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Abstract: Infrastructure-as-a-service (IaaS) clouds, such as Amazon EC2, offer pay-for-use virtual resources on-
demand. This allows users to outsource computation and storage when needed and create elastic computing 
environments that adapt to changing demand. However, existing services, such as cluster resource managers 
(e.g. Torque), do not include support for elastic environments. Furthermore, no recontextualization services 
exist to reconfigure these environments as they continually adapt to changes in demand. In this paper we 
present an architecture for a large-scale elastic cluster environment. We extend an open-source elastic IaaS 
manager, the Elastic Processing Unit (EPU), to support the Torque batch-queue scheduler. We also develop 
a lightweight REST-based recontextualization broker that periodically reconfigures the cluster as nodes join 
or leave the environment. Our solution adds nodes dynamically at runtime and supports MPI jobs across dis-
tributed resources. For experimental evaluation, we deploy our solution using both NSF FutureGrid and 
Amazon EC2. We demonstrate the ability of our solution to create multi-cloud deployments and run batch-
queued jobs, recontextualize 256 node clusters within one second of the recontextualization period, and 
scale to over 475 nodes in less than 15 minutes.  

1 INTRODUCTION 

Utilization of resources, such as a batch-queued 
cluster, fluctuates as users gather data, setup their 
applications and simulations, execute them, and 
analyze the results. Demand for resources typically 
bursts when users are actively debugging their appli-
cations and running simulations to generate results 
for a deadline. Demand often decreases between 
deadlines when users focus on gathering data or 
writing code. Physical resource deployments, how-
ever, only provide static capacity. If a resource is 
under-utilized, compute cycles that could be used to 
run scientific simulations are effectively wasted. At 
other times, demand for the resource may surpass 
the capacity of the static physical resource, resulting 
in increased queue wait times and possibly missed 
deadlines. 

With the recent introduction of infrastructure-as-
a-service (IaaS) clouds (Armbrust, 2009), users can 
choose to outsource computation and storage when 
needed. IaaS clouds offer pay-for-use virtual 

infrastructure resources, such as virtual machines 
(VMs), to users on-demand. On-demand resource 
provisioning is an attractive paradigm for users 
working toward deadlines or responding to 
emergencies. Users in the scientific community, in 
particular, have begun to adopt IaaS clouds for their 
workflows (Juve 2010, Rehr 2010, Wilkening 2009, 
and Jackson 2010). Additionally, the pay-for-use 
charging model means that a resource provider can 
choose to reduce his initial purchase of capital 
equipment, selecting a resource that meets the needs 
of his users the majority of the time, and opt to 
budget for future outsourcing costs. When the 
demand of the physical resource exceeds its 
capacity, the resource provider can elastically extend 
the static resource with IaaS resources or deploy a 
standalone elastic environment in the cloud to 
process excess demand. In previous work we 
developed a cloud charging model for high-
performance compute (HPC) resources (Woitaszek, 
2010), allowing a resource provider to analyze the 
cost of cloud resources in the context of physical 



 

HPC resource deployments. The virtual nature of 
IaaS clouds is another advantage for users. With 
virtual resources, users can customize the entire 
software stack, from the operating system (OS) 
upward, often a key requirement for complex 
scientific workflows.  

IaaS clouds provide the underlying building 
blocks for elastic computing environments. 
However, policies are needed to ensure the 
environment adjusts appropriately to demand; tools 
to deploy and manage the environments are also 
needed. In (Marshall, 2012) we propose policies for 
elastic environments that balance user and 
administrator requirements; we evaluate them using 
workload traces and a discrete event simulator. In 
(Marshall, 2010) we developed a prototype elastic 
IaaS environment that extended a PBS/Torque 
(Bode, 2000) queue with Nimbus (Keahey 2005, 
Nimbus 2012) and Amazon EC2 clouds (Amazon 
Web Services, 2012). However, the prototype had a 
number of limitations. It was not sufficiently 
scalable, scaling to 150 nodes in 60 minutes. It also 
lacked the ability to recontextualize, preventing the 
environment from executing parallel jobs. And it 
could not leverage multiple clouds simultaneously. 

