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Abstract 

 
Virtual machines provide a promising platform for computational Grids. By their very nature   

-- virtualization of underlying hardware -- they enable instantiation of a new, independently 
configured guest environment on a host resource. In addition, they offer the benefits of isolation 
and fine-grain enforcement and, given the ability to serialize their state and migrate, offer 
increased flexibility to environments in the Grid. To take advantage of this new technology in Grid 
computing, we introduced the concept of virtual workspaces which can be configured, managed 
and deployed in a Grid environment. Since clusters underlie most significant Grid deployments 
today, in this paper we extended the notion of virtual workspaces to include virtual clusters. We 
describe changes to Grid architecture and evaluate virtual cluster creation and management, the 
impact of executing in virtual clusters on applications as well as the possibility of running several 
virtual clusters on one physical cluster. 

1. Introduction 

Most significant Grid deployments today, such as Grid3 [1] or Open Science Grid (OSG) [2], 
rely on clusters that provide a powerful computation platform for their user communities. However, 
sharing such clusters between different virtual organizations (VOs) [3] is not always easy. 
Problems arise, for example, when VOs have requirements for execution environment 
configuration that are not compatible with the cluster’s installed libraries and toolkits and are 
potentially also incompatible across VOs. While this incompatibility can be remedied by 
partitioning a cluster and automatically installing a certain set of libraries and toolkits, as in [4], 
other sharing problems such as isolation, controlled sharing, and fine-grained usage enforcement 
persist.  

The recent resurgence of interest in virtual machines (VMs) [5] resulted in the development of 
cost-effective and promising solutions such as VMware [6] and Xen [7]. Since VMs offer the 
ability to instantiate a new, independently configured guest environment on a host resource, and 
since they also provide outstanding isolation and enforcement properties, combining such virtual 
machines with Grid technology (as suggested in [8, 9]) may provide an answer to many of the 
problems in Grids today. In addition, the ability to serialize the state of a VM and migrate it opens 
new opportunities for better load balancing and improved reliability that are not possible with 
traditional resources.  

To study these advantages in the context of Grid user communities, in this paper we extend our 
earlier effort in combining Grid and VM technology [10] and explore the application of the virtual 
machine technology to clusters. We define a virtual cluster to be a set of virtual machines 
configured to behave as a cluster and intended to be scheduled on a physical resource at the same 
time. Such a virtual cluster can be configured with software required by a specific Grid 
community; for example, a virtual Grid3 cluster is a virtual cluster configured to operate as a 
cluster within the Grid3. We adopted this example as a test case because it is nontrivial and 

keahey
ANL Tech Report ANL/MCS-P1246-0405



provides access to interesting application workloads. Moreover, success with this case will provide 
a convincing demonstration to a major application community of the feasibility of virtual cluster 
technology.  

Specifically, in this paper we extend the definition of a virtual workspace [10] to encompass 
the notion of a cluster. We describe extensions needed for workspace definition, architecture 
extensions, and changes to Grid services supporting workspace definition and deployment. In this 
context, we describe how such technology can be used to build Grid3 clusters. We use the BLAST 
application [11] from the Grid3 GADU project [12] to evaluate the impact of running in a virtual 
cluster on Grid3 workloads. To gain further insight into the trade-offs associated with the use of 
virtual clusters, we compare the cost of using a virtual cluster with the cost of deployment and 
management of a virtual cluster and consider scenarios in which multiple virtual clusters, owned by 
different virtual organizations, could be run on the same physical cluster.  

The rest of this paper is organized as follows. Section 2 provides background on relevant 
virtualization efforts. Sections 3 and 4 describe conceptual and architectural extensions to the 
virtual workspace needed to accommodate virtual clusters; Section 4 also describes the virtual 
cluster implementation used in this project. Section 5 describes experimental evaluation of virtual 
cluster deployment and management, running application workloads, and running multiple virtual 
clusters on one real cluster. We conclude in Section 6 with comments on future work. 

