
LambdaLink: an Operation Management Platform for
Multi-Cloud Environments

Kate Keahey
Argonne National Laboratory

Argonne, Illinois, USA
keahey@mcs.anl.gov

Pierre Riteau
University of Chicago
Chicago, Illinois, USA
priteau@uchicago.edu

Nicholas P. Timkovich
University of Chicago
Chicago, Illinois, USA
npt@uchicago.edu

ABSTRACT
The last several years have seen an unprecedented growth in data
availability, with dynamic data streams from sources ranging from
social networks to small, inexpensive sensing devices. This new
data availability creates an opportunity, especially in geospatial
data science where this new, dynamic, data allows novel insight into
phenomena ranging from environmental to social sciences. Much
work has focused on creating venues or portals for publishing and
accessing such dynamic datasets. However access to data in itself
is not sufficient—to turn data into information the data needs to be
filtered, correlated, and otherwise analyzed using methods that are
dynamically developed and constantly improved by a distributed
community of experts. Further, these methods are increasingly
required to deliver results with specific qualities of service, e.g., pro-
viding results by a certain deadline or ensuring a certain accuracy
of the results. Delivering such qualities of service requires generic
but often sophisticated tools managing the execution of operations
and ensuring their correctness. This paper presents LambdaLink,
an operation management platform for multi-cloud environments,
and explains how it supports the structured contribution and re-
peatable, time-controlled execution of operations. We describe the
architecture and implementation of LambdaLink, its approach to
appliance management in a multi-cloud context, and compare it
with related systems.

CCS CONCEPTS
• Computer systems organization→ Cloud computing;

KEYWORDS
Operation Management Platform; Cloud computing; Lambda; Re-
peatable Execution

1 INTRODUCTION
The last several years have seen an unprecedented growth in data
availability with dynamic data streams from sources ranging from
social networks to small, inexpensive sensing devices. The latter
in particular is increasingly creating new sources of information:
the proliferation of energy-efficient, cheap, and robust sensors,

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.
UCC ’17, December 5–8, 2017, Austin, TX, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5149-2/17/12. . . $15.00
https://doi.org/10.1145/3147213.3147224

sometimes referred to as second Moore’s law, is now creating new
opportunities for measuring various physical, chemical, and biolog-
ical characteristics of the environment. As small, specialized sensor
devices, capable of both reporting on environmental factors and in-
teracting with the environment, become more ubiquitous, reliable,
and cheap, increasingly more domain sciences are creating instru-
ments, composed of dynamic groups of sensors whose outputs are
capable of being aggregated and correlated to answer new ques-
tions. This new data availability creates an opportunity, especially
in geospatial data science where this new, dynamic, data allows un-
precedented insight into phenomena ranging from environmental
to social sciences.

Much work has focused on creating venues or portals for pub-
lishing and accessing such dynamic datasets. However access to
data in itself is not sufficient—to turn data into information the
data needs to be filtered, correlated, and otherwise analyzed using
methods that are dynamically developed and constantly improved
by a distributed community of experts. Further, the methods are
often used to generate results with specific qualities of service, e.g.,
providing results by a certain deadline or ensuring a certain ac-
curacy of the results. Delivering such qualities of service requires
generic but often sophisticated tools managing the execution of
such methods and ensuring their correctness.

Thus we propose to extend the concept of a dynamic data portal
to a portal supporting the structured contribution and repeatable,
time-controlled execution of operations (sometimes referred to
as lambdas) as well as access to data. In particular, the proposed
platform should support the following capabilities:

• Operation Publishing. It allows contributing users to eas-
ily publish new operations in such a way that they can be
automatically executed by others without the need to un-
derstand any of their implementation dependencies or other
details. Such operations should become referencable objects,
i.e., they should be capable of being published via a Digital
Object Identifier (DOI) and easily reenacted by others.

• Versioning and Repeatability. The platform should support
users in repeating the execution of operations under the
same condition as the original, i.e., should manage operation
versions and record and provide sufficient information about
the condition of the original execution for the user to recreate
those conditions.

• Time-Controlled Execution. The architecture should support
mechanisms for demand-based integration of resources to
trade-off quality of service considerations such as response
time, accuracy of results, and cost.

• Variety of Platforms. The solution should integrate support
for multiple commercial and academic platforms including

https://doi.org/10.1145/3147213.3147224

academic clouds such as Jetstream [42] and Chameleon [44],
commercial platforms such as Amazon Web Services [3] or
Azure [29], as well as Grid resources such as XSEDE [46] or
OSG [33].

In this paper we present LambdaLink, an operation management
platform and demonstrate how it fulfills the objectives stated above.
Our focus is on developing the abstractions as well as design and
interfaces for the system and demonstrating how existing tech-
nologies can be integrated to implement it. Since the questions of
dynamic scaling by integrating on-demand resources [25, 38] as
well as job execution management on remote resources [10] have
been investigated in the context of other research, here we focus
on mechanisms to bring those results together in a platform that
supports repeatable execution.

Our paper is organized as follows. In Section 2, we demonstrate
that the concept of appliance underlying our approach can be con-
sistently and cost-effectively implemented across different types
of platforms. In Section 3, we build on this concept to present the
LambdaLink architecture, discuss the operation publication process
it supports as well as its implementation. In Section 4, we discuss
the architecture in the context of our goals stated above. We present
related work in Section 5 and conclude in Section 6.

