
Combining Batch Execution and Leasing Using Virtual
Machines

Borja Sotomayor
University of Chicago

Chicago, IL, USA
borja@cs.uchicago.edu

Kate Keahey
Argonne National Laboratory

University of Chicago
Chicago, IL, USA

keahey@mcs.anl.gov

Ian Foster
Argonne National Laboratory

University of Chicago
Chicago, IL, USA

foster@mcs.anl.gov

ABSTRACT
As cluster computers are used for a wider range of applications, we
encounter the need to deliver resources at particular times, to meet
particular deadlines, and/or at the same time as other resources are
provided elsewhere. To address such requirements, we describe a
scheduling approach in which users request resource leases, where
leases can request either as-soon-as-possible (“best-effort”) or reser-
vation start times. We present the design of a lease management
architecture, Haizea, that implements leases as virtual machines
(VMs), leveraging their ability to suspend, migrate, and resume
computations and to provide leased resources with customized ap-
plication environments. We discuss methods to minimize the over-
head introduced by having to deploy VM images before the start
of a lease. We also present the results of simulation studies that
compare alternative approaches. Using workloads with various
mixes of best-effort and advance reservation requests, we compare
the performance of our VM-based approach with that of non-VM-
based schedulers. We find that a VM-based approach can provide
better performance (measured in terms of both total execution time
and average delay incurred by best-effort requests) than a scheduler
that does not support task pre-emption, and only slightly worse per-
formance than a scheduler that does support task pre-emption. We
also compare the impact of different VM image popularity distri-
butions and VM image caching strategies on performance. These
results emphasize the importance of VM image caching for the
workloads studied and quantify the sensitivity of scheduling per-
formance to VM image popularity distribution.

Categories and Subject Descriptors
D.4.7 [Operating Systems]: Organization and Design—Distributed
systems; D.4.5 [Operating Systems]: Reliability—Checkpoint/re-
start; C.2.4 [Computer-Communication Networks]: Distributed
Systems

General Terms
Design, Management, Performance
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1. INTRODUCTION
Many approaches have been developed to address the problem

of providing computational resources to users. For example, an
engineer wanting to run a simulation code may submit it as a batch
job to a local or (via grid interfaces) remote cluster. A firm needing
a web server for months or years may lease a dedicated server in a
data center. A college instructor needing a small dedicated cluster
for a few hours each week can obtain one from Amazon EC2 [37].
Each of these solutions is specialized to a specific usage scenario
and only partially supports other usage patterns (if at all).

In our research, we seek to develop a resource provisioning model
and system that can support many such usage scenarios at the same
time. Motivated by this general goal, we focus in this paper on the
specific problem of supporting workloads that combine requests for
resources during a specific time period (“advance reservation” re-
quests) and requests for resources whenever available (“best-effort”
requests). The need for advance reservations arises, for example,
when applications require coscheduling of multiple resources [38,
5], in urgent computing applications [25], in applications in which
resource availability must coincide with some other event, such as
a class [11, 38], and in applications expressible as a workflow of in-
dependent tasks that can be executed more efficiently by multilevel
scheduling methods [29, 36, 16]. The need for best-effort resource
allocation arises in many contexts and is supported by batch sched-
ulers.

Although batch schedulers can and do include support for ad-
vance reservations, this mechanism often leads to utilization prob-
lems [11, 30, 31, 22], caused by the need to drain best-effort jobs
from resources before a reservation can begin. Although check-
pointing-based resource preemption can be used to minimize this
effect, it requires either a checkpointing-capable OS (system-level
checkpointing) or linking applications against checkpointing libra-
ries (user-level checkpointing), both of which require specialized
software that may not be available on all sites.

We propose here an approach that uses leasing, and not jobs,
as the fundamental resource provisioning abstraction for both best-
effort and advance reservation requests. The job abstraction used
by batch schedulers ties together the provisioning of resources for
the job and its execution, with resource provisioning typically hap-
pening as a side-effect of job submission. This forces resource con-
sumers to use the provisioned resources through the job execution
interfaces provided by a batch scheduler, instead of accessing the
raw resources directly (e.g., in the simplest case, by logging into the
resources). As a resource-provisioning mechanism, the job abstrac-
tion is insufficient for applications that are not easily expressible as
jobs or where direct access to resources is required. A lease, on the
other hand, is used only to provision resources, which can then be
used at the user’s discretion, including running jobs.



We develop lease terms for leases with best-effort availability
as well as stricter availability constraints for advance reservation
leases. Furthermore, using virtualization-based resource managers,
we demonstrate that both can coexist without the utilization prob-
lems of advance reservations, without requiring applications to be
modified (as required by user-level checkpointing) or needing to
use a specific operating system (as required by system-level check-
pointing). Hence, resource providers can satisfy the needs of batch
computations, currently prevalent in scientific computing, while at
the same time accommodating other usage scenarios. Our approach
is based on using virtualization to suspend, migrate, and resume
computations in virtual machines (VMs). In addition to leveraging
these features of the VMs, we are in this way also able to provide
leases with customized application environments.

