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ABSTRACT 
With the proliferation of infrastructure clouds it is now possible to 
consider developing applications capable of leveraging multi-
cloud environments. Such environments provide users a unique 
opportunity to tune their deployments to meet specific needs (e.g., 
cost, reliability, performance, etc.). Open source multi-cloud 
scaling tools, such as Nimbus Phantom, allow users to develop 
such multi-cloud workflows easily. However, user preferences 
cannot always be achieved at the outset for a variety of reasons 
(e.g., availability limitations, financial constraints, technical 
obstacles, etc.). Despite this, it is possible that many preferences 
can be met at a later time due to the elastic nature of infrastructure 
clouds. Rebalancing policies, which replace instances in lower-
preferred clouds with instances in higher-preferred clouds, are 
needed to meet these preferences. 

We present an environment that manages multi-cloud deployment 
rebalancing by terminating instances, in lower-preferred clouds 
and launching replacement instances in higher-preferred clouds to 
satisfy user preferences. In particular, users define a preferred 
cloud ratio, e.g., 75% instances on one cloud and 25% instances 
on another, which we attempt to achieve using rebalancing 
policies. We consider three rebalancing policies: 1) only idle 
excess instances are terminated, 2) excess instances are terminated 
gracefully, and 3) worker instances are aggressively terminated, 
even if they are running user jobs. To gauge the effectiveness of 
our rebalancing strategy, we evaluate these policies in a master-
worker environment deployed across multiple NSF FutureGrid 
clouds and examine the ability of the policies to rebalance multi-
cloud deployments appropriately, and analyze trade-offs.  

Categories and Subject Descriptors 
H.3.4 [Systems and Software]: Distributed Systems; K.6.2 
[Installation Management]: Computing Equipment Management 

General Terms 
Management, Design, Experimentation 

Keywords 
Cloud computing, Infrastructure-as-a-Service, Rebalancing, Policies 

1. INTRODUCTION 
Multi-cloud environments leverage infrastructure-as-a-service 
(IaaS) clouds to integrate resources from multiple cloud 

infrastructures. These deployments allow users to take advantage 
of differences in various clouds, including price, performance, 
capability, and availability differences. As an example, a user may 
leverage multiple clouds, including community clouds, such as 
FutureGrid [14], and for-pay public clouds, such as Amazon EC2 
[18]. A community cloud, for example, often is the user’s 
preferred cloud because it is provided at a reduced monetary cost, 
or possibly even free. However, it may offer significantly fewer 
resources than larger for-pay public cloud providers. Users are 
then faced with a dilemma of choosing where to deploy their 
instances. In such a scenario, a user may choose to delay 
deployment, and thus delay processing his workload, until his 
preferred cloud is available. However, another option is to define 
an explicit preference for the clouds (e.g., specifying that the less 
expensive clouds should be used whenever available) but 
immediately deploy instances wherever possible and then 
rebalance the deployment at a later time as needed. For example, 
because community clouds with limited resources are not always 
available, especially if demand is high, the environment can 
launch instances on lower-preferred clouds, such as public cloud 
providers. As clouds with a higher-preference become available, 
the environment should rebalance, automatically downscaling, 
that is, terminating instances, in lower-preferred clouds, and 
upscaling, launching instances in higher-preferred clouds. 

Upscaling is typically automated by auto-scaling services, such as 
Nimbus Phantom [9] or Amazon’s Auto Scaling Service [13], 
which allow users to define the number of instances that should be 
deployed in each cloud. Auto-scaling services then launch the 
instances and monitor them, replacing them if they crash or are 
terminated prematurely. However, downscaling isn’t typically 
automated and presents a number of unique challenges that must 
be addressed. For instance, users must be able to clearly define 
their preferences for different clouds and policies must be created. 
These policies should identify which clouds to terminate instances 
in, which instances to terminate, and how the instances should be 
terminated (e.g., wait until instances are idle or immediately 
terminate instances with running jobs, thus causing jobs to be 
rescheduled). Rebalancing policies should balance user 
requirements as well as workload and environment characteristics 
to avoid introducing excessive workload overhead. To accomplish 
this, rebalancing implementations must integrate with existing 
workload resource managers and provide the functionality 
required by the policies, such as identifying the state of instances 
(e.g., busy or idle) or marking workers as “offline”.  