2 APPLIANCE AS ABSTRACTION
Our approach relies on the concept of an appliance [39]]: a complete
and actionable representation of a user’s environment. An appliance
is capable of packaging all the software dependencies of a user’s
program—from operating system, through libraries and tools, to
environment variables—in such a way that it is easy for the user to
manipulate. In this section, we seek to explain how the concept of an
appliance fulfilling our requirements above—whether representing
an individual deployment or a cluster with complex relationships—
can be supported by integrating existing tools.

Popular implementations of appliances include virtual machines
such as KVM [23] and Xen [7], containers such as Docker [28],
Shifter [8], or Singularity [24], or bare metal images such as those
supported by Chameleon [44]. Most of those implementations con-
sist of disk images that can be deployed to create an instance, i.e.,
an interactive environment based on a given appliance deployed
onto a specific resource allocation. Once an appliance is deployed, a
user can log into the instance interactively, modify it, and snapshot
it (i.e., save the new disk image), thus creating a new appliance.

Most targeted cloud platforms, such as Amazon EC2 [3], Jet-
stream [42], or Chameleon [44] have specific requirements for the
format of a disk image (e.g., raw or QCOW2 [35]), its disk layout
(e.g., whole disk image or partition image), or the environment in-
cluded in the image (e.g., cloud-init required to be installed and run
on boot for injecting SSH keys, a DHCP client configured on spe-
cific interfaces, etc.) making images incompatible between various
providers. Cloud users typically address this problem by deploy-
ing, manually customizing, and then snapshotting images for each
platform. However, this approach is not sustainable: it is not only
hard to automate (and thus costly) but also prone to errors that may
result in an environment that is not consistent between platforms.
This poses further questions in the light of our objectives to create
an appliance compatible across a range of academic and commercial

platforms: how can we generate appliance disk images for all those
platforms in such a way that they are consistent, i.e., reflect the
same properties for each platform? Will it be possible to maintain
(i.e., update or upgrade) such appliances cost-effectively in practice
without impacting consistency?

We investigated and compared two approaches in this space:
(1) offline creation of images compatible with the requirements of
the cloud platform, and (2) online customization and snapshotting.
Each method starts with a base image (e.g., a bare-bones operating
system installation, sometimes called JeOS for Just Enough Operat-
ing System), which can be created from scratch by populating its
content using an operating system installation procedure, or are
produced by some Linux distributions.

The first approach is exemplified by diskimage-builder [12], a
tool for automatically building customized operating system images
for use in OpenStack [32] clouds (both KVM and baremetal). It takes
as input a set of elements, describingwhich disk image to use as base
image, which image format to use, and which customizations to
apply to this image (each customization element is a script, usually
written in shell). It extracts the file system hierarchy from the base
image, applies customizations to it using chroot, and from it creates
a disk image in the intended format. Diskimage-builder can be run
on any machine that has the required dependencies (libguestfs,
QEMU image tools, etc.). The resulting disk image must then be
uploaded to the target cloud platform(s).

The second approach relies on snapshotting capabilities of cloud
platforms and is an automation of the deploy, customize, and snap-
shot approach described above. Its implementation is exemplified by
the Packer [19] tool. Packer takes as input a configuration describ-
ing which cloud platform to use and how to access it (including
credentials), which disk image to run, and how to customize it.
Packer then performs all the steps required to generate the im-
age which include: generating a dedicated SSH key, launching an
instance on the cloud platform such that it is accessible with the
generated SSH key, and applying customization steps defined by the
user (e.g., via shell scripts or configuration management systems
such as Puppet [34], Chef [9], or Ansible [5]). When all steps are
successfully applied, Packer snapshots the instance on the cloud
platform. The tool is supported for a wide range of platforms, in par-
ticular AWS [3], virtualized OpenStack clouds including Rackspace
Cloud Servers [37], Google Compute Engine [17], and Azure [29].

To compare, the offline approach offers more control over the
exact type of image being generated (e.g. whole disk image vs
partition image, raw vs QCOW2), but requires knowledge of the
format supported by the targeted cloud platforms. For example,
while diskimage-builder may be able to create images for any Open-
Stack cloud based on KVM or bare metal, it does not provide out
of the box support for other commercial clouds such as Amazon
EC2. The online approach is directly compatible with each cloud
platform, but it requires support for a call to the cloud platform’s
snapshotting API method which is not always available (e.g., Open-
Stack does not support snapshotting for bare metal deployments
out of the box). In addition, the online approach requires credentials
and credits for each target cloud platform so that an image can be
uploaded, deployed, and later stored there—the offline method does
not require uploading the image to the platform until it is actually

needed. Thus the two methods represent different trade-offs and
provide coverage for different types of platforms.

To achieve the most complete coverage of platforms we have
combined both approaches by first establishing a library of base
images for a range of targeted platforms (i.e., a family of OS images,
such as CentOS 7, or more specific, e.g. Ubuntu 16.04.3) that can
be used as base for either method. For each image we then define
what customizations should be applied (in our case usually Bash
shell scripts, though other methods can also be used). The system
works by selecting a base image for the right method and delegat-
ing to tools implementing either the online or offline approach as
appropriate. Further, some appliances may use a modification of
the deploy, customize, and snapshot method that omits the snapshot
step. In this case, configuration is always redone when the image
is deployed. This leads to long deployment times and is often un-
reliable as the installation process may access remote repositories
that are not always available. For this reason, we decided agains
using this process in our reference implementation.