Scheduling of best-effort and advance reservation jobs has been
extensively studied [21, 23, 9, 11, 30, 31], but always within the
context of batch job schedulers, and not resource leasing. Irwin
et al. [17] (Shirako), Adabala et al. [1] (In-VIGO), Emeneker
and Stanzione [7] (Dynamic Virtual Clustering), Fallenbeck et al.
[8] (XGE), Kiyanclar et al. [19] (Maestro-VC), Nishimura et al.
[24] and Yamasaki et al. [35] (Virtual Clusters-on-the-Fly), and
Ruth et al. [28, 27] (VIOLIN/VioCluster) have researched VMs as
a mechanism for resource management but without exploring the
implications of running workloads that combine best-effort and ad-
vance reservation requests. Our previous work defines the virtual
workspace abstraction to represent execution environments that are
dynamically and securely deployed on remote resources through
interoperable interfaces [18, 12] and an accurate resource model
for VM-based resource management [33, 32].

In summary, our paper makes the following contributions:

• We describe a leasing-based architecture that integrates sup-
port for both best-effort and advance reservation leases.

• We describe an implementation of the lease-based architec-
ture integrating those types of leases and explain how it will
work within the current batch scheduling model.

• We show experimentally that our VM-based resource man-
ager can provide resources more efficiently in certain cases,
as measured by several resource utilization metrics.

2. RESOURCE LEASES
We define a lease as a negotiated and renegotiable agreement be-

tween a resource provider and a resource consumer, where the for-
mer agrees to make a set of resources available to the latter, based
on a set of lease terms presented by the resource consumer. In this
work we use “agreement” and “agreement terms” as defined by the
WS-Agreement specification [2].

The lease terms encompass the hardware resources required by
the resource consumer, such as CPUs, memory, and network band-
width; a software environment required on the leased resources; and
an availability period during which a user requests that the hard-
ware and software resources be available. In previous work [13,
33], we focused on lease terms for hardware resources and a soft-
ware environment. Our focus here is on the availability dimension
of a lease. We consider here the following terms.

• Start time may be unspecified (a best-effort lease) or spec-
ified (an advance reservation lease). In the latter case, the
user may specify either a specific start time or a time period
during which the lease start may occur.

• Maximum duration refers to the total maximum amount of
time that the leased resources will be available.

• Leases can be preemptable. A preemptable lease can be
safely paused without disrupting the computation that takes
place inside the lease.

We have developed an XML Schema for the above terms, ex-
tending the schema for resource allocations presented by Freeman
et al. [13], but do not include it here because of space constraints.
The XML representation of these terms could be used in a web ser-
vice such as the Virtual Workspace Service [18] to negotiate a lease.
In particular, a resource consumer would present the desired lease
terms to the service, which would determine whether to accept or
reject the request, and publish the accepted lease terms (which may
be concretized by the service if the lease is accepted).

In this paper, we assume for simplicity that advance reservation
leases are nonpreemptable and best-effort leases are preemptable.
Furthermore, since we focus on availability, we make the simpli-
fying assumptions that leases request a number of compute nodes
with the same hardware requirements in each node and that the soft-
ware environment is encapsulated inside a disk image (which could
be used to reimage a hard drive or be used as a VM image). We
further assume that, when determining whether to preempt a lease,
a resource owner takes into consideration only the lease’s preempt-
ability (i.e., no other factors, such as priorities, would result in a
decision not to preempt).

3. DESIGN AND IMPLEMENTATION
This section describes Haizea, a lease management architecture

that enables resource consumers to negotiate the two kinds of leases
described in the previous section. This architecture is composed
of several components. Leases are requested through an inter-
face component by using the XML language described in Section
2. These requests are then passed to a scheduler component. An en-
actment component is responsible for sending commands to nodes
to start/end VMs, suspend/resume VMs, and initiate transfers. In
this section we first describe the resource model for this architec-
ture. Then we describe how leases are scheduled. Since a batch job
scheduler could be a resource consumer (requesting leases to run
best-effort jobs or advance reservation jobs), we discuss how our
architecture can be used in conjunction with a job scheduler.

3.1 Resource Model
We assume that the lease management architecture manages W

identical nodes each with a Virtual Machine Monitor (VMM) al-
lowing the execution of virtual machines. Each node has P CPUs,
M megabytes (MB) of memory, D MB of local disk storage, and
a disk read/write transfer rate of Hr and Hw MB/s. We divide
the disk space of each node into cache space Dp (used for caching
disk images required by the VMs) and working space Dw (used
for storing disk images of active and paused VMs), such that D =
Dp +Dw. We assume that all required disk images are available in
a repository from which they can be transferred to nodes as needed.
For simplicity, we assume that the repository and nodes have the
same characteristics and that all are connected at a bandwidth of B
MB/s by a switched network with a nonblocking switch (i.e., the
maximum transfer rate of the switch can support all the transfers).

A lease is implemented as a set of n VMs, each allocated re-
sources described by a tuple (p,m, d, b), where p is number of
CPUs,m is memory in MB, d is disk space in MB, and b is network
bandwidth in MB/s. A disk image I with a size of sI MB must be
transferred from the repository to a node’s cache space before the
VM can start. When transferring a disk image to multiple nodes,
we use multicasting and model the transfer time as sI

B
. Once a

VM disk image is transferred to a node’s cache space, one or more



disk image instances (tied to a specific virtual machine) of the same
size can be created by locally copying the cached disk image to the
node’s working space. We assume that this latter copy operation is
performed gradually, using copy-on-write, and incurs no additional
cost. We also assume that once a VM is terminated its disk image
instance can be discarded.