2. Virtualization and Grid Computing 

A virtual machine [5] is an emulation of lower layers of a computer abstraction on behalf of 
higher layers. A VM representation contains a full image of RAM, disk, and other devices. A 
virtual machine monitor (VMM) is a software process that manages the hardware resources of the 
real machine among instances of VMs, thus allowing multiple instances of VMs to run 
simultaneously on the same hardware. Recent, widespread interest in virtualization led to the 
development of new and efficient virtualization projects such as VMware [6] and Xen [7].  

With superior isolation properties, fine-grained resource management, and the ability to 
instantiate independently configured guest environments on a host resource, virtual machines 
provide a good platform for Grid computing [8, 9]. The In-Vigo project [13, 14] and the associated 
Virtuoso project [15] explored some of the issues involved in combining Grid and virtual machine 
technology especially as relates to networking and deployment. Our approach differs in that it 
focuses on virtual workspaces, first-class entities that need to be managed independently of their 
deployment, treating virtual machines as one of their implementations (infrastructure based on 
dynamic accounts [16] provides another one).  

Driven by community requirements, we also focus on clusters as a primary Grid platform. Such 
a focus has been recognized by other groups. The Cluster on Demand infrastructure [4] first 
introduced the notion of a virtual cluster (albeit in its first iteration not using virtual machines). We 
recognize this effort as complementary to our work; our long-term focus is on describing and 
managing clusters in the Grid rather than developing tools of local control. Another relevant effort 
is an exploratory project [17] evaluating virtual machines for Grid computing in clusters: although 
the authors do not propose a specific architecture, many of the questions they pose are similar to 
ours.  

3. Virtual Clusters  

As described in [10], a virtual workspace is composed of workspace metadata (represented as 
an XML Schema) and implementation-specific information such as a pointer to the image of a VM 
implementing a given workspace. The intent of the metadata is to capture workspace requirements 
in terms of virtual resource, software configuration, and other salient characteristics. In this section, 



we describe the extensions to the workspace metadata and implementation necessary to represent a 
new type of workspace: a virtual cluster. We introduce the term atomic workspace to describe a 
workspace consisting of a single execution environment and cluster workspace to describe a virtual 
cluster.   

3.1. Virtual Cluster Description 

Following conventions common in Grid3 and OSG, we distinguish two kinds of nodes in a 
virtual cluster: a head-node and worker nodes. The purpose and configuration of a head-node are 
typically different from those of worker nodes, especially in software and operational setup. 
Although worker node configurations are similar, they may be assigned different names or their 
status may be different (for example, some nodes may not be operational). For these reasons, we 
represent each node of a cluster by a separate atomic workspace, each with its own metadata and 
image handle, as described in [10]. A set of atomic workspaces representing the nodes of the 
cluster is then wrapped by an XML section containing the information about the cluster as a whole 
such as its type (cluster/atomic), name, number of nodes, or time it was instantiated. All other 
information about a workspace is derived from the metadata of the atomic workspaces describing 
those nodes.  

 
<xs:simpleType name="vwType"> 
 <xs:restriction base="xs:string"> 
  <xs:enumeration value="cluster"/> 
  <xs:enumeration value="atomicvm"/> 
 </xs:restriction> 
</xs:simpleType> 

 
<xs:element name="virtualWorkspace"> 
 <xs:complexType> 
  <xs:sequence> 

  <!—- “generic” section --> 
   <xs:element name="type" type="vwType" default="cluster"/> 
   <xs:element name="nodeNumber" type="xs:integer"/> 
   <xs:element name="name" type="xs:string"/> 
   <xs:element name="creationTime" type="xs:dateTime" 
          minOccurs="0"/> 

    
   <!—- a list of head node and worker nodes --> 
   <xs:element ref="hn:headnode"/> 
   <xs:element ref="wn:workernode" minOccurs="0"/> 
  </xs:sequence> 
 </xs:complexType> 
</xs:element> 