An additional challenge is defined by the need to representwithin
the system platforms that are not appliance-based, i.e., do not let
users deploy environments and instead rely primarily on fixed en-
vironments pre-configured on various sites, such as XSEDE [46].
While we cannot influence the configuration of those sites, we
can represent their configurations as an appliance giving users
the option to run at scale on one of the XSEDE sites—but also
use appliance-based platforms as needed, e.g., when XSEDE re-
sources are not available or—using an XSEDE appliance with slight
modifications—to implement and debug their applications within
an environment that allows for a hightened level of privilege such
as e.g., superuser access.

Finally, the last challenge consists of deploying what we call com-
plex appliances—appliances typically deployed as multiple instances
implementing complex relationships—such as a virtual cluster (e.g.,
a Torque [1] cluster with potentially multiple specialized manage-
ment nodes and a set of worker nodes) or a cloud deployment (such
as e.g., OpenStack or Hadoop [6] deployments). In addition to the
disk image, such deployments require integrating on deployment
additional information e.g., exchanging security information (based
on keys generated at deployment time) or configuration informa-
tion (IP addresses generated at deployment time)—a process called
contextualization [22]—and potentially recontextualizing [27] dy-
namically as new nodes are added to a virtual cluster or a cloud.
These capabilities are supported by orchestration services that typ-
ically use an image and a template defining how the images are
deployed and the information is exchanged among them. These
services are implemented by Heat [20] for OpenStack, Cloud For-
mation [2] for AWS, Google Cloud Deployment Manager [16] for
Google Compute Engine, etc., giving us a coverage of the platforms
of interest.

3 LAMBDALINK ARCHITECTURE
In the previous section, we demonstrated the properties of appli-
ances in LambdaLink. This section describes the architecture of the
system.

Portal

Cloud Providers

Lambda
Manager

Lambda
Registry

Appliance
Registry

Resource
Manager

Instances /
Clusters

Lambda
Agent

Appliance
Agent

Community
Contributor

End-User

C1

1

Cloud ProvidersCloud Platforms

2

3

4

5

6

7

8C2

Figure 1: Diagram of the LambdaLink architecture

3.1 Critical Components
Figure 1 shows an outline of the LambdaLink architecture. The
architecture is composed of the following components:

• A Portal, or another means for users to communicate with
the system, which allows users to request the execution of
specific operations on specific data. It also manages infor-
mation relevant to users (e.g., credential information for
multiple cloud services).

• The Appliance Registry, which stores appliances as well
as the corresponding appliance implementations required to
deploy them on different cloud platforms. To support repeata-
bility at the level of environments, updates to appliances as
well as appliance implementations are tracked using version
numbers.

• The Resource Manager manages appliance deployments.
It is in charge of choosing the best option between using
an existing appliance instance (if available), expanding the
resource allocation for one, or creating a new one on a new
resource allocation, as needed tomanage the overall response
time. The Resource Manager uses the information about
appliances in the Appliance Registry to deploy appliances
on allocated resources. It then uses interfaces to multiple
clouds to deploy the appliance, leveraging or integratingwith
orchestration mechanisms to create complex appliances as
needed.

• The Appliance Agent carries out functions within the ap-
pliance, such as credential management or monitoring, on
behalf of the Resource Manager.

Appliance Registry

Appliance Implementation

● Name
● Author
● Deployment Template / Scripts
● Version

Site

● Name
● API type
● API endpoint

register_appliance()
add/remove_implementation()
add_version() / delete_version()
get_appliance(site)

Appliance

● Name
● Owner
● Version

Figure 2: Appliance Registry interfaces

• The Lambda Registry, which stores information about op-
erations in the form of scripts or execution recipes (e.g., how
to execute them, what appliance they need, pre- and post-
execution actions, etc.) that allow the Lambda Manager to ex-
ecute them automatically. The operations are also tracked at
the level of version numbers as multiple operation versions
can map to the same appliance version.

• The Lambda Manager, which takes user requests for the
execution of specific operations and executes them based
on information provided by Lambda Registry. The Lambda
Manager also works with the Resource Manager to ensure
the availability of the required environment on the right
amount of resources, possibly triggering the deployment of
a new appliance.

• The Lambda Agent carries out functions within the ap-
pliance, such as starting a job locally and monitoring and
reporting on its progress, on behalf of the Lambda Manager.

The system operates on virtual data, i.e., data that can be globally
identified and efficiently managed based on global identifier, creat-
ing local copies as needed, such as implemented by Chimera [14].

3.2 User Workflows
The system assumes two types of users: (a) a community contributor,
who contributes operations/lambdas to the system via the portal,
and (b) an end-user, who uses those operations. Below we describe
only the interfaces opened to community contributors and end
users.

Lambda Registry

Operation Implementation

● Version
● Author
● Appliance
● Execution Scripts
● Input Parameters
● Output Parameters

register_operation()
add/remove_implementation()
add_version() / delete_version()

Operation

● Name
● Owner
● Version

Figure 3: Lambda Registry interfaces

Community Contributor Workflow. To contribute an operation
to the system, the user takes the following steps:

• The user conceptualizes a new appliance for the contributed
operation and uses methods described in Section 2 to con-
figure one or more implementation of this appliance for a
set of resource providers. The user then tests these images
to verify that they support the execution of the required
operation across appliance implementations, and support
other properties of the appliance.