If a lease is preempted, it is suspended by suspending its VMs,
which may then be either resumed on the same node or migrated to
another node and resumed there. Suspension results in the creation
of a memory state file (the contents of the VM’s memory) on the
node where the VM is running, and resumption requires reading
that image back into memory and then discarding the file. The size
of the memory state file is m, and the time to suspend and resume
a VM is m

Hw
and m

Hr
seconds, respectively. When a suspended VM

is migrated to a different node, its disk image instance and memory
state file are transferred, requiring sI+m

B
seconds. Suspending mul-

tiple VMs communicating with each other can potentially disrupt
communication between the nodes (e.g., messages that are lost “in
flight” when the VMs are suspending). Emeneker et al. [6] showed
that this problem can be avoided by suspending and resuming all
VMs simultaneously, using NTP to synchronize these events, re-
sulting in “a coherent network state with no timeouts.” Since there
are no TCP timeouts to recover from, and all suspend/resume op-
erations must happen simultaneously, we assume that suspending
and resuming multiple VMs also requires m

Hw
and m

Hr
seconds, re-

spectively.
We assume in this paper thatP = 1, that only one VM can be run

per node, and that there is no contention between network traffic
generated by applications running within VMs and network traffic
associated with image movement—either because the applications
running inside the VMs do not generate substantial network traffic
or because there is a separate network for application network traf-
fic. In future work, we will investigate the implications of relaxing
these assumptions.

3.2 Lease Scheduling
We leverage our ability to suspend, migrate, and resume VMs

to implement policies that seek to maximize scheduling perfor-
mance by preempting certain (best-effort, preemptible) leases to
make room for other (advance reservation, nonpreemptible) leases.
In this way, we can use resources more efficiently than approaches
that depend on node draining. In addition, we manage the transfer
of disk images to ensure that required images are available on nodes
when an advance reservation lease is scheduled; integrate disk im-
age transfer into the scheduling process; and avoid image transfer
operations, whenever possible, by managing caches of images on
nodes. This model of explicitly scheduling VM overhead, instead
of deducting it from the lease’s execution time, was introduced in
previous work [33, 32]. In effect, our scheduler schedules each
lease as a workflow of actions such as image transfer, deployment,
suspend/resume, and migration.

A lease is represented internally in our architecture by a lease
descriptor that includes all the lease’s terms (using the XML repre-
sentation described in Section 2), along with zero or more resource
reservations, representing the workflow of actions required by that
lease. The scheduler keeps track of the available resources by us-
ing a slot table: when an action gets scheduled the corresponding
resource reservations are marked in the slot table. The table has
three dimensions: resource usage (the resource tuple (p,m, d, b)
described earlier), the number of nodes, and the duration. In ad-
dition to representations for all available nodes, the slot table in-
cludes the image repository, so that the bandwidth required for im-
age transfers from the repository to nodes can be accounted for.

Figure 1: Submission and scheduling of a lease

When an image transfer is scheduled, the bandwidth in the origin
and destination nodes is marked as completely used for the dura-
tion of the transfer, and the disk space in the destination node is de-
creased by d (if only the disk image is transferred) or by d+m (if
a VM is migrated). When VMs for a lease are scheduled on nodes,
the resource usage tuple is decreased by the (p,m, d, b) amount of
the requested resources on each node, for the duration of the VM.
In the case of a preemptible lease, the working space on the disk is
additionally decreased by m to hold the VM’s memory in case it is
suspended.

As noted earlier, a disk image required by a VM that is to be
executed on a node is first transferred to the node’s image cache.
Images in a node’s cache are reference counted based on the leases
that depend on them. An image’s reference count is decremented
each time a lease that depends on this image ends. If the image
pool is full when an image is added, the scheduler removes the
least recently used image with reference count equal to zero.

Figure 1 summarizes how lease descriptors make their way through
the lease manager, from submission to completion. Incoming ad-
vance reservation leases are always scheduled right away, whereas
best-effort leases are put on a queue. Each scheduled lease has a
pointer to the resources it is assigned in the slot table, so that those
resources can be released at the end of the lease.

Each incoming best-effort lease is placed at the end of the queue.
The scheduling function periodically evaluates the queue, using an
aggressive backfilling algorithm [21, 23], to determine whether any
best-effort leases can be scheduled. The scheduler first checks, for
each node, the time when the required disk image can be made
available on the node (by using a cached image, by piggybacking
on a scheduled multicast, or by scheduling a separate transfer), and
the time the node’s resources will be available and takes the later
of the two. These potential start times are sorted, and the n nodes
with the earliest times are selected, giving preference first to nodes
where the lease can run without having to be suspended; the latest
time in this group is the time for which the lease will be sched-
uled. The scheduling of the lease also results in the scheduling of



the dependency actions, that is, image transfers (if needed) or in-
crementing of reference counts of a cached image.

Note that a lease may be scheduled even if there is a “blocking”
lease, such as an advance reservation lease scheduled in the future,
that would prevent a best-effort lease to run for its entire requested
duration before the blocking lease starts. In such a case, the VMs
in the lease may be suspended before a blocking lease. The re-
mainder of a suspended lease is put back in the queue, according to
its submission time, and scheduled as if it were another best-effort
request. If the scheduler maps the remaining duration to nodes dif-
ferent from those where the lease was suspended, the VM image
and memory state file will be transferred to the new nodes before
the lease can resume.

When an advance reservation lease is requested, the schedul-
ing function first determines whether the request is viable, that
is, whether sufficient resources are available at the requested time
and whether necessary image transfers can be scheduled as needed.
If the lease is found not to be viable, it is rejected. Other than
this, we assume an “accept all” policy, such that advance reserva-
tion leases are always accepted as long as there are sufficient re-
sources available for them. If the lease is accepted, the scheduler
determines what nodes can support the lease. The scheduler first
chooses nodes that will not require preempting another lease and
then chooses nodes for which the required image can be found in
the node’s image cache (we found that reversing this policy had no
significant effect in the context of our workloads). The exception to
this policy is when a lease will be viable only if images are reused,
in which case priority is given to nodes with a reusable copy of the
required image.