3.2. Virtual Cluster Implementation 

A virtual cluster workspace is implemented in terms of multiple virtual machine images. 
However, since it would be wasteful to stage several copies of potentially identical worker node 
images, we preserve that appearance while using various optimization strategies and image 
reconstruction. The simplest optimization strategy is image cloning: we transfer only one image for 
all the worker nodes and one image for a head node, and then clone the worker node images at 
staging or deployment time. This will work for a set of shutdown images but not necessarily for 
paused images (i.e., images including serialized RAM with execution in progress). We can further 



leverage the understanding of image structure to put together the disk content of a VM on the fly: 
for example, Xen represents the disk associated with an image as a set of partitions each 
represented by a separate file; these partitions can be mounted on deployment. Some of them may 
be available locally reducing staging time of VMs. In cases where differences between images are 
less well articulated, we can experiment with different techniques such as described in [10].  

3.3. Configuring a Grid3 Virtual Cluster 

Grid3 [1] and Open Science Grid [2] support production-quality petascale Grid infrastructure 
for large-scale scientific applications. Membership in these Grids imposes configuration constraints 
on the participating sites. These requirements include specific versions of operating system, NFS 
running across the head node and worker nodes, a scheduler (such as PBS [18]), and potentially 
other software. We used the guidelines available in [19] to prepare the configuration of our virtual 
cluster; similar guidelines could be used to prepare clusters for other communities and 
organizations. After a Grid3 cluster workspace configuration is created in the VW Repository, the 
virtual cluster can be deployed using the services described below. 

4. Interacting with Virtual Clusters 

As described in [10], our architecture is based on two sets of services: VW Repository which 
allows authorized Grid clients to configure, manage, and inspect workspaces; and VW Manager, 
which orchestrates workspace deployment. Configuration and management include actions such as 
adjusting the software configuration of a workspace or extending its lifetime. While the current 
creation process relies on pre-created images, we are working on incorporating various increasingly 
interesting configuration options relying on technologies such as Pacman [20] or SmartFrog [21]. 
Workspace deployment typically involves communication with a VMM running on a physical host.  

In this section we describe the changes to the architecture needed to support virtual cluster 
workspaces.   

4.1. Virtual Workspace Manager 

The VW Manager is implemented as two Web Service Resource Framework (WSRF) [22] 
services: VW Manager Factory and VW Manager Service.  

The primary VW Manager Factory operation is create: it creates an “active workspace” 
resource and starts the VM associated with the workspace reference provided as input. To allow 
better control of potentially heavyweight actions, we exposed two additional operations in this 
interface: load, which loads the VM image corresponding to a virtual machine into the VMM, and 
stage, which stages data necessary to workspace deployment (i.e., the VM image) to the resource 
where it is to be deployed. If the stage operation has not been called before load, the load operation 
will call it, and if load has not been called before create, it will be called by the create operation. In 
general however, the staging operation need not be associated the VW Manager. In the future, we 
plan to experiment with the Replica Location Service (RLS) [23] via the VW to keep track of and 
manage copies of VM images associated with specific workspaces. 

The VW Manager Service implements the following operations: pause/unpause, which 
pauses/unpauses the VM associated with an identified workspace; stop, which shuts down the VM 
associated with a workspace; and unstage, which releases the local hold on workspace data. After 
the unstage operation, the client may no longer assume that workspace data is available locally. 



4.2. VW Manager for a Virtual Cluster: Modus Operandi 

The interaction with the VW Manager takes place as shown in Figure 1. A workspace is staged 
to the VW Manager running on the head node of the physical cluster with a workspace as argument. 
The head node’s VW Manager first establishes whether the workspace is a virtual cluster using the 
type element described in Section 3.1. For a cluster workspace, it orchestrates the networking (see 
Section 4.3) and other administrative information (modifying workspace implementation to reflect 
this configuration if needed) for each worker node workspace and stages the worker node 
workspaces as well as the image reconstruction instructions to the VW Managers running on the 
nodes hosting the worker nodes.   