• Once the appliance configuration step is complete, the user
first adds an appliance entry/record to theAppliance Registry
(Figure 1, step C1) as well as implementation records for each
cloud provider using interfaces shown in Figure 2.

• After the appliance entry is created, the user proceeds to
define a lambda/operation entry in the Lambda Registry
(Figure 1, step C2) using interfaces shown in Figure 3.

• The user then defines a new operation implementation en-
try for a specific operation. The operation implementation
record references the appliance required for its execution,
and may consist of the command to execute the process,
any pre- and post- processing commands, as well as links to
virtual data representing input and output parameters.

End-User Workflow. The execution of operations/lambdas is trig-
gered by the end-user and unfolds in the steps described below.
We assume that the end-user has an account with the portal and
that the account is associated with a set of credentials associated

with resources that the user wants to use; these can be either pro-
vided by the portal administrator or constitute (potentially partially
delegated) user’s credentials.

Invoking an operation triggers the following steps:

• The user logs into the portal and browses through a list of
contributed operations, their versions and descriptions, and
requests the application of a specific operation to specific
data (Figure 1, step 1).

• After the user’s request is conveyed to the Lambda Manager,
the latter takes the following actions: a Lambda Instance
record providing information about the executing opera-
tion is created (it will be updated with relevant information
throughout operation execution); the Lambda Manager re-
trieves the information about how to run the operation from
the Lambda Registry (Figure 1, step 2), and asks the Resource
Manager to select a suitable appliance for its execution (Fig-
ure 1, step 3).

• The Resource Manager first checks if the appliance has been
deployed within the system and takes the following actions:
– If no appliance available to the user (via such mechanisms
as e.g., membership in the same project) has been deployed
in the system, the Resource Manager first selects a plat-
form consistent with the user’s credentials as present in
the system. Users may provide hints on resource pref-
erences, though the actual decision takes into account
factors such as resource availability, the availability of an
appliance implementation for the specific resource, and
cost. Once a platform is selected, the Resource Manager
uses information about the appliance implementation re-
trieved from the Appliance Registry (Figure 1, step 4) and
deploys it on the platform (Figure 1, step 5), also creating
an Appliance Instance record with relevant information.
The Resource Manager then authenticates and interacts
with the Appliance Agent to create an account associated
with the requesting user (Figure 1, step 6).

– If an appliance has been deployed in the system, but needs
to be modified in some way, e.g., the user’s account does
not exist, or the resource allocation is insufficient to accom-
modate the user’s request, the Resource Manager takes
the appropriate action. In the former case, it asks the Ap-
pliance Agent to create an account for the user; the agent
then securely returns the authentication token for it. If the
appliance lacks resources to provide the desired response
time, has been deployed but the resource allocation associ-
ated with the instance is insufficient to accommodate the
user’s request, the Resource Manager scales the instance
up or out, following scaling strategies such as described
in [38]. The allocations are monitored and scaled down as
needed.

– If the appliance has been deployed and fulfills the require-
ments, it is a no-op and the Resource Manager simply
returns the resource record.

In all cases, the Resource Manager returns a resource record
containing the IP address of the appliance instance and the
user’s authentication token for this appliance deployment.

• Once the appliance is available, the Lambda Manager pre-
pares for deployment, based on the requirements described
in the operation record retrieved from the Lambda Registry,
and launches the execution of the operation by interacting
with the Lambda Agent running on the node (or the master
node of a cluster) (Figure 1, step 7).

• Once the execution of the operation is finished, the Lambda
Agent notifies the Lambda Manager. The Lambda Manager
then orchestrates post-processing as per the operation record
retrieved from the Lambda Registry and ultimately notifies
the user (Figure 1, step 8).

3.3 Implementation
We have prototyped the LambdaLink architecture in the follow-
ing reference implementation. Components of LambdaLink are
implemented independently as microservices with HTTP REST
APIs. Each service is written in Python, using Django for HTTP,
object-relational mapping, and authentication, then Django REST
Framework to provide the API. Persistent data is stored in a MySQL
database.

Requests made to services are authenticated by custom Django
middleware that validates a token. For external requests by a user,
the token is provided by an authentication service, and for inter-
service requests, a generated token is signed with a shared key.
After authentication, authorization is validated, then the request is
handled.

Endpoints that do not represent instantiated resources, for ex-
ample, the appliance definition and implementation, have a simple
CRUD API to modify properties of the objects. For endpoints re-
liant on external resources accessed in an asynchronous manner,
the two Managers use additional processes running a Celery task
queue [40] to make requests and poll for expected changes. For
example, when the Resource Manager determines that it needs to
launch an appliance on a cloud provider, it creates an object and
immediately returns it to the user marked in a pending state. A task
is created to command the provider to start creation, then to check
for provisioning to finish, and finally to check if the Appliance
Agent is contactable.

Our refernce implementation supports OpenStack clouds, such
the ROGER OpenStack cloud at NCSA [31] or the Chameleon [44]
KVM and bare-metal OpenStack deployments, with Heat [20] for
deploying complex appliances. It has been used to deploy operations
of UrbanFlow [41], a geospatial data analysis platform from the
CyberGIS center [47] for synthesizing social media fine-resolution
data with authoritative urban dataset.

