 (Figure 5). AP-25 uses a 25% threshold and AP-100 uses a
100% threshold. The traces show job information (jobs
completed, submitted and running), as well as the distribution of
worker instances across Hotel and Sierra.

In the experiment shown in Figure 2, OI only attempts to
terminate idle instances. OI is first able to perform downscaling
approximately 9000 seconds after initial job submission, that is,
when all 16 instances in Sierra are idle and can be terminated after
the entire workload has been processed. This downscaling has no
effect on the workload since the few jobs that are still running at
the time of downscaling occupy several of Hotel’s instances
(where downscaling doesn’t occur) and continue to run
unaffected. This downscaling policy may be valuable if the user
continues to use the same deployment and executes another
workload at a later time. Then, the deployment has already been
adjusted and, if no failures happen, all new jobs are executed in
the rebalanced environment. In general, OI is only useful in
situations where user jobs are submitted in a series of batches that
are interleaved with periods of idle time when rebalancing can
occur (i.e., OI will not work on a fully utilized system).
Figure 3 illustrates an experiment where FO terminates instances
gracefully. This policy marks all 16 excess instances “offline”

during its first evaluation at 1800 seconds after initial job
submission. Instances that are executing jobs at that time must
wait for jobs to finish before the instances can be removed from
the worker pool and terminated. Thus, after 2300 seconds, 3
instances are terminated, after 2800 seconds 8 additional instances
are terminated, etc. Rebalancing continues until there are no
remaining instances in Sierra, which occurs when the last instance
is finally terminated after 4600 seconds. Every termination causes
a noticeable drop in the trace showing the number of running jobs.
These drops indicate temporary reductions in the worker pool that
follow downscaling actions and last until replacement instances
boot and join the worker pool. Since there are less than 64 running
instances at certain periods of time, it takes longer for the
workload to complete in this experiment than for the OI
experiment, which rebalances after the workload completes.
However, we do observe a faster convergence time for FO than
OI; all 64 instances are running on Hotel after 4600 seconds. FO
demonstrates an average execution time increase of 12.6% and an
average convergence time decrease of 48.4% with respect to OI’s
time characteristics (Figure 6).

We evaluate two variations of AP: AP-25 and AP-100. The first,
AP-25, terminates excess instances only if jobs running on those
instances have been running for less than 25% of their requested
walltime. We choose to use the 25% threshold to demonstrate a
considerate implementation of AP, which attempts to achieve low
overhead rather than fast convergence. In contrast, AP-100,
having no threshold, terminates all excess instances without
consideration of job progress (specifically, AP-100 terminates
instances with jobs that have been running for less than 100% of
their requested walltime). This is a special case when the user
prefers to rebalance as fast as possible regardless of the amount of
work that is discarded.

Figure 4 shows that AP-25 cannot perform the necessary
adjustments all on the first try, and thus, rebalancing is a gradual
process, similar to FO. A 25% threshold yields premature
termination of 16 jobs that are running on Sierra’s instances,
which individually have been running for 267 seconds on average.
The maximum runtime among those jobs is 933 seconds. In this
experiment the total amount of discarded work cycles is about 71
minutes, which is only 0.9% of the total CPU time used by all 64
instances throughout the evaluation.

Figure 5 shows AP-100, which converges to the desired state the
fastest. This policy terminates all 16 instances in Sierra during its
first evaluation after 1800 seconds. At that time, 16 jobs are
terminated prematurely after running for an average of 28
minutes. The maximum runtime is over 30 minutes. 458 minutes
of discarded work result in 5.2% workload overhead.

3.2 Understanding Trade-offs
Figure 6 shows workload execution time, convergence time,
percent workload overhead, and excess cost for all four policies.
We calculate mean values and standard deviations for these
metrics using a series of experiments with three iterations for each
policy. OI provides the shortest workload execution time, while
other policies introduce a noticeable increase in the execution
time. This is because OI does not affect the workload, as
described earlier, and waits for the entire workload to complete
before rebalancing occurs. Switching from OI to FO, AP-25 and
AP-100 introduces an average workload execution increase of
12.6%, 12.9% and 14.7%, respectively. FO, AP-25 and AP-100
all appear to have comparable execution times, while OI
consistently provides the lowest execution time with negligible
variance (indicated by no error bar in the graph).

OI’s convergence, shown in Figure 6, happens after workload
completion, specifically, at 3.1 hours. FO’s gradual downscaling
completes after 1.6 hours. AP-25’s convergence completes after
2.5 hours. As expected, AP-100 provides the fastest convergence
time, which is approximately 0.6 hours.