 
 

Figure 1: Physical and virtual clusters: the gray areas denote a virtual cluster. 
 
The load and start operations are simply concurrently repeated to all the VW Managers on the 

cluster, as are the pause, stop, and unstage operations. When a virtual cluster is deployed on a 
physical cluster, a GRAM service comes up as part of the head node startup operation and 
advertises its EPR. A client can then use GRAM to submit jobs to the virtual cluster.  

4.3. Implementation Details 

We make the following assumptions about the physical cluster that will host virtual clusters. 
Each machine on the cluster (worker nodes as well as the head node) must run the Xen 2.0 VMM, 
GT4 and the VW Manager. We also assume GridFTP [24] installation used to transfer images from 
head node to worker nodes. 

Networking has been handled as follows. All nodes in the virtual cluster are assigned addresses 
from a private network sharing the same subnet as the physical cluster and are thus able to 
communicate among themselves. The VW Manager keeps track of the IP addresses of physical 
nodes as well as available segments of unused IP addresses and assigns segments at the time of 
staging.  

The virtual head node is equipped with two virtual network cards: one with a public IP address 
(allocated from a reserved pool) and one with a private IP. The VW Manager configures its Xen 
configuration file by adding relevant virtual network card information. Since only one address can 



be configured by modifying the Xen configuration file, it then mounts the virtual head node image 
and configures the /etc/network/interfaces file to add information about the second virtual network 
card. A client can submit jobs by using the external IP address but does not communicate with 
nodes inside the cluster.  

5. Experimental Results 

To assess the practicality and trade-offs involved in using a virtual cluster, we ran experiments 
evaluating its startup time and management time, the impact of running on a virtual cluster for 
applications, and the feasibility of sharing a resource between more than one virtual cluster.  

We ran our experiments on a testbed constructed on top of the Chiba City cluster at Argonne 
National Laboratory (ANL) [25]. We divided the testbed into two sections: Xen-enabled and pure 
Linux (running no Xen software). Each section includes 8 nodes on a 100 Mbps LAN. Each node is 
equipped with two 500 MHz Intel PIII CPUs (with a 512 KB cache per CPU), 512 MB main 
memory, and 9GB of local disk. All the nodes run Linux kernel 2.4.29.  

Nodes of the Xen-enabled section were configured with Xen 2.0 distribution (domain 0 runs 
port of Linux 2.4.28 and the user domain runs port of Linux 2.6.10) and rebooted with XenoLinux. 
Domain 0 was booted with 128 MB memory, while the user domain (unless specified otherwise) 
was booted with 360 MB. Nodes of the straight Linux section were running Linux 2.4.29 without 
SMP. 

5.1. Creating and Interacting with a Virtual Cluster 

In this group of experiments we look in detail into the actions required for creation and 
management of a virtual cluster. In the first experiment, we evaluate virtual cluster staging, and in 
the second the time spent on significant virtual cluster operations described in Section 4.1. 

To evaluate staging, we assume that all the relevant workspace data as described in Section 3.2 
has already been staged in to the local disk of the head node of the physical cluster. This data 
contains one head node image and one worker node image. The objective of the test is to evaluate 
how long it takes to stage virtual worker node images configured to requirements described in 
Section 3.3 to physical nodes so that they are ready for deployment. 

