
1

The Swift scripting language for

Science Clouds

Justin M. Wozniak

Computation Institute, University of Chicago
and Argonne National Laboratory

wilde@mcs.anl.gov
Revised 2012.0229

www.ci.uchicago.edu/swift

2

Context

• You’ve heard this afternoon how to run Science
work in Clouds

• But further challenges need to be addressed:

– Running applications with data dependencies that
require complex pipelines

– Moving data fast and automatically

– Dynamically changing size of provisioned resource
pools

– Handling failures of nodes, networks, application
stacks

3

Example – MODIS satellite image processing

• Input: tiles of earth land cover (forest, ice, water, urban, etc)

MODIS analysis script MODIS
dataset

5 largest forest land-cover
tiles in processed region

• Ouput: regions with maximal specific land types

4

Goal: Run MODIS processing pipeline in cloud

analyzeLandUse colorMODIS

assemble

markMap
getLandUse

x 317

analyzeLandUse

colorMODIS
x 317

getLandUse
x 317

assemble

markMap

MODIS script is automatically
run in parallel:

Each loop level
can process tens
to thousands of
image files.

5

Submit host (login node, laptop, Linux server)

Data server

Swift
script

Swift runs parallel scripts on cloud resources
provisioned by Nimbus’s Phantom service.

Solution: Swift parallel distributed scripting

Clouds:
Amazon EC2,

NSF
FutureGrid,

Wispy, …

Nimbus,
Phantom

6

Features overview

• Swift is a parallel scripting language for multicores, clusters, grids, clouds,
and supercomputers
– for loosely-coupled “many-task” applications –

programs and tools linked by exchanging files

– debug on a laptop, then run on a large system

• Swift is easy to write
– a simple high-level functional language with C-like syntax

– Small Swift scripts can do large-scale work

• Swift is easy to run: contains all services for running the workflow - in one
Java application
– untar and run – Swift acts as a self-contained grid or cloud client

– Swift automatically runs scripts in parallel – typically without user declarations

• Swift is fast: based on a powerful, efficient, scalable and flexible Java
execution engine
– scales readily to millions of tasks

• Swift is general purpose:
– applications in neuroscience, proteomics, molecular dynamics, biochemistry,

economics, statistics, earth systems science, and beyond.

7

MODIS script in Swift: main data flow

foreach g,i in geos {

 land[i] = getLandUse(g,1);

}

(topSelected, selectedTiles) =

 analyzeLandUse(land, landType, nSelect);

foreach g, i in geos {

 colorImage[i] = colorMODIS(g);

}

gridMap = markMap(topSelected);

montage =

 assemble(selectedTiles,colorImage,webDir);

8

Demo of Nimbus-Phantom-Swift on FutureGrid

• User provisions 5 nodes with Phantom

– Phantom starts 5 VMs

– Swift worker agents in VMs contact Swift coaster service to request work

• Start Swift application script “MODIS”

– Swift places application jobs on free workers

– Workers pull input data, run app, push output data

• 3 nodes fail and shut down

– Jobs in progress fail, Swift retries

• User can add more nodes with phantom

– User asks Phantom to increase node allocation to 12

– Swift worker agents register, pick up new workers, runs more in parallel

• Workload completes

– Science results are available on output data server

– Worker infrastructure is available for new workloads

9

Swift and Phantom provide fault tolerance

• Phantom detects downed nodes and re-provisions
• Swift can retry jobs

– Up to a user specified limit
– Can stop on first unrecoverable failure, or continue till no more

work can be done
– Very effective, since Swift can break workflow into many separate

scheduler jobs, hence smaller failure units

• Swift can replicate jobs
– If jobs don’t complete in a designated time window, Swift can send

copies of the job to other sites or systems
– The first copy to succeed is used, other copies are removed

• Each app() job can define “failure”
– Typically non-zero return code
– Wrapper scripts can decide to mask app() failures and pass back

data/logs about errors instead

10

Land use studies - DSSAT

Median 1980-2009 corn yields (metric tons per hectare) as
simulated by Decision Support System for Agrotechnology Transfer
(DSSAT) driven by National Center for Environmental Prediction (NCEP)
Climate Forecast System Reanalysis (CFSR).

11

DSSAT – workflow schematic

12

DSSAT

• Let’s run it

13

Swift’s Text User Interface (TUI) – Initial State

14

Provide nodes to Swift from ‘hotel’

15

Add 10 more nodes from ‘sierra’

16

Swift starts running jobs…

17

Swift continues (2 hours later)

18

Forcibly terminate some of Swifts’ resources

19

Swift chugs along…

20

Restore Swift’s compute nodes

21

Swift proceeds to completion.

