

S3 REST

Amazon's S3 protocol has emerged as the de-facto interface for storage in the commercial data cloud. However, it is closed source and unavailable to the numerous data centers
actively used for science. Just as Amazon's S3 provides reliable data cloud access to commercial users, scientific data centers must provide their users with a similar level of
service. Ideally scientific data centers could allow the use of the same clients and protocols that have proven effective to Amazon's users, but can the S3 interface compare to the
data cloud transfer services used in today's computational centers? Does it have the feature set needed to support the scientific community, and if not can it be extended to
include them without loss of compatibility? Can it scale and distribute resources equally when presented with common scientific usage patterns?

We address these questions by experimenting with Cumulus: an open source implementation of the Amazon S3 REST API. It is packaged with the Nimbus IaaS toolkit and
provides scalable and reliable access to scientific data. We have compared its performance to that of GridFTP and SCP and we have added features necessary to support the cost
metrics important to the scientific community.

Cumulus

Performance

Fair Sharing

Features for Science
S3 REST API Compatible
Works with popular clients (s3cmd, boto, JetS3t, etc).

Disk Usages Quotas
In the scientific computing world users do not typically pay for storage with dollars. Yet storage is still
a valuable commodity that must be rationed to users based on other metrics. Cumulus allows
administrators to easily set per user quotas allowing resources to be provisioned appropriately. This
extension is backward compatible with the existing S3 REST API. Quotas are set by administrators
with easy to use tools and when a client attempts to exceed a quota the S3 AccountProblem is returned.

Easy to use
Cumulus can be installed with a single command, and run with another command. A rich set of user
management tools are included as well, thus valuable system administrator time is not wasted dealing
with a complex system.

Customizable backend storage system
Different data centers have varying degrees of hardware resources. Some have the resources to provide
extremely high levels of redundancy and reliability, while others have simpler needs. Cumulus can be
customized to support any storage backend and thus a data center can make its own decisions about
cost versus reliability.

Architecture

Acknowledgements and Logos

Cumulus

Twisted (HTTP)

Authz
DB

HDFS

Cassandra POSIX

BlobSeer

Cumulus provides a plugable abstraction to the storage system. The abstraction is clean and
simple, thus it allows for the creation of any number of custom storage drivers suitable to
the needs of various data centers.

System administrators can choose which storage system meets their needs while at the same
time providing the same known network API to clients. If desired, a custom backend can be
created against our documented interface to meet the specific needs of special data centers.

The POSIX backend has been included in the first release of Cumulus. This allows for
access to many complex storage systems via the filesystem, however future releases will
include direct access to HDFS, Sector, and Cassandra.

Sector

Scalability

The performance of Cumulus is on par with other popular storage system transfer protocols.
GridFTP has set the standard for data transfer performance and Cumulus displays similar (and in
some cases better) performance characteristics. The graphs here shows single file upload (top) and
download (bottom) throughput of increasingly larger files on a GigE connected LAN. The
machines used in all experiments had 512MB of RAM and the disk throughout was measured by
bonnie++.

2 4 8 16 32 64 128 256 512 1024 2048
0

50

100

150

200

250

300

350

400

Downloadscumulus
scp
gridftp
disk(bonnie)

Filesize megabytes

T
h

ro
u

gh
pu

t m
e

g
a

b
its

/s
e

c

2 4 8 16 32 64 128 256 512 1024 2048
0

50

100

150

200

250

300

350

400

450

Uploadscumulus
scp
gridftp
disk(bonnie)

Filesize megabytes

T
h

ro
u

g
h

p
u

t
m

e
g

a
b

its
/s

e
c

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

Fair sharing
32 Clients, 512MB File Transfers

put
get
put average
get average

Client ID

T
h

ro
u

g
h

p
u

t
m

b
/s

The above graph shows how Cumulus distributes bandwidth to many simultaneous clients. 32
clients were run at the same time all uploading and then downloading a 512MB file from the same
Cumulus server. The average achieved BW is shown to indicate how far each client deviated.
The results indicate less than two megabit/second difference in the worst case. The collective BW
for puts was 264mbs and 210mbs for gets.

The spike in GridFTP's performance is related to the amount of RAM on the system. When
the memory cache for disk is full GridFTP experiences significant performance degradation
while Cumulus continues to steadily increase.

Cumulus
Open Source Storage Cloud for Science

John Bresnahan, Tim Freeman, David LaBissoniere, Kate Keahey

1 2 3 4 5 6 7 8
0

20

40

60

80

100

120

Throughput as Server Replication Increases

GPFS
Local Disk
Single Server

Server Count

A
ve

ra
g

e
 C

lie
n

t T
h

ro
u

g
p

u
t M

b
/s

S
ta

n
d

a
rd

 D
e

vi
a

tio
n

 E
rr

o
r

B
a

rs

The average of 10 trials were recorded. The graph above shows the results of this experiment. Two storage systems
were used, local disk which is mirrored on all of the 8 servers, and GPFS. As shown in the graph above average
throughput steadily increases as more servers are added.

By leveraging the S3
protocol's redirect feature,
Cumulus can be configured
to run as a set of replicated
hosts. To display this
feature we ran an
experiment where 80
clients, run on 8 separate
machines (10 on each)
downloaded a 500MB file
at the same time. We
steadily increased the
number of replicated
servers from 1 to 8 and we
used the round robin
algorithm to determine the
redirection target.

8 16 24 32 40 48 56 64 72 80
0

100

200

300

400

500

600

8 Replicated vs. Single Server
Two replication algs (GPFS)

Round Robin
Random
Single Server

Clients At Once

A
ve

ra
g

e
 B

W
 p

e
r

C
lie

n
t

(M
b

/s
)

8 16 24 32 40 48 56 64 72 80
0

100

200

300

400

500

600

700

800

900

8 Replicated vs. Single Server
Two replication algs (local disk)

Round Robin
Random
Single Server

Clients At Once

A
ve

ra
g

e
 B

W
 p

e
r

cl
ie

n
t

(M
b

/s
)

Above we compare the effects of an increasingly heavy client load. Eight client machines are used to simultaneously
download a 500 MB file. The number of clients downloading on each client machine ranges from 1 to 10. Three
different server configurations are used:

●Single Server: A single non/replicated Cumulus server.
●Round Robin: An eight node replicated Cumulus server using a redirection scheme that cycles through the list of
nodes.
●Random: An eight node replicated Cumulus server using a redirection scheme that selects the target from the list
at random.

Since all of the files are the same size, and they start at the same time Round Robin line shows the best results.
Random show results more true to the a real world workload. In this case the ideal server may not be chosen each
time. In the above results we see that Random and Round Robin are both significantly better than Single. And that
Random only pays significant penalty when using local disk. When using the more likely setup of a network file
system (GPFS) the benefits of the ideal choice are already normalized by network traffic contention.

8 16 24 32 40 48 56 64 72 80
0

1

2

3

4

5

6

7

8 Replicated vs. Single Server
Local Disk

Round Robin
Random

Clients at Once

T
im

e
s

F
a

st
e

r

8 16 24 32 40 48 56 64 72 80
0

1

2

3

4

5

6

7

8 Replicated vs. Single Server
GPFS

Round Robin
Random

Clients At Once

T
im

e
s

F
a

st
e

r

The above bar graphs present the same data as show in the line graphs but here we focus on how much faster the
replicated server is than the non-replicated server. In all cases we see a 3x increase in performance with an average
of ~5x. Ideally we would see a performance increase of 8x across the board, however the latency of processing the
redirection and the network competition (especially when using the network file system GPFS) introduce overhead.

	Slide 1