In this paper we address these limitations of our 
previous prototype. We present an architecture for a 
large-scale elastic computing environment that is 
highly available, scalable, and adapts quickly to 
changing demand. We extend an open-source elastic 
IaaS manager to support the Torque batch-queue 
scheduler, allowing existing scientific workflows to 
integrate with elastic IaaS environments for minimal 
software engineering cost. To support parallel jobs, 
we develop a lightweight REST-based 
contextualization broker that recontextualizes the 
cluster (e.g. exchanges host information between 
nodes) as nodes join and leave the environment. For 
evaluation, we deploy our solution using NSF 
FutureGrid (FutureGrid, 2012) and Amazon EC2. 
Our solution leverages multiple clouds 
simultaneously, recontextualizes 256 node clusters 
within one second of the recontextualization period, 
and scales to over 475 nodes in less than 15 minutes. 

2 APPROACH 

In previous work (Marshall, 2010) we discuss the 
specifics required to extend a physical cluster with 
IaaS resources. Therefore, in this paper we will only 
briefly discuss our previous prototype and its limita-
tions before presenting our large-scale architecture 
and implementation. 

2.1 Initial Prototype 

Our initial prototype (Marshall, 2010) imple-
mented a standalone service that created elastic IaaS 
environments, providing valuable insight into the 
challenges faced by large-scale elastic computing 
environments. The prototype elastic manager service 
monitored a Torque queue and responded by launch-
ing cloud instances, which joined the cluster and 
executed jobs, and then terminating idle instances 
once all jobs completed. The Nimbus context broker 
(Keahey, 2008) contextualized the cloud nodes with 
the head node, exchanging host information and 
SSH keys. However, the prototype contained a num-
ber of design and implementation limitations that 
prevented it from scaling appropriately, using multi-
ple cloud providers simultaneously, and 
recontextualizing the environment. 

In particular, the prototype elastic manager ser-
vice called Torque commands directly to gather 
information about the queue, requiring that both the 
service and Torque run on the same system. It also 
called the Java-based Nimbus cloud client, which 
polls continuously for updates (sometimes taking up 
to a few hundred seconds), to perform the actual 
launches and terminations. This meant the system 
could only launch approximately a dozen nodes 
every few hundred seconds. Additionally, the initial 
prototype used a single cluster image with prein-
stalled software for each cloud provider. Due to VM 
image compatibility differences between cloud pro-
viders, adding support for a new cloud required 
installing and configuring the cluster software from 
scratch in a base image on the new cloud. The proto-
type deployment also used the Nimbus context 
broker, which facilitates the exchange of host infor-
mation between nodes in a context, for 
contextualization. The Nimbus context broker, how-
ever, does not allow additional nodes to join the 
context after the initial launch. This meant that each 
node exchanged host information and SSH keys with 
the head node but not with each other, preventing 
the system from running parallel jobs. Lastly, the 
prototype elastic manager service was not highly 
available; it did not contain any self-monitoring or 
self-repairing capabilities. 

2.2 Large-Scale Elastic Computing 
Environments 

In this section we build on our prototype archi-
tecture in (Marshall, 2010) and present an updated 
architecture for large-scale elastic computing envi-



 

ronments. We address the challenges discussed in 
the previous section, focusing primarily on improv-
ing scalability, leveraging multiple clouds, and 
developing a solution for recontextualization. 

2.2.1 Elastic Management 

Instead of tightly integrating the application sen-
sor with the elastic manager service, we select a 
distributed design as shown in Figure 1. 

We extend an open-source elastic manager ser-
vice, the Elastic Processing Unit (EPU) (Keahey, 
2012), under development by the Ocean Observato-
ries Initiative (OOI) (OOI EPU, 2012). The EPU 
aims to be a highly available and scalable service. It 
is publicly available on GitHub (GitHub EPU, 2012) 
as an alpha release for initial testing. It contains the 
necessary framework and functionality to create 
elastic computing environments. The EPU consists 
of three major components that we leverage for our 
elastic environments: sensors to monitor application 
demand, a decision engine that responds to sensor 
information, and a provisioner that interfaces with 
various cloud providers to launch, terminate, and 
manage the instances. The provisioner interfaces 
with IaaS clouds using their REST APIs. Unlike the 
Java-based cloud client, these operations return 
quickly, typically within a second or two. The deci-
sion engine loops continually, processing sensor 
information and executing a policy that elects to 
launch or terminate a specific number of instances. 
We refer to each loop iteration as a policy evaluation 
iteration. The sensors are deployed throughout the 
environment and monitor demand (e.g. jobs in a 
queue).  