In this paper, we examine factors that influence rebalancing 
decisions. Specifically, we consider master-worker environments 
where resources are dedicated to processing user workloads. In 
this context, we attempt to identify whether, and if so under what 
conditions, we may be justified in causing jobs to be killed by 
terminating running instances for rebalancing purposes. We 
propose three rebalancing policies that use job and instance 
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information to determine whether or not an instance should be 
terminated.  The first policy waits until instances are idle before 
they are terminated. The second policy forcibly marks instances 
offline, allowing them to finish running jobs but preventing them 
from accepting new jobs, and then terminates the instances once 
they become idle. The third policy uses a “progress threshold” to 
decide whether or not to terminate the instances. For example, if 
the threshold is set to 25% and a job is expected to run for two 
hours, a node that has been running the job is only eligible for 
termination during the first 30 minutes of execution. We also 
develop a multi-cloud architecture that incorporates these policies 
with master-worker environments.  

For experimental evaluation, we deploy our solution using 
multiple NSF FutureGrid clouds and use Nimbus Phantom for our 
auto-scaling service. Our evaluation examines the benefits and 
trade-offs associated with each policy. Less aggressive policies 
are able to provide zero-overhead rebalancing at the expense of 
leaving the deployment in a non-desired state for longer periods of 
time. More aggressive policies, on the other hand, rebalance the 
environment quickly but introduce workload overhead and delay 
overall workload execution. The most aggressive policy, however, 
appears to strike the best balance by rebalancing the environment 
quickly, reducing cost by up to a factor of 3, while only increasing 
workload execution time by up to 14.7%.  

The remainder of the paper is organized as follows. In Section 2 
we examine the general approach of rebalancing in multi-cloud 
environments and describe our implementation and policies. In 
Section 3, we evaluate the policies and identify the trade-offs 
associated with each policy. In Section 4, we discuss the related 
work and in Section 5 we propose directions for future work. We 
conclude in Section 6. 

2. APPROACH 
2.1 Models and Assumptions 
We propose a multi-cloud environment that is capable of 
processing user demand and distributing work to resources 
deployed across multiple clouds. For example, such an 
environment might consists of a pool of web servers, distributed 
between different cloud data centers, responding to user requests 
for a single website. Another example is an HTCondor pool with 
workers distributed between multiple clouds, all pulling jobs from 
a single, central queue. When deploying such an environment, a 
user may define a desired request for how many resources to 
deploy across different clouds throughout the environment. These 
requests can be expressed in two forms: 1) in terms of absolute 
numbers of instances needed in selected clouds, e.g., R={32 
instances in cloud A, 8 instances in cloud B}; 2) in terms of total 
numbers of instances and preferred ratios, e.g., R={40 instances 
total; 80% in cloud A, 20% in cloud B}. However, such requests 
may lead to situations where a deployment cannot be satisfied, at 
least initially. For example, instead of matching the request R={32 
instances in cloud A, 8 instances in cloud B}, we may have 24 
instances in cloud A (which may not be able to launch additional 
instances) and, thus, end up with 16 instances in cloud B. 
Therefore, as the environment adapts, additional instances should 
be launched in cloud A whenever possible and instances in cloud 
B should be terminated until the users’ preferences are met. 

We assume that the multi-cloud deployment is deployed and 
managed by a central auto-scaling service. In particular, we use 
the open source Phantom auto-scaling service, which is 
responsible for servicing requests to deploy instances across 
multiple clouds and monitoring those instances, replacing them if 

they crash or are terminated prematurely. We also assume that the 
environment uses a master-worker paradigm to process demand, 
such as an HTCondor pool, using a “pull” queue model. That is, 
workers distributed across multiple clouds request jobs from a 
central queue when they are available to execute jobs. The central 
scheduler reschedules jobs when workers fail or are terminated for 
rebalancing. The job scheduler must also be able to: 1) provide 
status information about workers, including job state (e.g., busy or 
idle), jobs running on the workers, and up-to-date job runtimes; 2) 
provide information about the queue, including a list of running 
and queued jobs; 3) add an instance to the worker pool; and 4) 
remove an instance from the worker pool, either gracefully by 
allowing it to finish running its job or immediately by 
preemptively terminating the worker and its jobs. Many modern 
job schedulers, including Torque and HTCondor, provide these 
capabilities. Because we use a “pull” queue model, only 
embarrassingly parallel workflows are considered. In such 
workflows, jobs can be terminated, rescheduled, and re-executed 
out of order without consideration for other jobs in the set. 

In this context, we define the following terms: 
• Multi-cloud request: a request that specifies the configuration 

of a multi-cloud deployment either using absolute numbers 
(e.g., 32 instances in cloud A and 8 instances in cloud B) or as a 
ratio (e.g., 40 instances with 80% in cloud A and 20% in cloud 
B). It is specified by the user and typically represents his 
desired preferences for various clouds. 

• Desired state: when the multi-cloud deployment matches the 
specified multi-cloud request. For example, if the user specifies 
a multi-cloud request with 32 instances in cloud A and 8 
instances in cloud B and the running deployment matches this 
request, then it is in the desired state. 