For advance reservation leases, image transfers are scheduled us-
ing an earliest deadline first (EDF) algorithm [26], where the dead-
line for the image transfer is the start time of the lease. Since the
start time of an advance reservation lease may occur long after the
lease request, we modify the basic EDF algorithm so that transfers
take place as close as possible to the deadline, preventing images
from unnecessarily consuming disk space before the lease starts.

3.3 Combining Job and Lease Management
Our architecture is designed so that it can potentially act as a

resource provisioning backend for existing job management archi-
tectures (e.g., as a scheduler for Torque or as a decision-making
module for SGE’s schedd), allowing users to continue to submit
their computations in the form of jobs. When a job is submitted,
the execution manager must request a best-effort lease for the job.
Once the lease is accepted, the lease manager and the execution
manager communicate through a series of events to coordinate their
actions. The following events are sent from the lease manager to
the execution manager:

Lease ready: Once a lease request is accepted, the lease manager
must still provision resources on a best-effort basis, which
may require queuing the lease request until it can be satis-
fied. When resources become available, the lease manager
informs the execution manager of the resources that have
been allocated to the job.

Lease suspended/resumed: If a best-effort lease must be preempted,
the lease manager notifies the execution manager that the re-
sources where the job is running will become unresponsive,
so that it will not assume the job has failed or the nodes have
crashed. Another event is sent when the lease is resumed.

The execution manager, on the other hand, will send a “Release
lease” event when a job concludes its execution or is cancelled, and
no longer requires the leased resources.

4. EXPERIMENTAL RESULTS
We used a discrete event simulator to evaluate the performance

of our lease management architecture for various workloads. We
present here our simulation model, the workloads we used, and the
results of our experiments.

4.1 Simulation Model
We perform a discrete event simulation of the submission, sched-

uling, and execution of best-effort and advance reservation leases.
The input to the simulator is (a) description of the simulated cluster
and (b) a trace: a sequence of best-effort and advance reservation
lease requests, each specified in the format described in Section 2
and annotated with the time at which the request was submitted.
The submission of a lease results in an event that causes the sched-
uler adding entries to the slot table (if the lease is accepted). The
start and the end of an allocation in the slot table is also treated as
an event that causes the scheduler to reevaluate the schedule.

4.2 Workloads
We construct the workloads used in our experiments by adapt-

ing the SDSC Blue Horizon cluster job submission trace from the
Parallel Workloads Archive [39]. In general terms, we take a set
of job submission requests from that trace and treat them as a set
of best-effort lease requests and then insert an additional set of ad-
vance reservation requests. Keeping the best-effort requests fixed,
we vary the advance reservation requests to obtain a set of 72 dif-
ferent workloads.

More specifically, we use as our best-effort requests the first 30
days of requests in the SDSC Blue Horizon trace, For each of these
5,545 requests, we extract from the trace its submission time, re-
quested duration, and requested number of nodes. (In this 30-day
extract, 66.85% of the requests have a requested duration of one
hour or less, and 64.09% of the requests require four nodes or
less.) We also set the per-node resource allocation to p = 1 and
m = 1024. For simulation purposes, we take from the trace the
actual run time, which is usually less than the requested job dura-
tion. Thus, in our simulations, best-effort leases frequently com-
plete “prematurely.”

To generate our workloads, we then interleave with this set of
best-effort requests a set of advance reservation requests, generated
according to three parameters:

• ρ, the aggregate duration of all advance reservation leases in
a trace, computed as a percentage of the total CPU hours in
the simulation’s run, which is the number of nodes multiplied
by the time when the last best-effort request is submitted. We
use the values ρ =5%, 10%, 15%, 20%, 25%, and 30%. (We
do not explore larger values because the trace’s utilization is
76.2%, according to the Parallel Workloads Archive.)

• δ, the duration of each advance reservation lease, for which
we use average values of 1, 2, 3, or 4 hours. (The duration is
selected randomly from a range spanning δ ± 30m.)

• ν, the number of nodes requested by each lease, for which
we use three ranges, from which the value is selected using
a uniform distribution: small (between 1 and 24), medium
(between 25 and 48), or large (between 49 and 72).

Our use of ρ allows us to compare results obtained with traces with
different duration (δ) and size (ν) parameters, by ensuring that all
traces with the same ρ value involve the same amount of extra work.

Given values for ρ, δ, and ν, we then determine the arrival times
of the advance reservation requests as follows. First, we deter-
mine the number of requests that will be generated, and we divide



that number into 30 days to obtain an average interlease interval
i. Then, we choose the intervals between requests at random in
the range (i − 1 hour, i + 1 hour). Thus, the smaller the average
lease duration, the more frequent is the arrival of requests (since
there will be more advance reservation lease requests). Similarly,
the smaller the average number of nodes, the higher the frequency.
We further constrain advance reservation lease requests to involve
an advance notice of exactlyH hours. In the experiments described
below, we set H = 24, unless otherwise noted. As with the best-
effort requests, the advance reservation lease requests have a per-
node resource allocation of p = 1 and m = 1024.

In our experiments, we explore every combination of the param-
eters ρ, δ, and ν, for a total of 72 workloads. We refer to workloads
using the notation [ρ%/δH/ν] (e.g., [10%/2H/medium]).