In the EPU’s current implementation, however, it 
only supports a “pull” queue model where individual 
workers request tasks from a central queue. There-

fore, we extend the OOI EPU model to support a 
“push” queue model where a central scheduler, such 
as a batch-queue scheduler, monitors worker in-
stances and dispatches single-core or parallel jobs to 
workers in the environment. In our model, the sen-
sors both monitor demand and execute commands 
on behalf of the decision engine.  

2.2.2 Automating Deployment and  
Configuration 

To support multiple cloud providers seamlessly, 
the installation and configuration of worker nodes 
should be automated using a system integration 
framework, such as Chef (Jacob, 2009), instead of 
preinstalling and preconfiguring VM images manu-
ally. With this approach, a base image that is likely 
available on any cloud (e.g. a Debian 5.0 image) can 
be used. When a new worker boots the base image, 
the system integration framework downloads the 
cluster software, installs it, and configures the work-
er to join the cluster head node automatically. This 
can be a lengthy process if a lot of software needs to 
be installed, therefore, software packages can either 
be cached on the node or they can be completely 
installed, allowing nodes to boot quickly and be 
appropriately configured. 

2.2.3 Contextualization 

Creating a shared and trusted environment, or 
context, is a key requirement for elastic computing 
environments. To support parallel jobs, all resources 
in the environment need to exchange information 
and data. However, with elastic computing environ-
ments, contextualization is a continual process since 
demand fluctuates constantly with nodes joining and 
leaving the environment. Perhaps the most salient 
example is a context where nodes exchange SSH 
keys to support SSH host-based authentication. In 
this case, all nodes must add the hostname, IP ad-
dress, and SSH key of all other nodes in the context 
to its ssh_known_hosts file. Existing contextualiza-
tion solutions, such as the Nimbus context broker, 
provide mechanisms to exchange host information 
between all nodes that are launched at the same 
time. However, the Nimbus context broker does not 
support recontextualization of existing contexts, that 
is, it doesn’t allow additional nodes to join the con-
text at a later time.  

We propose a recontextualization service that pe-
riodically exchanges information between all nodes 
in the context. The recontextualization service main-
tains an ordered list of nodes in the context. The list 
includes hostnames, IP addresses, SSH keys, and a 

 
Figure 1: Example elastic Torque deployment. 
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generic data field for all nodes. As nodes join or 
leave the context, the recontextualization service 
updates the ordered list. Every node in the context 
periodically checks in with the recontextualization 
service. If there are updates to the context, the recon-
textualization service sends the updated section of 
the list to the node, which applies the updates in 
order (e.g. adding the SSH keys of nodes that joined 
the context to the SSH known hosts file). 

3 IMPLEMENTATION 

For our elastic cluster implementation we extend 
the EPU to support the Torque batch-queue sched-
uler. We also create a set of scripts to setup and 
configure worker nodes automatically. Lastly, we 
develop a service for recontextualization that period-
ically exchanges host information between all nodes 
in the environment. An example deployment, shown 
in Figure 1, consists of the main EPU components (a 
sensor, decision engine, and provisioner), our recon-
textualization service, and a deployment across 
multiple IaaS clouds. 

3.1 EPU Extensions 

The EPU uses the Advanced Message Queuing 
Protocol (AMQP) (Vinoski, 2006) to communicate 
between its various components. In the EPU's cur-
rent implementation it only implements sensors for 
AMQP queues, which use a “pull” queue model. 
Many scientific workloads would need a significant 
investment in software engineering to support 
AMQP natively. Therefore, we develop a custom 
EPU sensor to integrate with a widely used cluster 
resource manager, Torque, thereby allowing any 
Torque-based workload to use the elastic environ-
ment seamlessly. We also develop a custom decision 
engine to respond to the Torque sensors. 