The staging time will clearly depend on the size of VM nodes. Table 1 shows the information 
about the VM images for virtual cluster head node and worker node. Normally, a Xen image 
contains a configuration file, disk image, and optionally a representation of RAM if is a paused 
image. Since we start with “cold” images (shutdown), the primary constituent of the image is VM’s 
disk. Besides the Debian Sarge OS, the GT 3.9.4 package occupies the largest storage size in the 
virtual cluster head node image. The remaining constituents, including OpenPBS (Torque), NFS 
kernel server, MPICH 1.2 and support infrastructures, altogether take slightly more than 20 MB. 
The worker node is only half as big; and in addition to the operating system, OpenPBS (Torque), 
and MPICH, it includes the NCBI BLAST software and one nucleotide sequence database. The 
latter takes a very large share of the whole image storage. Note that this arrangement stages data as 
part of the workspace configuration. Alternatively, data could be staged at run-time after the 
workspaces have been deployed. 
 
 
 
 
 
 
 



Table 1: VM image sizes 
 

Node Type VM Image(s) Size Primary VM Image Constituents 

Head node 1.1 GB file system image (140 
MB free space) and 200 MB swap 
image (generated by head node 
VW Manager on the fly) 

Debian Sarge 3.1 OS (~320 MB) 
GT 3.9.4 with GRAM (~312 MB) 
JDK 1.4.2 (~60 MB) 
Apache Ant 1.6.2 (~4 MB) 
PostgreSQL 7.4 (~10 MB)  
Torque (OpenPBS) 1.2.0 (<1 MB) 
NFS kernel server (~200 KB) 
MPICH 1.2 (~6 MB) 

Worker node 550 MB file system image (50 
MB free space) and 200 MB swap 
image (generated by worker node 
VW Manager on the fly) 

Debian Sarge 3.1 OS (~320 MB) 
MPICH 1.2 (~6 MB) 
Torque (OpenPBS) 1.2.0 (<1 MB) 
BLAST month.nt database (~130MB) 

 
Staging is implemented as follows: a copy of the worker node image is transferred via GridFTP 

[24] to each physical node on which the cluster will be deployed. Then the VW Manager running 
on each physical node modifies the image to integrate it into the virtual cluster (modifying the NFS 
and PBS configurations). Similar modification has to be made to the virtual head node image 
(which stays on the head node of the physical cluster).  
Figure 2(a) shows the staging times for different sizes of requested VW cluster. As expected, the 
times are dominated by transfer time and increase as the number of nodes of the virtual cluster 
increases. Although the transfers are started concurrently, they share the same physical link 
between the head node to the LAN switch, which can support a transfer rate no greater than 10 
MB/sec. As the cluster size increases, the transfer rate also increases slightly because GridFTP is 
able to leverage several concurrent connections.  

Once the virtual worker nodes are staged, cluster startup is relatively fast. Here, we measure 
the timings of several VW cluster operations as described in Section 4.1; the results are shown in 
Figure 2(b). Each of these operations simply broadcasts the operation message to physical worker 
nodes. The load operation cost is dominated by bringing the VM image from disk to memory 
(~2.83 sec loading cost, which includes ~1 sec image reconstruction cost compared to ~0.787 sec 
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Figure 2: Deploying and managing a virtual cluster.  



communication cost). Compared with the other operations, the cost is ~0.453 sec for start, ~0.27 
sec for pause, and ~1.01 sec for stop. 

The staging time is currently the major component of virtual cluster startup time and takes 
minutes (rather than seconds as for the other operations). It could be decreased by judiciously 
decreasing the image size of the worker node, for example, by “caching” frequently used image 
components (such as the operating system) or even whole images on the worker nodes of the 
physical cluster. In addition, it may be advantageous to move the staging of application data to the 
job staging phase where it could be overlapped with other actions. We are also investigating using 
multicast techniques or cascading image transfers (where other nodes receive the images from 
other nodes) to increase the effective bandwidth of the cluster stage operation. 

5.2. Running Jobs in Virtual Cluster 

Once a virtual cluster has been deployed, it can be used as a virtual partition and mirror a real 
Grid3 cluster setup, or it can be used as an execution environment for a sequential or parallel 
application. In this section we look into the efficiency of running a Grid3 submission engine as 
well as parallel MPI-based applications on a virtual partition. In our experiments we use the 
BLAST application [11] from the GADU project [12] as a current Grid3 workload.  