We perform experiments using three criteria for disk image se-
lection:

single: assign the same disk image to each request.

uniform: assign one of 37 possible images to each requests at ran-
dom using a uniform distribution.

skewed: assign one of 37 possible images using a distribution where
7 images each have a 10% probability of being selected, and
the remaining 30 images each have a 1% probability of being
selected.

All images have a disk size of 4GB.

4.3 Simulated Cluster
Our simulated cluster is modeled after the SDSC Blue Horizon

cluster. It comprises 144 single-CPU nodes, each with 40 GB of
disk (with Dp = 20 and Dw = 20) and 1 GB of memory, con-
nected with a switched Ethernet network (100 Mb/s, we conserva-
tively assume a 10 MB/s bandwidth). For the purposes of estimat-
ing the time required to suspend and resume a VM, we assume Hw

and Hr to be 50 MB/s, based on results presented by Fallenbeck et
al. [8]. We conservatively assume that the sum of the boot-up and
shutdown time of a VM does not exceed 20 seconds. To account for
the slowdown produced by running inside a VM, we assume that
any computation running inside a VM requires 5% more time to
run. Further, we assume that the time required to send commands
from the resource manager to the nodes is negligible and that the
hardware will not behave erratically, and we inject no hardware
failures into the simulated cluster. We plan to relax the no-failure
assumption in future work.

4.4 Experiments
We ran our simulator using each of the workloads described

above, with the following configurations:

NOVM–NOSR — No VM, no suspend/resume: Leases do not run
on VMs. We follow the resource model of Section 3, except
there is no VM image to transfer and no 5% runtime slow-
down. In addition, leases cannot be suspended or resumed;
thus, a preempted lease is cancelled and requeued.

NOVM–SR — No VM, with suspend/resume and migration: Like
NOVM–NOSR, but leases can be suspended and resumed.
This configuration represents a job scheduler capable of check-
pointing and migrating any job. We assume that, to be able
to checkpoint any application, system-level checkpointing is
used, and that suspending a lease requires saving the entire
memory to disk, as would happen in the VM cases.

VM–PREDEPLOY — With VM, single predeployed image: The
leases run on VMs, following the resource model described
in Section 3, but all leases use the same VM image, which is
assumed to be predeployed on the nodes.

VM–MULT — With VM, multiple images: As VM–PREDEPLOY,
but using the uniform list of requests and removing the as-
sumption that images are predeployed (i.e., an image transfer
has to be scheduled before the VM can start). Images are not
reused on the nodes.

VM–REUSE–UNIFORM and VM–REUSE–SKEWED — With
VM, multiple images with image reuse: Same as VM–MULT,
but reusing images on the nodes. We use the uniform and
skewed lists of requests.

During the experiments, we observe, for each lease, the times ta
(the arrival time, or time when the lease request is submitted), ts
(the start time of the lease) and te (the time the lease ends). At the
end of an experiment, we compute the following metrics:

all-best-effort: We define all-best-effort as the time from the start
of the trace to when the last best-effort request is completed.
We normalize this value by presenting the relative difference
between this time and the time required to run all the best-
effort requests without advance reservation leases in config-
uration NOVM–NOSR (this time is 2,674,265 seconds, or
roughly 30.95 days). Thus, a value x indicates that an exper-
iment took 2, 674, 265 · x to run (with x = 1.0 meaning that
the experiment took the same time as the baseline case).

Wait time of best-effort requests: We define wait time as ts−ta,
the time a best-effort request must wait before it starts run-
ning.

Bounded slowdown of best-effort requests [10]: If tu is the time
the lease would take to run on a dedicated physical system
(i.e., not in a VM), the lease’s slowdown is te−ta

tu
. If tu is

less than 10 seconds, the bounded slowdown is computed the
same way, but assuming tu to be 10 seconds [10].

When computing the last two metrics, we discard the first 5%
of measurements, to avoid ramp-up effects. We retain the ramp-
down period because this is where we observe the wait times and
slowdowns of the requests that languish in the queue until there are
no more advance reservation leases.

Figure 2 shows all-best-effort results for all experiments. This
metric provides a good measure of utilization, taking into account
both VM runtime slowdown and the overhead of VM deployment.
We observe that using suspend/resume and migration (with and
without VMs) results in a shorter run time than NOVM–NOSR
in every case. In fact, using suspend/resume and migration pro-
duces a slowdown of, at most, 10% relative to not injecting any ad-
vance reservation leases at all, whereas not using suspend/resume
can produce a slowdown of up to 32.97%. Additionally, the dura-
tion of the advance reservation leases is more likely to affect this
metric in the NOVM–NOSR configuration, with shorter-duration
(and thus shorter-interval) leases producing the worst results.

As mentioned previously, all advance reservation leases were
submitted to the scheduler with an advance notice of 24h. In pre-
liminary tests with fewer workloads, based on a 15-day trace, we
investigated the effect of using different advance notices (1h, 3h,
6h, 12h, and 24h). We observed that the advance notice can have an
effect when suspend/resume is not used, with all-best-effort tend-
ing to increase for shorter advance notices (e.g., in the most extreme



Figure 2: Each data point in this graph represents the all-best-effort metric in each experiment. The x axis represents ρ and the y
axis represents the value of all-best-effort (normalized as described in the text). The graphs are grouped by ν (the number of nodes
requested by each lease) and the experiment configuration. The symbol of each point denotes the value of δ (see legend).

case, observed with workload [10%/2H/small] using a 1h advance
notice, all-best-effort increases by 46.69% compared to using a 24h
notice). We attribute this effect to the increasing likelihood that an
advance reservation lease will preempt a best-effort lease that has
already been scheduled, necessitating that it be cancelled and re-
submitted. When using suspend/resume, on the other hand, the
effect is negligible.