For workload overhead (that is, the amount of discarded work), OI
and FO have none (indicated with zero-height bars in the
rightmost graph). By design, these policies never attempt to
terminate instances when it leads to premature job termination.
AP-25 and AP-100, however, are designed to accomplish
downscaling via premature termination, demonstrate average
workload overheads of 1.5% and 5.7%, respectively. The highest
observed overheads are 2.4% for AP-25 and 6.6% for AP-100.
Finally, we also consider the excess cost, EC, of the experiments
(Figure 6). As described earlier, we assume cr for Hotel to be 1
unit of cost and cr for Sierra to be 2 units of cost. However, it
should be noted that this cost may differ for users and could
instead correspond to a user's weighted preference or a dollar
amount for instances. We consider a pr function that rounds up
instance usage to the nearest hour and obtain ti and li times for
instances from our experiment logs. In Figure 6, OI has the
highest EC at 97.3 units of cost on average, since rebalancing
doesn’t occur until after the workload completes and, thus,
requires excess instances to run for the majority of the
experiment. Other policies incur lower EC than OI because they
perform rebalancing earlier. FO has an average EC of 52.0 units
of cost, AP-25 has an average EC of 76.0 units of cost and AP-
100 has an average EC of 32.0 units of cost since it rebalances
completely at the first policy execution, 30 minutes into the
experiment.

OI, FO, and AP-100 each have different advantages and trade-
offs, for example, FO converges faster than OI and both have no
workload overhead but OI has the shortest workload execution
time. AP-25, on the other hand, doesn't offer significant
advantages; it has comparable workload execution time to FO but
higher convergence time, workload overhead, and EC. AP-100,
however, appears to strike the best balance between quick
rebalancing and minimizing excess workload overhead and
execution time. Specifically, AP-100 reduces EC by a factor of 3
over OI while introducing only 6.6% workload overhead and
14.7% workload execution time.

4. RELATED WORK
Much work has been done on leveraging elastic capabilities of
infrastructure clouds based on user preferences, performance, and
scalability. To upscale or downscale cloud deployments,

researchers have proposed systems that predict workload
computational needs during execution [1], [3], [4]. These systems
take two approaches: model-based and rule-based [2]. Our
purpose was not to predict workload execution, but to monitor the
workload execution through HTCondor sensors and rebalance the
environment effectively based on our policies. Typically,
however, rebalancing is motivated by cost, where the environment
terminates idle instances to avoid excessive charges. As another
example, some policies govern rebalancing by triggering live
migration from one cloud to another [5]. Our work is more
general than such live migration approaches; in our research,
workload migration is based on predefined user preferences for
different clouds and aims to satisfy these preferences before the
workload completes. Existing policy frameworks that execute
auto-scaling policies can be adapted to include our policies [9].
Our framework relies on similar services to guide the deployment
toward the user’s desired state. There are also projects that
examine different policies for efficient demand outsourcing from
local resources to IaaS clouds [10], [11], but our work focuses on
policies governing downscaling behavior in multi-cloud
environments, gradually achieving the user’s desired state.

5. FUTURE WORK
In future work, we will investigate mechanisms to improve
rebalancing in multi-cloud deployments. In particular, we will
develop a model for multi-cloud requests that include multiple
objectives, for example, cost and performance. This will allow
users to specify increasingly complex multi-cloud requests for
their workflows. We will also investigate the relationship between
cloud availability, the policy execution interval, and workload
characteristics. This will provide a foundation for automated
workflow-aware rebalancing in multi-cloud environments. As part
of this work, we will consider additional factors to guide
rebalancing processes, such as, the requested number of CPUs per
job and the amount of communication between parallel jobs.
Tightly coupled applications (i.e., those that have high
communication to computation ratio), should execute on instances
within a single cloud as much as possible and the rebalancing
policies should accommodate that. In cases when only a single
cloud, perhaps not the most desired one, is capable of providing a
large number of CPUs requested by queued jobs, the policies
should avoid downscaling in that cloud past the minimum number
of instances required by the jobs. Policies should also be adapted
to support workloads with dependencies. Rebalancing should be
avoided or postponed if it causes rescheduling jobs and delaying
many jobs in dependency chains.

6. CONCLUSIONS
We configure a multi-cloud environment capable of processing
user demand where worker instances are distributed across
multiple cloud infrastructures and work collaboratively to process
queued tasks. We use an auto-scaling service, Phantom, to launch
and monitor instances across multiple clouds. Phantom replaces
instances if they crash and terminates them based on rebalancing
policies. We also propose several rebalancing policies that guide
these deployments towards requested multi-cloud configurations
while having minimal impact on the workload, if possible.

To evaluate our policies in this environment, we use a workload
that consists of traces from the HTCondor Log Analyzer and
monitor the policies while they rebalance deployments that consist
of 64 instances running across two clouds and processing
workload jobs. Our experimental evaluation shows that the
policies adjust the multi-cloud deployments properly to reach the
desired state. Our opportunistic policy is able to rebalance the

Figure 6. Mean workload execution time (hours), convergence
time (hours), workload overhead (percent), and excess cost. Three
iterations are run for each policy and no error bar indicates very
little deviation. OI and FO also have 0% workload overhead.

deployment without introducing workload overhead, however, it
requires a high excess cost. Another policy, force-offline, not only
terminates idle instances but also marks them “offline,”
preventing them from accepting new jobs before being
terminated. Finally, our aggressive policy provides the fastest
convergence time and the lowest excess cost, reducing it by a
factor of 3 over the opportunistic policy while only introducing
6.6% workload overhead due to premature job termination
required for immediate rebalancing.