5.2.1. Batch Submissions in a Virtual Cluster 

We first timed GT4 job submission to a virtual cluster and found little difference between real 
and virtual cluster. For simple job submission, the submission times to virtual cluster and real 
cluster were ~4.839 sec and ~4.733 sec, respectively (median of 10 tries with 0.103 and 0.986 
standard deviation respectively), for jobs requiring 2 MB data stage-in, the times were ~27.528 sec 
and ~27.572 sec, respectively (median of 10 tries with 0.563 and 0.538 standard deviation, 
respectively).  

We then compared the job execution time of a batch of 100 sequential BLAST jobs submitted 
to an 8-node virtual and a real cluster. The jobs were scheduled by the local PBS scheduler 
interfaced through GT4 GRAM to run on each cluster node, and all the data required for execution 
has already been prestaged. The results showed that the virtual cluster adds little overhead to 
regular cluster submissions: the median time per job for VW cluster was 24.493 sec as compared to 
24.470 sec for the real cluster with 0.789 and 0.641  standard deviation respectively. Although the 
360 MB  memory of the virtual node is smaller than the memory of the real node (512 MB), this 
difference had no effect on the execution time because at ~140 MB the BLAST database is much 
smaller than the memory sizes of both the virtual and the real nodes. 

5.2.2. Running Parallel Applications in a Virtual Cluster 

To understand the effect that using Xen will have on communication between virtual machines 
and therefore on execution of a data-parallel program, we ran a series of microbenchmarks, the 
Pallas MPI Benchmarks (PMB) [26]. The full results are available on the Web [27]. Figure 3 shows 
representative examples.   
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(b) Bcast’s transfer latency (8 nodes) 

 
Figure 3: Communication cost in virtual cluster. The figures show communication costs for Xen 
domain 0, Xen user domain (virtual cluster) with SMP turned on, and Xen user domain without SMP.  
The data has been normalized to communication cost on the real cluster. The x-axis shows message size. 

 
Figure 3(a) shows the difference in communication cost between the real and virtual cluster. 

Across all of our tests the overhead of domain 0 has been relatively stable, at most 50%, which, if 
present, typically decreases with message size. Some benchmarks (e.g., SendRecv) showed 
surprisingly “better than real” performance. The increase in communication cost of domain U over 
domain 0 is explained by an additional latency factor added when messages from domain U are 
transferred via the virtual network interface (what we will refer to as the “Xen latency”).. In 
addition, messages waiting in the queue associated with this interface may be delayed because, in 
order to save on CPU cycles, Xen does not send the notification each time it receives a packet; this 
strategy probably contributes to occasional spikes as that visible in Figure 3(b). Overall, while we 
found the “Xen latency” increase to be generally reasonable, it is prone to occasional spikes that 
make communication expensive. Context switching between domain 0 and domain U in the 
noSMP case can contribute significantly to latency increase, generally exacerbates any spikes (see 
Figure 3(b)), and, in our experience, introduces a significant nondeterministic factor to 
communication. Although the “Xen latency” can be significantly improved and controlled when 
working with smart networking technology such as Myrinet or InfiniBand [28], the problems 
associated with context switching is likely to remain.  

To put these experiments in context, we ran a parallel BLAST (mpiBLAST [29]) in a virtual 
cluster. mpiBLAST segments a BLAST database among worker nodes and uses a master-worker 
communication style (using send/receive and broadcast operations) to assign and collect work. We 
ran mpiBLAST on both 8-node virtual cluster in SMP mode and real cluster. The 130 MB 
nucleotide sequence database is segmented into 8 fragment databases, and each is assigned to a 
worker node. We use the same query (less than 1 KB) used in our batch BLAST experiment. 
mpiBLAST greatly speeds the BLAST search, but the communication overhead does not 
significantly affect virtual cluster operation: the average query time at 3.836 sec for the 8-node 
virtual cluster is approximately the same as the 3.815 sec for the 8-node real cluster.  