Our deployment model assumes that LambdaLink will be oper-
ated as a service, where the service provider provides cycles and
storage to manage and store the operations information, appliances,
and their implementations (though some implementations may be
cached at suitable cloud providers).

4 DISCUSSION AND ANALYSIS
We have defined the LambdaLink architecture, developed a refer-
ence implementation, and applied it in the context of CyberGIS
computations [47]. The main innovation of our approach is a design
separation of the function of resource provisioning/configuring and

job/operation management united in traditional schedulers—and
then demonstrating how they can be used together to provide an
architecture fulfilling our requirements, in particular generating
information for repeatable execution and response time manage-
ment.

We note that the operation/lambda management in our architec-
ture is similar to mechanisms used in grid computing [10, 48]. The
main differences consist in the ability of the Lambda Manager to
(1) negotiate with the Resource Manager to provide specific types
or amounts of resources and (2) the ability to provide a structured,
persistent, and versioned definition of operations in the Lambda
Registry. The existing mechanisms could thus be adapted to fit into
this architecture with relatively little effort. The former could be
implemented by extending them to provide the appliance selection
operation (see Figure 1, step 3); the latter by providing an implemen-
tation of the Lambda Registry (a relatively lightweight elaboration
on already existing mechanisms). For this reason, our reference im-
plementation focuses on the appliance and resource management
parts of the architecture, as well as articulating interfaces for better
integration of existing methods.

We now turn to analysis of our system in the context of its stated
objectives. We have provided a platform that supports contribut-
ing/publishing operations (lambdas) as well as their automated
execution allowing for implementation of qualities of service. Sec-
tion 3.2 outlines a contributor’s workflow and showed how, based
on specific and well-defined artifacts provided by the contributor,
we can automate both the automatic execution of the operations and
manage quality of service by automatically integrating resources.
The ability to package, version, and publish operations in this way
makes them not only shareable but also referencable entities that
can be easily re-applied by others to different data sets or different
problems. Execution based on appliances ensures a smoother experi-
ence which assures that the dependencies of a specific applications
are met.

The ability to faithfully repeat an execution of a specific pro-
gram operating on a specific dataset usually depends on two factors:
the ability to execute on the exact same hardware, and the abil-
ity to recreate on this hardware the exact same environment used
in the original execution. Though the first repeatability factor is
sometimes downplayed—as not all changes to hardware will affect
all executions—changes in hardware configuration and firmware
upgrades can have a noticeable effect on the results injecting non-
trivial inconsistencies into the results that only repeating an exper-
iment in the exact same conditions can resolve. Two factors need
to be present to resolve it: a record of the exact resources used, and
versioning of those resources to describe changes that happened
to them in the intervening time between executions. Having this
information means that even if it is not economically possible to
roll back the changes or restore decommissioned hardware based
on those records, differences can still be reasoned about. The avail-
abililty of this information is currently dependent on the provider;
while commercial platforms provide little information in this space,
both record of used resources and resource versioning are currently
supported by the Chameleon platform [45] and the developed meth-
ods are published and shareable by other platforms. Versioning of
appliances in the LambdaLink architecture allows us to point to the
exact environment used for a specific execution. Since associating

operations with environments is performed by the system we can
manage and export exact records of how specific data was produced.
Combining these two factors allows for exact reenactment of a spe-
cific run (currently not automated in the architecture though the
relevant information is available).

Many applications and science portals have successfully man-
aged to leverage on-demand cloud resources to adapt to a vary-
ing number of users/requests with varying workloads in order to
provide a predictable response time for all requests [26, 36, 38].
Although integrating resources dynamically into an ongoing com-
putation has proven effective in the case of e.g., high throughput
computing (HTC) workloads [30], it is significantly more challeng-
ing for applications that have to manage a dynamic configuration,
such as data distribution targeting a fixed number of nodes. Specifi-
cally, in the case of dynamically scaling Hadoop applications—used
in many geospatial computations—the overhead of making the ap-
plication aware of additional resources can incur more cost than
it brings benefit if not done carefully. Thus, while we have proved
that our approach will work for certain types of applications [41],
we are currently investigating the boundaries of dynamic scaling
of Hadoop and strategies for management of Hadoop workloads.
Recognizing which applications are capable of consuming the ad-
ditional resources and thus will benefit by their inclusion will ul-
timately form a part of the negotiation process with the user as
described in [4].

The ability to support a range of platforms, commercial and
academic alike, is dependent on two factors. The first one is im-
plementing the appliance abstraction, i.e., developing models for
generating and cost-effectively maintaining a set of appliance im-
plementations (i.e., images) that is consistent across a set of those
platforms; their advantages and limitations were described in Sec-
tion 2. While we of course cannot deploy appliances on platforms
that do not support this functionality (such as e.g., platforms pro-
viding an interface to batch-scheduled workloads), we can provide
a one-way bridge allowing the users of those platforms to move to
LambdaLink by configuring appliances with corresponding config-
uration. The increased interest in adopting container solutions such
as Singularity [24] or Docker [28] in scientific platforms is likely to
improve the situation on this front in the future. The second factor
is the ability to adapt the Resource Manager to interface with and
leverage a set of platform-specific tools to implement basic func-
tions such as monitoring or deployment of complex appliances; this
is currently well supported by tools [11] such as Apache Libcloud
and Apache jclouds, and likely to develop in the future as more
systems are interested in reaching out to multiple platforms.