While all-best-effort gives a good measure of effective utilization
(indicating how much faster an entire workload will be run from
beginning to end), it does not say much about individual leases,
which requires looking at the other two metrics. For example, an
inspection of the run history reveals that the longer total run time
when not using suspend/resume (in NOVM–NOSR) is due to best-
effort leases that remain in the queue and are not run until the ramp
down period, when no more best-effort leases are being submit-
ted. These leases remain in the queue because the advance reser-
vation leases prevent them from being scheduled, especially when
the interval between advance reservation leases is short. Because
of space limitations, we are unable to present the data for wait time
and slowdown of best-effort requests from all the cases; instead, we
constrain most of our discussion to the cases [10%/3H/medium],
[20%/3H/medium], and [30%/3H/medium], which are represen-
tative of the trends that we observe across all cases.

Table 1 shows the total run time, average wait time, and average
slowdown for these three cases. Although the run time metric is
always the worst (longest) in the NOVM–NOSR configuration, in
the other two metrics the NOVM–NOSR configuration results in
better performance (shorter average wait times and smaller aver-
age slowdowns) in most cases. We attribute this result to the fact
that, without suspend/resume, the scheduler must rely heavily on
backfilling to efficiently use the time and space before a blocking
lease (such as an advance reservation lease). This behavior will
favor short leases, which “skip the queue” when used as backfill.
Since the majority of best-effort leases in our trace are shorter than

one hour, they are ideal candidates for backfilling. Thus, many such
leases end up with short wait times and small slowdowns. However,
suspend/resume need not look ahead for shorter best-effort leases
when backfilling: it can simply take the next best-effort lease, even
if long, knowing that it can suspend this lease if it has not run to
completion before a blocking lease is scheduled. Paradoxically, the
aggregate effect of not preferentially selecting shorter leases for
backfill can be to increase average wait time and slowdown.

We can support this observation by looking at how wait times
and the slowdown vary with requested duration and number of
nodes. Figure 3 shows the regression curves (using the Lowess
smoother [4]) for these metrics and variables for [20%/3H/medium].
The left two graphs show how wait time and slowdown vary with
the requested lease duration. We see that short leases in the NOVM–
NOSR configuration have shorter wait times and smaller slow-
downs than all other configurations (which use suspend/resume).
However, the tendency is for both the wait time and slowdown to
increase as the requested duration increases since, as noted above,
backfilling favors short requests. When using suspend/resume, on
the other hand, we observe that the trend is for the wait times to not
vary with the requested duration and for the slowdowns to exhibit
a slight decreasing trend. Thus, all requests are treated more fairly,
although the overall average does increase (the shorter requests,
which make up the majority, have longer wait times because they
no longer “skip the queue,” thanks to backfilling). We note that
this is a desirable effect in many scenarios as it provides a more
“democratic” treatment for different application types. Fallenbeck
et al. [8] used similar strategies to equalize wait times for different
application groups.

If we look only at the suspend/resume configurations, we can
see that VM–MULT performs the worst, since no attempt is being
made to reuse VM images on the nodes. Adding image reuse (VM–
REUSE–UNIFORM and VM–REUSE–SKEWED) reduces wait
times and slowdowns, although performance is still not as good



Figure 3: Lowess curves for [20%/3H/medium]

as when using a single predeployed image (VM–REUSE–PRE-
DEPLOY).

The center two graphs show how the wait time and slowdown
vary with the number of requested nodes. When looking just at the
effect of node counts, we see that adding suspend/resume has little
effect. In fact, we can observe the same trend across all configu-
rations: wait time and slowdown do not vary when the node count
is less than ten but tend to increase for larger node counts. If we
observe how the wait time and slowdown vary with the requested
CPU time (the product of the requested duration and the requested
number of nodes) in the right two graphs, we see trends similar to
those when looking just at the requested duration, except that the
upward trend as the CPU time increases is more pronounced in the
NOVM–NOSR configuration. This upward trend also is evident
in the suspend/resume configurations, but only for large values of
CPU time.

In general, we observe across all 72 workloads that, as ρ in-
creases, wait times and slowdowns tend to increase more sharply
in the NOVM–NOSR configurations, but tend not to vary in the
configurations that use suspend/resume.

5. RELATED WORK
The problem of scheduling best-effort jobs has been extensively

studied. The most commonly used optimization is backfill [21, 23,
9]. We leverage the suspend/resume capability of virtual machines
to extend backfill algorithms, allowing leases to be suspended be-
fore the start of a reservation, whether an advance reservation lease
or a parallel best-effort lease reserved by a backfilling algorithm.
Jobs running on nonvirtualized machines can also be preempted
and have their state saved to disk (checkpointing), to achieve more
fault-tolerant software or to optimize job scheduling. However,
OS-level checkpointing requires applications to be compiled for
the checkpointing-aware OS, and may require relinking an applica-
tion with new libraries (e.g., the BLCR kernel [15] can checkpoint
MPI applications only if these are linked with BLCR-aware MPI

libraries). The use of VMs allows any computation to be transpar-
ently checkpointed without modifying the application or porting it
to a new architecture. Although nodes must use a specific VMM
kernel, the guest VMs can potentially run any operating system.