5.3. Multiple Virtual Clusters 

Our final experiment examines what happens if two virtual organizations share the same CPU 
and memory resources on a cluster, that is, if more than one virtual cluster is deployed on the same 
nodes of one physical cluster.  

To examine the issue, we deployed two 8-node virtual clusters on 8 physical cluster nodes so 
that each physical node is running one VM from each virtual cluster. In order to ensure that the two 
VMs  “fit” equally well into the physical memory of the node, we configured the VMs with 180 
MB of memory (unlike in the previous experiments where they were configured with 360MB 
memory). We then repeated the experiment from Section 4.2.1 on the cluster.  

We first ran this experiment in noSMP mode (test 1); this deployment configuration forces two 
VMs (one from each virtual cluster) to compete for one CPU resource (leaving the other CPU on 
the node unused). For comparison, we reran this experiment in SMP mode (test 2) such that we 
pinned one VM from each virtual cluster to one of the two CPUs on every node. 

Table 2 shows the average job execution time results for both testing scenarios. We observe 
that the time is more than twice as long when two virtual nodes compete for the same CPU: since 
BLAST is CPU intensive, this overhead is due to context switching. Further, BLAST performance 
in test 2 (~44.289 sec) is worse than BLAST performance in Section 4.3.2 (~24.493 sec). We 
hypothesized that this result was due to configuring the VMs with less memory -- BLAST is 
memory intensive, and when the database sequence is too big to store in memory, the performance 
deteriorates -- and we confirmed this hypothesis by rerunning the experiment in Section 5.2.1 with 
VM configured in the same way. 

 
 Table 2:  BLAST execution on competing and noncompeting virtual clusters 

 
Metrics Test 1 Test 2 

Median time per job 109.39 sec 44.289 sec 

Stand Deviation 5.09 1.064 

 
These results point to the fact that running more than one virtual cluster on the same physical 

cluster partition can be costly. While we can map different VMs to different available CPUs on the 
node, reducing the available memory can significantly reduce the performance of memory 
intensive applications.  

6. Conclusions and Future Work 

We have described how clusters of virtual machines can be used to provide on-demand 
customized execution environments in the Grid for nontrivial environments. A cluster 
configuration, such as the Grid3 environment described here, can be defined and configured ahead 
of time and then easily deployed based on need as a ready-to-go “computation capsule.” A 
comparison of running both parallel and batch applications on such clusters shows that it can be 
done with relatively small overhead.  

Barring staging time, such deployment is independent of cluster size and is not a costly 
operation -- a cluster can be set up in a matter of a few seconds. The price of the on-demand 
availability of arbitrary configurations, including the operating system, translates primarily into the 
time of staging arbitrary VM images to worker nodes. This time can be flexibly reduced by making 
the VM images less arbitrary (i.e., caching image parts on worker nodes as discussed in Section 
3.2) or hidden by overlapping staging with execution, as is commonly done today for job execution. 



Still, the cost of virtual cluster deployment and management probably justifies the expectation that 
they may be used on a VO level for large groups of short jobs (therefore requiring job management 
infrastructure inside a cluster) as well as for single long-running jobs. As expected, the cost of 
running batch jobs in a virtual cluster, such as is common for a Grid3 workload, was very 
acceptable. Fully understanding its effect on data-parallel applications however, will require more 
investigation.  

While our work gives some answers to the trade-offs involved in evaluating the use of virtual 
clusters, we realize that more work will have to be done to examine these trade-offs in detail, 
especially in view of the constantly changing technology. In addition to issues of efficiency trade-
offs, issues of migrating virtual clusters or their use in load balancing and improving response are 
still unaddressed. 
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