7. ACKNOWLEDGMENTS
This material is based on work supported in part by the Office of
Science, U.S. Department of Energy, under Contract DE-AC02-
06CH11357.
We would like to thank Nimbus team, specifically Pierre Riteau
and Patrick Armstrong, who provided helpful information about
Phantom and helped to quickly resolve issues that we
encountered.

8. REFERENCES
[1] Roy, N., Dubey, A., and Gokhale, A. Efficient Autoscaling

in the Cloud Using Predictive Models for Workload
Forecasting. In Proceedings of the 2011 IEEE 4th
International Conference on Cloud Computing (CLOUD
'11). Washington, DC, USA, 500-507.

[2] Ghanbari, H., Simmons, B., Litoiu, M., and Iszlai, G. Exploring
Alternative Approaches to Implement an Elasticity Policy. In
Proceedings of the 2011 IEEE 4th International Conference on
Cloud Computing (CLOUD '11). IEEE Computer Society,
Washington, DC, USA, 716-723.

[3] Shen, Z., Subbiah, S., Gu, X., and Wilkes, J. CloudScale:
elastic resource scaling for multi-tenant cloud systems. In
Proceedings of the 2nd ACM Symposium on Cloud
Computing (SOCC '11). ACM, New York, NY, USA, Article
5, 14 pages.

[4] Yang, J., Yu, T., Jian, L. R., Qiu, J., and Li, Y. An extreme
automation framework for scaling cloud applications. IBM
Journal of Research and Development, 55(6), 8-1.

[5] Simarro, L., Moreno-Vozmediano, R., Montero, R.S., and
Llorente, I.M. Dynamic placement of virtual machines for
cost optimization in multi-cloud environments. High
Performance Computing and Simulation (HPCS), 2011
International Conference on , vol., no., pp.1-7, 4-8 July 2011.

[6] Lim, H.C., Babu, S., and Chase, J.S. Automated control for
elastic storage. In Proceedings of the 7th international
conference on Autonomic computing (ICAC '10). ACM, New
York, NY, USA, 1-10.

[7] Boto: A Python Interface to Amazon Web Services. [Online].
Retrieved February 24, 2013, from:
http://boto.readthedocs.org

[8] Condor Log Analyzer. University of Notre Dame. [Online].
Retrieved February 24, 2013, from:
http://condorlog.cse.nd.edu

[9] Keahey, K., Armstrong, P., Bresnahan, J., LaBissoniere, D.,
and Riteau, P. Infrastructure outsourcing in multi-cloud
environment. In Proceedings of the 2012 workshop on Cloud
services, federation, and the 8th open cirrus summit
(FederatedClouds '12). ACM, New York, NY, USA, 33-38.

[10] Marshall, P., Tufo, H.M., and Keahey, K. Provisioning
Policies for Elastic Computing Environments. In 9th High-
Performance Grid and Cloud Computing Workshop and the
26th IEEE International Parallel and Distributed Processing
Symposium (IPDPS). 2012.

[11] Marshall, P., Tufo, H.M., et al. Architecting a Large-Scale
Elastic Environment - Recontextualization and Adaptive
Cloud Services for Scientific Computing. In ICSOFT. 2012.
Rome, Italy.

[12] Mao, M. and Humphrey, M. Auto-scaling to minimize cost
and meet application deadlines in cloud workflows.
In Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and
Analysis (SC '11). ACM, New York, NY, USA.

[13] Amazon Web Services: Auto Scaling. [Online]. Retrieved
February 25, 2013, from:
http://aws.amazon.com/autoscaling

[14] FutureGrid. [Online]. Retreived February 25, 2013, from:
http://futuregrid.org

[15] Marshall, P., Keahey, K., and Freeman, T. Elastic Site: Using
Clouds to Elastically Extend Site Resources. In Proceedings
of the 2010 10th IEEE/ACM International Conference on
Cluster, Cloud and Grid Computing (CCGRID '10). IEEE
Computer Society, Washington, DC, USA, 43-52.

[16] TORQUE Resource Manager. Adaptive Computing.
[Online]. February 25, 2013, from:
http://www.adaptivecomputing.com/products/open-
source/torque

[17] Nimbus: Cloud Computing for Science. [Online]. Retrieved
April 19, 2013, from: http://www.nimbusproject.org

[18] Amazon Elastic Compute Cloud. Amazon Web Services.
[Online]. Retrieved April 19, 2013, from:
http://aws.amazon.com/ec2/

[19] HTCondor. High Throughput Computing. [Online].
Retrieved April 24, 2013, from:
http://research.cs.wisc.edu/htcondor/