• Rebalancing: the process of transitioning the deployment in an 
attempt to reach the desired state. This occurs when the 
deployment is not in the desired state so instances are 
terminated in some clouds and replacement instances are 
launched in other clouds in order to reach the desired state. 
Even after the desired state is reached, the system must 
maintain it. However, it is possible for the system to return to 
an undesired state. For example, if failed instances cannot be 
replaced on the preferred cloud and are instead deployed on a 
less-preferred cloud, then the system will again attempt to reach 
the desired state. 

• Downscaling: the termination of running instances that occurs 
during rebalancing. Depending on the difference between the 
current deployment and the request, there may be a need to 
terminate many instances (e.g., terminate all instances in cloud 
A) or only a particular one (e.g., terminate an instance in cloud 
A with a particular ID). Selecting the appropriate instance to 
terminate is a non-trivial task. This process has two main 
components: 1) real-time information about all instances is 
required, such as jobs currently running on those instances, and 
2) specific instances need to be identified for termination 
according to the policy. For example, a policy may select an 
instance for termination based on the progress of the job it is 
executing. An instance that is close to completing its job is 
considered to be more valuable than an instance that has just 
started execution of its job. Additionally, if an instance is idle 
(i.e., it’s not currently executing a job) then it may be 
terminated immediately.  

• Upscaling: the process of deploying instances throughout the 
multi-cloud environment to ensure that the total number of 



 

 

instances specified in a multi-cloud request is satisfied. 
Upscaling attempts to launch instances on clouds with a higher 
preference, however, if such clouds are unavailable then 
upscaling will deploy instances on clouds with lower 
preferences. 

• Excess instances: instances in a particular cloud that exceed the 
desired amount. For example, if a multi-cloud request specifies 
that 15 instances should be deployed with 10 instances in cloud 
A and 5 instances in cloud B, but at the given time all 15 
instances can only be deployed in cloud B, then cloud B would 
have 10 excess instances. 

While there may be cases where it is crucial for multi-cloud 
deployments to satisfy user preferences before job execution 
begins, we believe stalling job execution until the environment is 
in the desired state is not necessary. Instances that are already 
deployed in less desirable clouds can yield partial results while 
rebalancing occurs instead of delaying deployment and providing 
no results at all. A multi-cloud deployment that is running jobs 
should continue to process jobs in less desirable clouds and rely 
on rebalancing to achieve the desired state. 

2.2 Architecture 
The multi-cloud architecture that we designed extends the 
architecture presented in [15]. It deploys workers across several 
cloud resource infrastructures and dynamically balances this 
deployment based on user-defined preferences. The architecture is 
depicted in Figure 1 and consists of four main components: (1) a 
workload management system (including a job scheduler and 
workers), (2) sensors to monitor demand, (3) policies to scale the 
number of deployed instances up or down, and (4) an auto-scaling 
service to enforce the chosen policy. 
In this environment, the master node hosts the job scheduler for 
the workload management system that accepts user jobs and 
schedules them to run on worker nodes deployed across multiple 
clouds (see Figure 1). The sensor periodically queries the job 
scheduler and gathers information about the queued jobs and their 
runtimes as well as worker status. The sensor provides this 
information to the decision engine, which then executes a policy 
that decides how to adjust the deployment, potentially 
downscaling it on one cloud and upscaling on another, to satisfy 
user preferences.  

Users define their preferences for different clouds in their multi-
cloud requests, e.g., specifying that they want 20 instances, with 
half deployed on one cloud and half on another cloud. The 
decision engine also includes per-cloud timers and predefined 
time-outs to avoid undesired scenarios where upscaling and 
downscaling are performed on the same cloud within a short 
period of time. 

To enact upscaling or downscaling, the auto-scaling decision 
engine instructs the service to deploy, maintain, or terminate 
workers across the different clouds. The job master and workers 
operate relatively independently of the multi-cloud architecture, 
integrating new workers that are deployed, processing jobs on 
available instances, and rescheduling any jobs that are terminated 
prematurely. However, in some cases, the decision engine may 
need to make specific requests of the workload management 
system. For example, policies that elect to mark workers offline, 
allowing them to finish their jobs and preventing them from 
accepting new jobs, must be able to communicate with the 
workload management system. In our architecture this is 

accomplished by communicating the request through the sensor, 
which then performs the operation on the master node. 

2.3 Rebalancing Policies 
Rebalancing alters multi-cloud deployments and may be 
disruptive from the workload’s perspective. For example, 
terminating an instance may cause a running job to be terminated 
prematurely, causing the job to be rescheduled for execution on a 
new worker. The workload’s total execution time may increase as 
a result. On the other hand, executing a user’s workload in a 
multi-cloud environment that is not in the desired state might lead 
to other problems, including overall performance degradation, 
unexpected expenses, additional data transfers, etc. Therefore, 
rebalancing policies are needed for multi-cloud environments; 
their objective is to achieve the desired state, if possible, and only 
minimally impact user workloads.  