5 RELATEDWORK
Science gateways [21, 49] are a popular way to share catalogs of
applications and services among a large scientific community. How-
ever, these gateways are generally linked to specific execution
platforms, with their use in multi-cloud environments only ex-
plored recently. Farkas et al. [13] and Gugnani et al. [18] extend
the WS-PGRADE/gUSE workflow-oriented science gateway with
the CloudBroker Platform to support execution on multiple cloud
platforms. However, neither of these systems deal with repeatable

execution of operations, which LambdaLink handles by integrating
versioning into its registries.

Scientific workflow management tools [50] is another type of
systems that can include comparable capabilities to LambdaLink.
The main difference is that they focus on executing workflows of
inter-dependent tasks, while LambdaLink operations are not tied
to this concept: for example, an operation could be the deployment
of a virtual cluster based on a complex appliance, providing a long-
lived service to a community. Among these workflow management
tools, the AWE/Shock ecosystem for bioinformatic workflow ap-
plications [43] is extended by Skyport [15] to use Linux container
virtualization technologies (namely, Docker [28]) to handle soft-
ware deployment across various cloud platforms. In comparison,
the implementation of LambdaLink natively supports image-based
deployments (either virtual machines or bare metal), but could also
support Docker containers.

6 CONCLUSIONS AND SUMMARY
The unprecedented growth in data availability—with dynamic data
streams from sources ranging from social networks to small, in-
expensive sensing devices—creates an opportunity, especially in
geospatial data science where this new, dynamic, data allows new
insight into phenomena ranging from environmental to social sci-
ences. While much work has focused on creating venues or portals
for publishing and accessing such dynamic datasets, access to data
in itself is not sufficient: data needs to be filtered, correlated, and
otherwise analyzed using methods that are dynamically developed
and constantly improved by a distributed community of experts.

In this paper, we have presented LambdaLink, an operation man-
agement platform for multi-cloud environments. Its architecture
separates the management of appliances and operations/lambdas
and fulfills the needs of two categories of users: community con-
tributors, who create and share appliances and operations, and end-
users, who run these operations on a variety of cloud platforms.
We discussed the two main approaches available for appliance man-
agement in cloud systems and how they can both be leveraged by
LambdaLink.

In future works, we plan to explore more deeply the integration
of data management systems and protocols with LambdaLink, as
well as advanced policies for dynamic scaling. In particular, we
are currently investigating the boundaries of dynamic scaling of
Hadoop and strategies for management of Hadoop workloads, with
the aim of integrating the resulting algorithms and policies in Lamb-
daLink.

7 ACKNOWLEDGEMENTS
This material was supported by the National Science Foudation
grant 1443080, and, in part, by the U.S. Department of Energy, Office
of Science, under contract DE-AC02-06CH11357. Work presented
in this paper was obtained using the Chameleon testbed supported
by the National Science Foundation.

REFERENCES
[1] Adaptive Computing. 2017. TORQUE Resource Manager. http://www.

adaptivecomputing.com/products/open-source/torque/. (2017). [Online; accessed
15-Aug-2017].

[2] Amazon Web Services. 2017. AWS CloudFormation. https://aws.amazon.com/
cloudformation/. (2017). [Online; accessed 15-Aug-2017].

[3] Amazon Web Services. 2017. Elastic Compute Cloud (EC2). https://aws.amazon.
com/ec2/. (2017). [Online; accessed 15-Aug-2017].

[4] Alain Andrieux, Karl Czajkowski, Asit Dan, Kate Keahey, Heiko Ludwig,
Toshiyuki Nakata, Jim Pruyne, John Rofrano, Steve Tuecke, and Ming Xu. 2007.
Web services agreement specification (WS-Agreement). In Open Grid Forum,
Vol. 128. 216.

[5] Ansible HQ. 2017. Ansible. https://www.ansible.com. (2017). [Online; accessed
15-Aug-2017].

[6] Apache Hadoop contributors. 2017. Apache Hadoop. http://hadoop.apache.org.
(2017). [Online; accessed 15-Aug-2017].

[7] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho,
Rolf Neugebauer, Ian Pratt, and Andrew Warfield. 2003. Xen and the art of
virtualization. In ACM SIGOPS operating systems review, Vol. 37. 164–177.

[8] Richard Shane Canon and Doug Jacobsen. 2016. Shifter: Containers for HPC. In
Cray Users Group Conference (CUG’16).

[9] Chef. 2017. Chef. https://www.chef.io/chef/. (2017). [Online; accessed 15-Aug-
2017].

[10] Karl Czajkowski, Ian Foster, Nicholas Karonis, Carl Kesselman, Stuart Martin,
Warren Smith, and Steven Tuecke. 1998. A Resource Management Architecture
for Metacomputing Systems. InWorkshop on Job Scheduling Strategies for Parallel
Processing. 62–82.

[11] Beniamino Di Martino, Giuseppina Cretella, and Antonio Esposito. 2015. Cross-
platform cloud APIs. In Cloud Portability and Interoperability. 45–57.

[12] Diskimage-builder contributors. 2017. Diskimage-builder Documentation. https:
//docs.openstack.org/developer/diskimage-builder/. (2017). [Online; accessed
15-Aug-2017].