22 IEEE COMPUTER, Nov 2009

23 Parallel Computing, Sep 2011

24

Acknowledgments

• Swift is supported in part by NSF grants OCI-1148443, OCI-
721939, OCI-0944332, and PHY-636265, NIH DC08638, DOE and
UChicago LDRD and SCI programs

• The Swift team (including some related projects) is:

– Mihael Hategan, Justin Wozniak, David Kelly, Ian Foster, Dan
Katz, Mike Wilde, Tim Armstrong, Zhao Zhang

24

25

Questions?

26

Supplementary slides

27

MODIS script: declare data and external science apps

type file;

type imagefile;

type landuse;

app (landuse output) getLandUse (imagefile input, int sortfield)

{ getlanduse @input sortfield stdout=@output ; }

app (file output, file tilelist) analyzeLandUse

 (landuse input[], string usetype, int maxnum)

{ analyzelanduse @output @tilelist usetype maxnum @filenames(input); }

app (imagefile output) colorMODIS (imagefile input)

{ colormodis @input @output; }

app (imagefile output) assemble

 (file selected, imagefile image[], string webdir)

{ assemble @output @selected @filename(image[0]) webdir; }

app (imagefile grid) markMap (file tilelist)

{ markmap @tilelist @grid; }

int nFiles = @toint(@arg("nfiles","1000"));

int nSelect = @toint(@arg("nselect","12")); ...

28

MODIS script: compute land use and max usage

imagefile geos[] <ext; exec="modis.mapper", # Input Dataset

 location=MODISdir, suffix=".tif", n=nFiles >;

Compute the land use summary of each MODIS tile

landuse land[] <structured_regexp_mapper; source=geos, match="(h..v..)",

 transform=@strcat(runID,"/\\1.landuse.byfreq")>;

foreach g,i in geos {

 land[i] = getLandUse(g,1);

}

Find the top N tiles (by total area of selected landuse types)

file topSelected<"topselected.txt">;

file selectedTiles<"selectedtiles.txt">;

(topSelected, selectedTiles) = analyzeLandUse(land, landType, nSelect);

29

MODIS script: render data to display

Mark the top N tiles on a sinusoidal gridded map

imagefile gridMap<"markedGrid.gif">;

gridMap = markMap(topSelected);

Create multi-color images for all tiles

imagefile colorImage[] <structured_regexp_mapper;

 source=geos, match="(h..v..)",

 transform="landuse/\\1.color.png">;

foreach g, i in geos {

 colorImage[i] = colorMODIS(g);

}

Assemble a montage of the top selected areas

imagefile montage <single_file_mapper; file=@strcat(runID,"/","map.png") >; # @arg

montage = assemble(selectedTiles,colorImage,webDir);

30

Submit host
(Laptop, Linux server, …)

Workflow
status

and logs

Java application

Phantom provisions cloud
Compute nodes

f1

f2

f3

a1

a2

Data server

f1 f2 f3

Provenance
log

script
App
a1

App
a2

site
list

app
list

Cloud
resources

Swift supports clusters, grids, and supercomputers.
Download, untar, and run

Runtime to execute Swift apps in the Cloud

31

Examples of other Swift many-task applications

T0623, 25 res., 8.2Å to
6.3Å (excluding tail)

Protein loop modeling. Courtesy A.
Adhikari

Native
 Predicted

Initial

• Simulation of super-
cooled glass materials

• Protein folding using
homology-free approaches

• Decision making in climate
and energy policy

• Simulation of RNA-protein
interaction

• Multiscale subsurface
modeling on Hopper

• Modeling framework for
statistical analysis of
neuron activation

E

D

C

A B

F

A

B

C

D

E

F

32

Summary

• Swift is a parallel scripting language for multicores, clusters, grids, clouds,
and supercomputers
– for loosely-coupled “many-task” applications –

programs and tools linked by exchanging files

– debug on a laptop, then run on a Cray system

• Swift is easy to write
– a simple high-level functional language with C-like syntax

– Small Swift scripts can do large-scale work

• Swift is easy to run: contains all services for running Grid workflow - in one
Java application
– untar and run – Swift acts as a self-contained grid or cloud client

– Swift automatically runs scripts in parallel – typically without user declarations

• Swift is fast: based on a powerful, efficient, scalable and flexible Java
execution engine
– scales readily to millions of tasks

• Swift is general purpose:
– applications in neuroscience, proteomics, molecular dynamics, biochemistry,

economics, statistics, earth systems science, and beyond.

33 Parallel Computing, Sep 2011

34 IEEE COMPUTER, Nov 2009

35

Acknowledgments

• Swift is supported in part by NSF grants OCI-1148443, OCI-
721939, OCI-0944332, and PHY-636265, NIH DC08638, DOE and
UChicago LDRD and SCI programs

• The Swift team (including some related projects) is:

– Mihael Hategan, Justin Wozniak, David Kelly, Ian Foster, Dan
Katz, Mike Wilde, Tim Armstrong, Zhao Zhang

35