In this work, the existing auto-scaling decision engine performs 
upscaling and tries to maintain the total number of instances as 
specified in the multi-cloud request. For downscaling, we propose 
the following policies: 

• Opportunistic-Idle (OI): waits until excess instances in less 
desired clouds are idle (i.e., not running jobs according to 
information from the sensor) and then terminates them. This 
policy continues to terminate excess idle instances until the 
deployment reaches the desired state. It begins with clouds that 
have the most excess instances before proceeding to the clouds 
with fewer.  

• Force-Offline (FO): is similar to OI but excess instances are 
terminated gracefully, that is, jobs are allowed to complete 
before the instances are terminated. To terminate instances 
gracefully, the auto-scaling service notifies the jobs scheduler 
which instances are to be terminated, and the job scheduler then 
marks them “offline”. Graceful termination allows those 
instances to complete currently running jobs. Once the jobs 
complete, the workers do not accept any new jobs and can be 
terminated. This policy requires that the job scheduler support 
the ability to “offline” workers. FO does not terminate instances 
once the desired number of instances is reached in each cloud. 

• Aggressive Policy (AP): sacrifices work cycles and discards 
partially completed jobs in order to satisfy requests in the 
shortest amount of time possible. This policy terminates excess 
instances even if those instances are currently running jobs. To 
minimize overhead associated with job re-execution, this policy 

 
Figure 1. Multi-cloud architecture with workload and 
management components where rebalancing is guided by 
upscaling and downscaling policies. 



 

 

proceeds in termination from instances with jobs that have been 
running for the least amount of time to instances with jobs that 
have been running for a longer time. Additionally, since the 
amount of work to discard may vary, we include a tunable 
parameter, work threshold (measured in percent). Work 
threshold specifies how much progress on its current job with 
respect to the job’s walltime (i.e., expected job’s runtime) an 
instance has to make before this instance may no longer be 
terminated. For example, if we choose the 25% threshold and 
one of the instances executes a two-hour job, the policy is only 
allowed to terminate it for up to 30 minutes after beginning of 
execution. While job runtimes may be predictable, we avoid 
relying on the accuracy of such predictions and consider 
walltimes that are explicitly provided. Job walltimes are 
typically limited by the cluster administrator (e.g., to 24 hours), 
and prevent users from specifying excessive walltime requests.  

2.4 Implementation 
We leverage a number of existing technologies for our multi-
cloud deployment. Specifically, we use infrastructure clouds, such 
as Nimbus [17] and Amazon EC2 [18], which provide on-demand 
resource provisioning. Our environment integrates with the open 
source Phantom service for auto-scaling. Phantom [9] is 
responsible for servicing multi-cloud requests and deploying the 
instances across the specified clouds. It also continually monitors 
the deployment and maintains the requested number of instances. 
We also rely on a master-worker workload management system, 
specifically HTCondor [19], which monitors and manages a pool 
of workers across distributed resources. This includes the ability 
to submit jobs to a central queue and schedule jobs across 
distributed workers. HTCondor also includes job resubmission 
and migration capabilities, which guarantee that every job 
eventually completes even if some workers are terminated 
prematurely. Lastly, HTCondor provides the required information 
about workload execution, specifically, which jobs are queued or 
running, as well as the amount of time they have been running. 

To integrate with the leveraged technologies, we develop two 
additional components for the implementation: the sensor and the 
rebalancing policy. The sensor, written in Python, communicates 
with HTCondor master nodes and obtains necessary job and 
worker information for the policies using the condor_status and 
condor_q commands. This provides three pieces of information: 
1) the number of HTCondor workers running in each cloud (e.g., 
condor_q -run), 2) information required to identify idle workers 
(e.g., condor_status), and 3) a list of workers and their current 
runtimes and walltimes. However, some policies require that the 
sensor also communicates with the workload management system 
(e.g., when marking nodes offline). Therefore, the sensor is both 
able to send information to the policy and receive instructions 
from it. When the policy instructs the sensor to remove a worker 
from the pool, the sensor issues the condor_off command. To 
terminate an instance gracefully (e.g., when using FO), the sensor 
executes the following command: condor_off –peaceful 
<hostname>. AP removes instances from the pool instantly using: 
condor_off –fast <hostname>. 