Several modern batch schedulers, such as SGE and Maui, sup-
port advance reservations, which allow users to request strict avail-
ability periods, similar to the advance reservation leases described
in this paper. Once a reservation is made, however, users must
still interact with those resources using the job abstraction (typi-
cally through a queue that is created specifically to submit jobs to
the reserved resources) and cannot request a custom software envi-
ronment. Additionally, advance reservations can cause utilization
problems in clusters [11, 30, 31, 22] as a result of the strict con-
straints they impose on the job schedule, which is only partially
alleviated by backfilling. Nonetheless, there is a growing interest
in supporting advance reservation capabilities in systems such as
TeraGrid [38, 22], for a variety of usage cases, such as coschedul-
ing of large parallel jobs across sites. Our work facilitates support
of the leasing semantics required by advance reservations, while
having a smaller impact on utilization and queue wait times than
do existing approaches.

Fallenbeck et al. [8] extended the SGE scheduler to use the
save/restore functionality of Xen VMs, allowing large parallel jobs
to start earlier by suspending VMs running serial jobs, and resum-
ing them after the large parallel job finished. Emeneker et al. [7]
extended the Moab scheduler to support running jobs inside VMs,
and explored different caching strategies for faster VM image de-
ployment on a cluster. However, both studies use VMs only to sup-
port the execution of best-effort jobs and do not currently schedule
image transfers separately; moreover, the Moab work does not in-
tegrate caching information into scheduler decisions.

The OAR batch scheduler, used in the Grid5000 [3] architecture,
is coupled to a node reconfiguration system that can deploy a soft-
ware environment, using disk images, on a node before a job starts
running. However, these disk images are used to reimage physical



Table 1: Experiment running times, average waiting
times, and average slowdowns for [10%/3H/medium],
[20%/3H/medium], and [30%/3H/medium]

Time to complete best-effort leases,
relative to time without advance reservation leases

ρ→ 10% 20% 30%
NOVM–NOSR 3.91% 8.66% 23.93%
NOVM–SR -0.76% 0.10% 4.14%
VM–PREDEPLOY -0.27% 1.58% 7.19%
VM–MULT 0.60% 3.95% 12.21%
VM–REUSE–UNIFORM 0.03% 3.15% 10.74%
VM–REUSE–SKEWED -0.36% 2.48% 10.43%

Average waiting time for best-effort leases,
in thousands of seconds

ρ→ 10% 20% 30%
NOVM–NOSR 16.91 23.91 68.95
NOVM–SR 6.18 8.14 14.84
VM–PREDEPLOY 8.05 12.17 22.89
VM–MULT 15.69 34.56 78.83
VM–REUSE–UNIFORM 12.31 25.68 62.52
VM–REUSE–SKEWED 10.69 22.85 58.44

Average bounded slowdown
ρ→ 10% 20% 30%

NOVM–NOSR 60.48 71.80 296.74
NOVM–SR 31.05 49.56 134.91
VM–PREDEPLOY 39.60 62.45 133.59
VM–MULT 91.94 203.39 441.10
VM–REUSE–UNIFORM 62.24 140.42 338.60
VM–REUSE–SKEWED 50.46 115.99 309.67

drives, instead of being used by VMs. Although this approach al-
lows practically any environment to be deployed, it increases the
deployment overhead which, in OAR, is not scheduled separately
from the job.

Several groups have investigated the use of multilevel schedul-
ing at the cluster level by using existing job schedulers to provision
compute resources, which are then managed by a separate sched-
uler, instead of being limited to using the job execution semantics
provided by the job scheduler that provisioned the resources. The
Condor scheduler’s glidein mechanism [14] was the first to apply
this model on compute clusters, by starting (or “gliding in”) Con-
dor daemons on the provisioned resources. The MyCluster project
[34] similarly allows Condor or SGE clusters to be overlaid on top
of TeraGrid resources to provide users with personal clusters. The
Falkon task scheduler [16] can also be deployed through a GRAM
interface on compute resources and is optimized to manage the ex-
ecution of lightweight tasks. In all these approaches, resource
provisioning is not completely decoupled from the job scheduler,
and there is no way to obtain a custom software environment.

Several datacenter-based solutions have emerged that completely
decouple resource provisioning from job submission, including ser-
ver hosting providers that provide long-term leases over virtualized
resources. More recently, Amazon’s EC2 [37] introduced the
notion of cloud computing, where virtual machines are dynami-
cally provisioned immediately with customized software environ-
ments and use is charged by the hour. These solutions excel at pro-
viding users with exactly the software environment required, and

most provide a large number of hardware options; however, they
support few types of availability periods. Server hosting providers
are geared toward long availability periods, while EC2 requires re-
sources to be provisioned immediately.

Several groups have explored the use of VMs to create “vir-
tual clusters” on top of existing infrastructure. Nishimura et al.’s
[24] system for rapid deployment of virtual clusters can deploy a
190-node cluster in 40 seconds. Their system accomplishes this
impressive performance by representing software environments as
binary packages that are installed on the fly on generic VM im-
ages. They optimize installation by caching packages on the nodes,
thus reducing the number of transfers from a package repository.
This approach limits the possible software environments to those
that are expressible as installable binary packages (which is not al-
ways possible) but does provide a faster alternative to VM image
deployment if the installation time is short enough. Yamasaki et
al. [35] improved this system by developing a model for predict-
ing the time to completely set up a new software environment on
a node, allowing their scheduler to choose nodes that minimize the
time to set up a new virtual cluster. Whereas our model assumes
homogeneous nodes and uses disk images to encapsulate software
environments (and thus can use a simple formula for estimating the
time to set up a software environment), Yamasaki et al.’s model
takes node heterogeneity into account and uses the parameters of
each node (CPU frequency and disk read/write speeds) and empiri-
cal coefficients to predict the time to transfer and install all required
packages, and then reboot the node. However, their model does not
include an availability dimension and assumes that all resources
are required immediately (a subset of advance reservation leases),
while our model allows for deployment overhead to be scheduled
in different ways depending on the lease’s requested availability
(best-effort or advance reservation).