[13] Zoltán Farkas, Péter Kacsuk, and Ákos Hajnal. 2016. EnablingWorkflow-Oriented
Science Gateways to Access Multi-Cloud Systems. Journal of Grid Computing 14,
4 (2016), 619–640.

[14] Ian Foster, Jens Vöckler, Michael Wilde, and Yong Zhao. 2002. Chimera: A
Virtual Data System for Representing, Querying, andAutomatingDataDerivation.
In Proceedings of the 14th International Conference on Scientific and Statistical
Database Management. 37–46.

[15] Wolfgang Gerlach, Wei Tang, Kevin Keegan, Travis Harrison, Andreas Wilke,
Jared Bischof, Mark D’Souza, Scott Devoid, Daniel Murphy-Olson, Narayan Desai,
et al. 2014. Skyport: container-based execution environment management for
multi-cloud scientific workflows. In Proceedings of the 5th International Workshop
on Data-Intensive Computing in the Clouds. 25–32.

[16] Google Cloud Platform. 2017. Google Cloud Deployment Manager. https://cloud.
google.com/deployment-manager/. (2017). [Online; accessed 15-Aug-2017].

[17] Google Cloud Platform. 2017. Google Compute Engine - IaaS. https://cloud.
google.com/compute/. (2017). [Online; accessed 15-Aug-2017].

[18] Shashank Gugnani, Carlos Blanco, Tamas Kiss, and Gabor Terstyanszky. 2016.
Extending Science Gateway Frameworks to Support Big Data Applications in
the Cloud. Journal of Grid Computing 14, 4 (2016), 589–601.

[19] HashiCorp. 2017. Packer. https://www.packer.io. (2017). [Online; accessed
15-Aug-2017].

[20] Heat contributors. 2017. Welcome to the Heat documentation! — heat documen-
tation. https://docs.openstack.org/heat/. (2017). [Online; accessed 15-Aug-2017].

[21] Péter Kacsuk. 2014. Science Gateways for Distributed Computing Infrastructures:
Development framework and exploitation by scientific user communities. Springer.

[22] Kate Keahey and Tim Freeman. 2008. Contextualization: Providing One-Click
Virtual Clusters. In 2008 IEEE Fourth International Conference on eScience. 301–
308.

[23] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony Liguori. 2007. kvm:
the Linux Virtual Machine Monitor. In Proceedings of the 2007 Linux Symposium.
225–230.

[24] Gregory M. Kurtzer, Vanessa Sochat, and Michael W. Bauer. 2017. Singularity:
Scientific containers for mobility of compute. PLOS ONE 12, 5 (05 2017), 1–20.

[25] Ming Mao, Jie Li, and Marty Humphrey. 2010. Cloud auto-scaling with dead-
line and budget constraints. In 11th IEEE/ACM International Conference on Grid
Computing (GRID 2010). 41–48.

[26] Paul Marshall, Kate Keahey, and Tim Freeman. 2010. Elastic site: Using clouds to
elastically extend site resources. In 10th IEEE/ACM International Conference on
Cluster, Cloud and Grid Computing (CCGrid 2010). 43–52.

[27] Paul Marshall, Henry M Tufo, Kate Keahey, David LaBissoniere, and Matthew
Woitaszek. 2012. Architecting a Large-scale Elastic Environment: Recontex-
tualization and Adaptive Cloud Services for Scientific Computing.. In ICSOFT.
409–418.

[28] Dirk Merkel. 2014. Docker: Lightweight Linux Containers for Consistent Devel-
opment and Deployment. Linux Journal 2014, 239 (2014), 2.

[29] Microsoft Azure. 2017. Virtual machines – Linux and Azure virtual machines.
https://azure.microsoft.com/services/virtual-machines/. (2017). [Online; accessed
15-Aug-2017].

[30] Ruben S Montero, Rafael Moreno-Vozmediano, and Ignacio M Llorente. 2011. An
elasticity model for high throughput computing clusters. J. Parallel and Distrib.
Comput. 71, 6 (2011), 750–757.

http://www.adaptivecomputing.com/products/open-source/torque/
http://www.adaptivecomputing.com/products/open-source/torque/
https://aws.amazon.com/cloudformation/
https://aws.amazon.com/cloudformation/
https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/
https://www.ansible.com
http://hadoop.apache.org
https://www.chef.io/chef/
https://docs.openstack.org/developer/diskimage-builder/
https://docs.openstack.org/developer/diskimage-builder/
https://cloud.google.com/deployment-manager/
https://cloud.google.com/deployment-manager/
https://cloud.google.com/compute/
https://cloud.google.com/compute/
https://www.packer.io
https://docs.openstack.org/heat/
https://azure.microsoft.com/services/virtual-machines/

[31] NCSA. 2017. ROGER: The CyberGIS Supercomputer. https://wiki.ncsa.illinois.
edu/display/ROGER. (2017). [Online; accessed 15-Aug-2017].

[32] OpenStack contributors. 2017. OpenStack Open Source Cloud Computing Soft-
ware. https://www.openstack.org. (2017). [Online; accessed 15-Aug-2017].

[33] Ruth Pordes, Don Petravick, Bill Kramer, Doug Olson, Miron Livny, Alain Roy,
Paul Avery, Kent Blackburn, Torre Wenaus, Frank Würthwein, et al. 2007. The
Open ScienceGrid. In Journal of Physics: Conference Series, Vol. 78. IOP Publishing.