In addition to workload information, the system must also query 
the auto-scaling service, Phantom, and the individual IaaS clouds 
to identify all of the instances in the auto-scale group as well as 
their distribution across the clouds. The instance IDs reported by 
Phantom also need to be compared with the instance IDs reported 
by individual clouds in order to identify the specific clouds auto-
scale instances are running on. This information is used by the 
policy, along with workload information, to guide rebalancing 

decisions. The policies, written in Python, collect the necessary 
information and then attempt to match the deployment with the 
user’s multi-cloud request, downscaling on clouds with excess 
instances and upscaling on high-preferred clouds when needed. 
To accomplish this, the downscaling component of the policy 
communicates with the auto-scaling service, using the Python 
boto library [7], and makes adjustments to the configuration in 
order to satisfy the request. Phantom then provides an ordered 
cloud list and capacity parameters that can be adjusted for this 
purpose. The ordered cloud list specifies the maximum number of 
instances in each cloud and can be set to match the request for a 
specific cloud, while the capacity parameter controls the total 
number of instances across all clouds and can be set 
independently from the ordered list.  
Upscaling is performed by an existing Phantom decision engine, 
which tries to maintain a total number of instances deployed 
across the preferred clouds. Phantom implements its own 
n_preserving policy, which allows it to maintain the requested 
number of running instances, replacing failed instances when 
needed. When Phantom replaces failed or terminated instances, it 
does so according to the ordered cloud list, meaning that if 
instances are terminated in a lower-preferred cloud, it first 
attempts to deploy replacement instances in a higher-preferred 
cloud. It only resorts to lower-preference clouds if it is unable to 
deploy instances in higher-preferred clouds (e.g., due to 
unavailability).  

3. Evaluation 
To evaluate proposed rebalancing policies, we examine the ability 
of the environment to rebalance the deployment in order to satisfy 
multi-cloud requests and reach the desired state. That is, the 
policies attempt to adjust the deployment to match user 
preferences as quickly as possible while avoiding excessive 
workload overhead. Specifically, we consider the scenario where 
cloud availability changes over time due to external factors. For 
example, when other users terminate instances it may be possible 
to deploy additional instances in higher-preferred clouds and 
downscale in lower-preferred clouds. We choose not to simulate 
this type of unexpected change in availability directly; instead we 
focus on the behavior of our policies once such changes in 
availability occur. Therefore, in each of our experimental 
evaluations, we assume that the evaluation begins with the 
deployment in an undesired state but that higher-preferred clouds 
now have additional capacity available, allowing the policies to 
attempt to reach the desired state. 

For our environment, we use NSF FutureGrid [14] and two 
workload traces from the University of Notre Dame’s Condor Log 
Analyzer [8]. HTCondor is used as the workload management 
system. We leverage its ability to reschedule jobs that are 
terminated prematurely. On FutureGrid we use the Hotel cloud at 
the University of Chicago (UC) and Sierra at the San Diego 
Supercomputer Center (SDSC).  Both clouds use Nimbus as the 
IaaS toolkit and Xen for virtualization. The master node and all 
the worker nodes run Debian Lenny images, approximately 1 GB 
compressed, with HTCondor 7.8.0 as the workload manager. The 
master node VM has two 2.93GHz Xeon cores and 2 GB of RAM. 
Workers have one 2.93GHz Xeon core and 2 GB of RAM. 
Instances are contextualized as the master or a worker 
automatically at boot. In particular, the IaaS userdata field is used 
to provide the hostname of the master, in which case, the node 
configures itself as a worker and attempts to join the master. If the 
field is empty, the instance configures itself as the master. 



 

 

In this evaluation, we differentiate between Hotel and Sierra by 
specifying different costs for their instances. Specifically, we 
assume instances on Hotel have 1 unit of cost and instances on 
Sierra have 2 units of cost. We also specify a multi-cloud request 
for a total of 64 instances with 100% of the instances on Hotel and 
0% on Sierra, representing the case where a user desires that all of 
his instances be deployed in the less expensive cloud. However, 
for each experiment, we initialize the environment to have 75% of 
the instances in Hotel (48 instances) and 25% of the instances in 
Sierra (16 instances), requiring rebalancing to occur in order to 
reach the desired state. 

For a job trace, we combine two traces from the HTCondor Log 
Analyzer [8], one consisting primarily of smaller jobs and another 
that contains longer running jobs. The traces are combined into a 
single workload that is submitted immediately at the beginning of 
the evaluation by selecting jobs randomly from each trace. With 
this approach we consider a workload that consists of a variety of 
job runtimes. Individual jobs are submitted as sleep jobs, which 
sleep for the runtime specified in the trace. The combined 
workload consists of 1120 jobs, with a minimum runtime of 54 
seconds and a maximum runtime of 119 minutes. The median 
runtime is 106 seconds and the mean is 443 seconds. 