The Shirako system [17] uses VMs to partition a physical clus-
ter into several virtual clusters. This work also relies on the lease
abstraction, allowing users to obtain resource leases that can be
redeemed in the future. Their model assumes that any overhead in-
volved in deploying and managing the VM will be deducted from
the lease’s availability. In contrast, we seek to provide a guaran-
teed set of resources during an agreed-upon availability period, ad-
equately managing overhead in such a way that this guarantee is
not breached. Previous work [33, 32] showed that not managing
this overhead can prevent advance reservation leases from start-
ing at their specified start time and thus would prevent a resource
provider from entering into agreements that guarantee the lease’s
availability period.

Other groups have explored a variety of challenges involved in
deploying and running a virtual cluster, including virtual network-
ing and load balancing between multiple physical clusters (VIO-
LIN/VioCluster [28, 27]), automatic configuration and creation of
VMs (In-VIGO [1] and VMPlants [20]), and communication be-
tween a virtual cluster scheduler and a local scheduler running
inside a virtual cluster (Maestro-VC’s two-level scheduling [19]).
However, they do not explore workloads that combine best-effort
and advance reservation requests, nor do they schedule deployment
overhead of VMs separately.

6. FUTURE WORK
Our architecture makes certain simplifying assumptions on sev-

eral policy points. Most notably, we (a) accept all lease requests,
except advance reservation leases for which no resources can be
provisioned (e.g., because an advance reservation lease has already
been scheduled on those resources) and (b) assume that best-effort
requests are always preemptible and advance reservation leases are



not. In future work, we will explore policies that accept or reject
leases based on criteria other than resource availability and the ef-
fect of different policies on performance. For example, we have
only scratched the surface of the effect that advance notice (of ad-
vance reservation leases) can have on global performance. If a
system administrator allows for short advance notices, users will
presumably prefer to request advance reservation leases instead of
having their requests wait in a queue, increasing the advance reser-
vation lease workload, which this work has shown can result in
worse performance. On the other hand, requiring long advance no-
tices will reduce the value of advance reservations to users. Future
work will investigate the effect that these policy points have on
performance and ways to configure them in order to balance the
requirements and needs of both resource providers and users. We
will also look at preemptible advance reservation leases and non-
preemptible best-effort leases and will investigate policies that take
into account additional factors (such as priorities) when deciding
when a lease should, or should not, be preempted.

We also plan to develop a prototype implementation of our ar-
chitecture that can manage real resources. An important issue will
be handling hardware failures. Our experiments currently assume
no hardware failures. Our scheduler could easily deal with failures
by cancelling and resubmitting any best-effort leases affected by a
failure. However, this strategy can be inefficient if, for example, a
long lease is cancelled when most of its work is done. We can min-
imize the impact of failures by performing periodic checkpoints
(using VM checkpointing mechanisms), at the cost of extra disk
space. Another concern is that cancelling an advance reservation
lease breaches the agreement made with the resource consumer. We
will explore strategies that make advance reservation leases more
resilient, such as overreserving resources in anticipation of failures.

We will also explore other types of leases, such as deadline-
sensitive best-effort leases, and more complex lease terms, such
as availability periods divided into multiple segments, each with
different hardware resources (e.g., a lease may need network band-
width during the first 10 minutes of an application’s execution, to
allow download information from a third site, but not require net-
work connectivity for the remainder of the lease). Additionally,
we will explore dynamic renegotiation of lease terms and lease
metascheduling.

7. CONCLUSIONS
We have described a lease management architecture that allows

resource consumers to request resource leases with semantics that
encompass hardware resource, software environments, and avail-
ability. We have focused on resource availability and, in particular,
on two types of availability that are frequently required in practice:
preemptible best-effort, roughly corresponding to the availability
requirements of batch computations, and nonpreemptible advance
reservation. Resource leases are a general-purpose abstraction for
provisioning resources. They do not limit the resource consumer to
access and use those resources through constrained interfaces, such
as those of a job scheduler, which requires users to specify a single
computation to be performed on the requested resources.

We have presented experimental results that show that, when us-
ing workloads that combine best-effort and advance reservation re-
quests, a VM-based approach with suspend/resume can overcome
the utilization problems typically associated with the use of ad-
vance reservations. Our results show that, even in the presence
of the runtime overhead resulting from using VMs, a VM-based
approach results in consistently better total execution time than a
scheduler that does not support task preemption, and only slightly
worse performance than a scheduler that does support task preemp-

tion. Measurements of wait time and slowdown for the same exper-
iments show that, although the average values of these metrics in-
crease when using VMs, this effect is due to short leases not being
preferentially selected as backfill before a blocking lease. In effect,
a VM-based approach does not favor leases of a particular length
over others, unlike systems that rely more heavily on backfilling.
Moreover, we show that, although supporting the deployment of
multiple software environments, in the form of multiple VM im-
ages, requires the transfer of potentially large files, this deploy-
ment overhead can be minimized through the use of image transfer
scheduling and caching strategies.
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