[34] Puppet. 2017. Puppet. https://puppet.com. (2017). [Online; accessed 15-Aug-
2017].

[35] QEMU contributors. 2017. QCOW2. http://bit.ly/qcow2. (2017). [Online; accessed
15-Aug-2017].

[36] Andres Quiroz, Hyunjoo Kim, Manish Parashar, Nathan Gnanasambandam, and
Naveen Sharma. 2009. Towards autonomic workload provisioning for enterprise
grids and clouds. In 10th IEEE/ACM International Conference on Grid Computing
(GRID 2009). 50–57.

[37] Rackspace. 2017. Virtual Cloud Servers Powered by OpenStack. https://www.
rackspace.com/cloud/servers. (2017). [Online; accessed 15-Aug-2017].

[38] Pierre Riteau, Myunghwa Hwang, Anand Padmanabhan, Yizhao Gao, Yan Liu,
Kate Keahey, and Shaowen Wang. 2014. A Cloud Computing Approach to On-
demand and Scalable Cybergis Analytics. In Proceedings of the 5th ACMWorkshop
on Scientific Cloud Computing (ScienceCloud ’14). 17–24.

[39] Constantine Sapuntzakis, David Brumley, Ramesh Chandra, Nickolai Zeldovich,
Jim Chow, Monica S. Lam, and Mendel Rosenblum. 2003. Virtual Appliances
for Deploying and Maintaining Software. In Proceedings of the 17th USENIX
Conference on System Administration (LISA ’03). 181–194.

[40] Ask Solem et al. 2017. Celery: Distributed Task Queue. http://www.celeryproject.
org. (2017). [Online; accessed 15-Aug-2017].

[41] Kiumars Soltani, Aiman Soliman, Anand Padmanabhan, and ShaowenWang. 2016.
UrbanFlow: Large-scale Framework to Integrate Social Media and Authoritative
Landuse Maps. In Proceedings of the XSEDE16 Conference on Diversity, Big Data,

and Science at Scale. 2.
[42] Craig A. Stewart, Timothy M. Cockerill, Ian Foster, David Hancock, Nirav Mer-

chant, Edwin Skidmore, Daniel Stanzione, James Taylor, Steven Tuecke, George
Turner, et al. 2015. Jetstream: A self-provisioned, scalable science and engineer-
ing cloud environment. In Proceedings of the 2015 XSEDE Conference: Scientific
Advancements Enabled by Enhanced Cyberinfrastructure. Article 29.

[43] Wei Tang, Jared Wilkening, Narayan Desai, Wolfgang Gerlach, Andreas Wilke,
and Folker Meyer. 2013. A scalable data analysis platform for metagenomics. In
Big Data, 2013 IEEE International Conference on. 21–26.

[44] The Chameleon project. 2017. Chameleon Cloud Homepage. https://www.
chameleoncloud.org. (2017). [Online; accessed 15-Aug-2017].

[45] The Chameleon project. 2017. Chameleon Hardware Discovery page. https:
//www.chameleoncloud.org/hardware/. (2017). [Online; accessed 15-Aug-2017].

[46] John Towns, Timothy Cockerill, Maytal Dahan, Ian Foster, Kelly Gaither, Andrew
Grimshaw, Victor Hazlewood, Scott Lathrop, Dave Lifka, Gregory D. Peterson,
et al. 2014. XSEDE: Accelerating Scientific Discovery. Computing in Science &
Engineering 16, 5 (2014), 62–74.

[47] Shaowen Wang. 2010. A CyberGIS Framework for the Synthesis of Cyberin-
frastructure, GIS, and Spatial Analysis. Annals of the Association of American
Geographers 100, 3 (2010), 535–557.

[48] Shaowen Wang, Marc P. Armstrong, Jun Ni, and Yan Liu. 2005. GISolve: A grid-
based problem solving environment for computationally intensive geographic
information analysis. In Challenges of Large Applications in Distributed Environ-
ments (CLADE 2005). 3–12.

[49] Nancy Wilkins-Diehr, Dennis Gannon, Gerhard Klimeck, Scott Oster, and Sud-
hakar Pamidighantam. 2008. TeraGrid science gateways and their impact on
science. Computer 41, 11 (2008).

[50] Jia Yu and Rajkumar Buyya. 2005. A taxonomy of workflowmanagement systems
for grid computing. Journal of Grid Computing 3, 3-4 (2005), 171–200.

https://wiki.ncsa.illinois.edu/display/ROGER
https://wiki.ncsa.illinois.edu/display/ROGER
https://www.openstack.org
https://puppet.com
http://bit.ly/qcow2
https://www.rackspace.com/cloud/servers
https://www.rackspace.com/cloud/servers
http://www.celeryproject.org
http://www.celeryproject.org
https://www.chameleoncloud.org
https://www.chameleoncloud.org
https://www.chameleoncloud.org/hardware/
https://www.chameleoncloud.org/hardware/

	Abstract
	1 Introduction
	2 Appliance as Abstraction
	3 LambdaLink Architecture
	3.1 Critical Components
	3.2 User Workflows
	3.3 Implementation

	4 Discussion and Analysis
	5 Related Work
	6 Conclusions and Summary
	7 Acknowledgements
	References