The system can be configured to execute the policy at any user-
defined interval. For this evaluation, we configure the policy to 
execute every 30 minutes, beginning 30 minutes after the initial 
job submission, in order to rebalance the deployment regularly 
while still allowing for some jobs to complete between 
rebalancing intervals. Exploring different policy execution 

intervals and their impact is left for future work. We expect overly 
aggressive intervals (i.e., a short policy execution interval) and 
relatively passive intervals (i.e., a long policy execution interval) 
to negatively impact the environment by either rebalancing too 
frequently and preventing jobs from finishing or not rebalancing 
often enough, causing high excess cost. However, further 
experimentation is needed to identify the appropriate balance 
between the policy execution interval and workload 
characteristics, including the rate that jobs are submitted and the 
duration they execute. 

For experimental evaluation, we define the following metrics: 
• Workload execution time: the amount of time required for the 

entire workload to complete, that is, the amount of time from 
when the first job is submitted until the time the last job 
completes. 

• Workload overhead percent: the total percent of time jobs run 
before being terminated prematurely. For example, if a two-
hour job runs for 30 minutes before it is terminated, causing it 
to be re-queued and needing to be rerun, then the job 
experiences 25% overhead (assuming that the second run 
finishes). 

• Convergence time: the amount of time it takes for the 
deployment to rebalance from a non-desired state to the desired 
state once the evaluation begins. For example, if the system is 
operating in an undesired state at the moment the first job starts 
execution, convergence time is the time from that moment until 
the system reaches the desired state (i.e., the specified multi-
cloud preference is satisfied).  

 

 

 
Figure 2. OI terminates 16 instances after most jobs complete.  Figure 3. Gradual downscaling with FO. 

 

 

 
Figure 4. Considerate aggressive downscaling with AP-25.  Figure 5. Fast aggressive downscaling with AP-100. 



 

 

• Excess cost (EC): the total user-defined cost associated with 
running excess instances. EC is described as: 

EC = cr * pr(ti ! li)
i

Ir

"
r

R

"  

The variables are defined as:    
R: set of all cloud resources used for the deployment, 
Ir: set of all excess instances for every cloud resource, r, 
cr: user-defined instance cost for cloud resource, r, 
pr: time accounting function for cloud resource, r, 
ti: termination time for instance, i, 
li: launch time for instance, i. 

R consists of all clouds that have running instances. Ir is a set 
containing all of the excess instances for cloud resource r. cr 
represents the user’s definition of cost associated for an excess 
instance in cloud resource, r, for one unit of time. Depending 
on the cloud resource, r, pr may differ to represent various time 
accounting methods, such as per-second usage or rounding up 
to the nearest hour, etc. ti and li are the specific instance 
termination and launch times. Intuitively, EC is intended to 
represent the cost of running excess instances, that is, using 
instances on clouds beyond the amount specified in the multi-
cloud request. EC offers a fine-grained metric compared to 
convergence time, which only provides a course representation 
of when the environment finally reaches the desired state.   

In addition to these metrics, we also include a set of job traces that 
show the number of instances running as well as the number of 
jobs submitted, running, and complete. As described earlier, we 
specify a multi-cloud request with a preference for 64 workers in 
Hotel and 0 in Sierra, but the environment is initialized in an 
undesired state with 48 workers running in Hotel and 16 workers 
in Sierra. Therefore, the rebalancing policies attempt to terminate 
all workers in Sierra, while Phantom replaces the instances in 
Hotel until it has 64 running worker instances.  

3.1 Understanding Deployment Transformations 
All policies pursue the same goal: downscaling 16 instances on 
Sierra, the lower-preferred cloud, and upscaling on Hotel, the 
higher preferred cloud. Traces are included for the four different 
policies, OI (Figure 2), FO (Figure 3), AP-25 (Figure 4), and AP-
100 (Figure 5). AP-25 uses a 25% threshold and AP-100 uses a 
100% threshold. The traces show job information (jobs 
completed, submitted and running), as well as the distribution of 
worker instances across Hotel and Sierra.  

In the experiment shown in Figure 2, OI only attempts to 
terminate idle instances. OI is first able to perform downscaling 
approximately 9000 seconds after initial job submission, that is, 
when all 16 instances in Sierra are idle and can be terminated after 
the entire workload has been processed. This downscaling has no 
effect on the workload since the few jobs that are still running at 
the time of downscaling occupy several of Hotel’s instances 
(where downscaling doesn’t occur) and continue to run 
unaffected. This downscaling policy may be valuable if the user 
continues to use the same deployment and executes another 
workload at a later time. Then, the deployment has already been 
adjusted and, if no failures happen, all new jobs are executed in 
the rebalanced environment. In general, OI is only useful in 
situations where user jobs are submitted in a series of batches that 
are interleaved with periods of idle time when rebalancing can 
occur (i.e., OI will not work on a fully utilized system).  
Figure 3 illustrates an experiment where FO terminates instances 
gracefully. This policy marks all 16 excess instances “offline” 

during its first evaluation at 1800 seconds after initial job 
submission. Instances that are executing jobs at that time must 
wait for jobs to finish before the instances can be removed from 
the worker pool and terminated. Thus, after 2300 seconds, 3 
instances are terminated, after 2800 seconds 8 additional instances 
are terminated, etc. Rebalancing continues until there are no 
remaining instances in Sierra, which occurs when the last instance 
is finally terminated after 4600 seconds. Every termination causes 
a noticeable drop in the trace showing the number of running jobs. 
These drops indicate temporary reductions in the worker pool that 
follow downscaling actions and last until replacement instances 
boot and join the worker pool. Since there are less than 64 running 
instances at certain periods of time, it takes longer for the 
workload to complete in this experiment than for the OI 
experiment, which rebalances after the workload completes. 
However, we do observe a faster convergence time for FO than 
OI; all 64 instances are running on Hotel after 4600 seconds. FO 
demonstrates an average execution time increase of 12.6% and an 
average convergence time decrease of 48.4% with respect to OI’s 
time characteristics (Figure 6). 

We evaluate two variations of AP: AP-25 and AP-100. The first, 
AP-25, terminates excess instances only if jobs running on those 
instances have been running for less than 25% of their requested 
walltime. We choose to use the 25% threshold to demonstrate a 
considerate implementation of AP, which attempts to achieve low 
overhead rather than fast convergence. In contrast, AP-100, 
having no threshold, terminates all excess instances without 
consideration of job progress (specifically, AP-100 terminates 
instances with jobs that have been running for less than 100% of 
their requested walltime). This is a special case when the user 
prefers to rebalance as fast as possible regardless of the amount of 
work that is discarded.  

Figure 4 shows that AP-25 cannot perform the necessary 
adjustments all on the first try, and thus, rebalancing is a gradual 
process, similar to FO. A 25% threshold yields premature 
termination of 16 jobs that are running on Sierra’s instances, 
which individually have been running for 267 seconds on average. 
The maximum runtime among those jobs is 933 seconds. In this 
experiment the total amount of discarded work cycles is about 71 
minutes, which is only 0.9% of the total CPU time used by all 64 
instances throughout the evaluation.  

Figure 5 shows AP-100, which converges to the desired state the 
fastest. This policy terminates all 16 instances in Sierra during its 
first evaluation after 1800 seconds. At that time, 16 jobs are 
terminated prematurely after running for an average of 28 
minutes. The maximum runtime is over 30 minutes. 458 minutes 
of discarded work result in 5.2% workload overhead. 

3.2 Understanding Trade-offs 
Figure 6 shows workload execution time, convergence time, 
percent workload overhead, and excess cost for all four policies. 
We calculate mean values and standard deviations for these 
metrics using a series of experiments with three iterations for each 
policy. OI provides the shortest workload execution time, while 
other policies introduce a noticeable increase in the execution 
time. This is because OI does not affect the workload, as 
described earlier, and waits for the entire workload to complete 
before rebalancing occurs. Switching from OI to FO, AP-25 and 
AP-100 introduces an average workload execution increase of 
12.6%, 12.9% and 14.7%, respectively. FO, AP-25 and AP-100 
all appear to have comparable execution times, while OI 
consistently provides the lowest execution time with negligible 
variance (indicated by no error bar in the graph).  



 

 

OI’s convergence, shown in Figure 6, happens after workload 
completion, specifically, at 3.1 hours. FO’s gradual downscaling 
completes after 1.6 hours. AP-25’s convergence completes after 
2.5 hours. As expected, AP-100 provides the fastest convergence 
time, which is approximately 0.6 hours.  

For workload overhead (that is, the amount of discarded work), OI 
and FO have none (indicated with zero-height bars in the 
rightmost graph). By design, these policies never attempt to 
terminate instances when it leads to premature job termination. 
AP-25 and AP-100, however, are designed to accomplish 
downscaling via premature termination, demonstrate average 
workload overheads of 1.5% and 5.7%, respectively. The highest 
observed overheads are 2.4% for AP-25 and 6.6% for AP-100.  
Finally, we also consider the excess cost, EC, of the experiments 
(Figure 6). As described earlier, we assume cr for Hotel to be 1 
unit of cost and cr for Sierra to be 2 units of cost. However, it 
should be noted that this cost may differ for users and could 
instead correspond to a user's weighted preference or a dollar 
amount for instances. We consider a pr function that rounds up 
instance usage to the nearest hour and obtain ti and li times for 
instances from our experiment logs. In Figure 6, OI has the 
highest EC at 97.3 units of cost on average, since rebalancing 
doesn’t occur until after the workload completes and, thus, 
requires excess instances to run for the majority of the 
experiment. Other policies incur lower EC than OI because they 
perform rebalancing earlier. FO has an average EC of 52.0 units 
of cost, AP-25 has an average EC of 76.0 units of cost and AP-
100 has an average EC of 32.0 units of cost since it rebalances 
completely at the first policy execution, 30 minutes into the 
experiment.  

OI, FO, and AP-100 each have different advantages and trade-
offs, for example, FO converges faster than OI and both have no 
workload overhead but OI has the shortest workload execution 
time. AP-25, on the other hand, doesn't offer significant 
advantages; it has comparable workload execution time to FO but 
higher convergence time, workload overhead, and EC. AP-100, 
however, appears to strike the best balance between quick 
rebalancing and minimizing excess workload overhead and 
execution time. Specifically, AP-100 reduces EC by a factor of 3 
over OI while introducing only 6.6% workload overhead and 
14.7% workload execution time. 

4. RELATED WORK 
Much work has been done on leveraging elastic capabilities of 
infrastructure clouds based on user preferences, performance, and 
scalability. To upscale or downscale cloud deployments, 

researchers have proposed systems that predict workload 
computational needs during execution [1], [3], [4].  These systems 
take two approaches: model-based and rule-based [2]. Our 
purpose was not to predict workload execution, but to monitor the 
workload execution through HTCondor sensors and rebalance the 
environment effectively based on our policies. Typically, 
however, rebalancing is motivated by cost, where the environment 
terminates idle instances to avoid excessive charges. As another 
example, some policies govern rebalancing by triggering live 
migration from one cloud to another [5]. Our work is more 
general than such live migration approaches; in our research, 
workload migration is based on predefined user preferences for 
different clouds and aims to satisfy these preferences before the 
workload completes. Existing policy frameworks that execute 
auto-scaling policies can be adapted to include our policies [9]. 
Our framework relies on similar services to guide the deployment 
toward the user’s desired state. There are also projects that 
examine different policies for efficient demand outsourcing from 
local resources to IaaS clouds [10], [11], but our work focuses on 
policies governing downscaling behavior in multi-cloud 
environments, gradually achieving the user’s desired state. 

5. FUTURE WORK 
In future work, we will investigate mechanisms to improve 
rebalancing in multi-cloud deployments. In particular, we will 
develop a model for multi-cloud requests that include multiple 
objectives, for example, cost and performance. This will allow 
users to specify increasingly complex multi-cloud requests for 
their workflows. We will also investigate the relationship between 
cloud availability, the policy execution interval, and workload 
characteristics. This will provide a foundation for automated 
workflow-aware rebalancing in multi-cloud environments. As part 
of this work, we will consider additional factors to guide 
rebalancing processes, such as, the requested number of CPUs per 
job and the amount of communication between parallel jobs. 
Tightly coupled applications (i.e., those that have high 
communication to computation ratio), should execute on instances 
within a single cloud as much as possible and the rebalancing 
policies should accommodate that. In cases when only a single 
cloud, perhaps not the most desired one, is capable of providing a 
large number of CPUs requested by queued jobs, the policies 
should avoid downscaling in that cloud past the minimum number 
of instances required by the jobs. Policies should also be adapted 
to support workloads with dependencies. Rebalancing should be 
avoided or postponed if it causes rescheduling jobs and delaying 
many jobs in dependency chains.  

6. CONCLUSIONS 
We configure a multi-cloud environment capable of processing 
user demand where worker instances are distributed across 
multiple cloud infrastructures and work collaboratively to process 
queued tasks. We use an auto-scaling service, Phantom, to launch 
and monitor instances across multiple clouds. Phantom replaces 
instances if they crash and terminates them based on rebalancing 
policies. We also propose several rebalancing policies that guide 
these deployments towards requested multi-cloud configurations 
while having minimal impact on the workload, if possible. 

To evaluate our policies in this environment, we use a workload 
that consists of traces from the HTCondor Log Analyzer and 
monitor the policies while they rebalance deployments that consist 
of 64 instances running across two clouds and processing 
workload jobs. Our experimental evaluation shows that the 
policies adjust the multi-cloud deployments properly to reach the 
desired state. Our opportunistic policy is able to rebalance the 

 
Figure 6. Mean workload execution time (hours), convergence 
time (hours), workload overhead (percent), and excess cost. Three 
iterations are run for each policy and no error bar indicates very 
little deviation. OI and FO also have 0% workload overhead. 



 

 

deployment without introducing workload overhead, however, it 
requires a high excess cost. Another policy, force-offline, not only 
terminates idle instances but also marks them “offline,” 
preventing them from accepting new jobs before being 
terminated. Finally, our aggressive policy provides the fastest 
convergence time and the lowest excess cost, reducing it by a 
factor of 3 over the opportunistic policy while only introducing 
6.6% workload overhead due to premature job termination 
required for immediate rebalancing.  
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