The Torque sensor, written in Python, monitors 
the queue and sends information to the decision 
engine. The pbs_python package (pbs_python, 
2012), a Python wrapper class for the Torque C 
library, is used to gather Torque information. This 
includes job information, e.g., the total number of 
queued jobs and the total number of cores requested 
by queued jobs. It also includes node information, 
e.g., a list of Torque worker hostnames along with 
the current state of the node (free, busy, offline, 
down, etc.). The Torque sensor also executes com-
mands sent to it by the decision engine. For 
example, when the EPU service launches a new 

instance, it sends the hostname to the sensor on the 
Torque head node and instructs it to add the node to 
Torque’s host file. Other commands include marking 
a Torque node as offline and removing the node. 

The custom EPU decision engine elects to launch 
or terminate instances. At each policy evaluation 
iteration, the decision engine performs a number of 
actions: it determines whether or not to launch in-
stances based on queued jobs and available workers, 
instructs the Torque sensor to add any recently 
launched instances to Torque, instructs the sensor to 
mark any idle Torque workers as offline in prepara-
tion to terminate them, and finally, it terminates any 
nodes that were previously marked offline. To de-
termine the number of instances to launch, the 
decision engine first calculates the total number of 
available workers, that is, the number free Torque 
instances plus the number of pending instances 
(those that have launched but have not yet joined the 
Torque environment). The number of instances 
launched by the decision engine is then simply the 
total number of cores requested by queued jobs 
minus the number of available workers. If the result 
is a positive integer, the decision engine notifies the 
provisioner of the number of instances to launch. 
The decision engine also replaces stalled instances 
after 10 minutes (a configurable option). Pending 
instances are considered stalled if there are no 
changes to them within 10 minutes. 

3.2 Automated Worker Deployment 

After the EPU launches worker instances, soft-
ware packages need to be installed, the instances 
need to be configured as Torque worker nodes, and 
they need to join the cluster. We use the Chef (Jacob 
2009, Chef 2012) systems integration framework to 
download, install, and configure cluster and user 
software. Chef uses “recipes” to automate system 
administration tasks, such as downloading Linux 
packages, installing software, or running bash 
scripts. For our elastic environment we develop a set 
of Chef recipes to download, compile, and install 
Torque, the pbs_python package, and user software. 
This allows us to use any base Linux image on any 
IaaS cloud as a worker image, greatly reducing the 
time required to support additional clouds. When the 
base Linux node boots, a simple Python agent, bun-
dled in the image ahead of time, automatically 
retrieves the Chef recipes from a GitHub repository 
and then executes them, installing and configuring 
the node from scratch. To speed up the deployment 
and limit possible points of failure, the recipes and 
software can be cached in the base image.  



 

3.3 Recontextualization Broker 

The recontextualization broker is the final com-
ponent of our large-scale elastic computing 
environment. It is a lightweight, REST-based recon-
textualization service that securely exchanges host 
information between all nodes in the same context. It 
is also important to note that while our recontextual-
ization solution was developed specifically for use 
with IaaS clouds and VMs, it can also be used on 
physical resource deployments. 

All components of our recontextualization solu-
tion are written in Python and use representational 
state transfer (REST) over HTTPS for communica-
tion; symmetric keys are used for both user and 
context security. Our solution consists of three com-
ponents: a client for managing contexts, an agent 
that runs on all nodes in the context, and a central 
broker service to facilitate the secure exchange of 
host information between agents. The information 
exchanged by nodes in the context includes the short 
hostname, full hostname, IP address, SSH public 
host key, and a generic text data field. In the current 
implementation, the broker stores this information in 
a RAM-based SQLite database, although this could 
easily be changed to a more robust database solu-
tion. The agent contains a set of scripts (e.g. bash), 
typically written by the administrator deploying the 
agent, which allows the administrator to customize 
how the agent should process updates to the context 
(e.g. by adding other node’s SSH keys to the 
ssh_known_hosts file). The scripts are grouped into 
four categories: initialization scripts that are called 
by the agent only once, when it first starts, “add 
node” scripts that are called by the agent when it is 
processing an update for a node that has been added 

to the context, “delete node” scripts that are called 
by the agent when it is processing an update for a 
node that has left the context, and restart scripts that 
are called for all updates.   

The recontextualization process is shown in Fig-
ure 2. Recontextualization begins when a user 
creates a context with the client, which sends a re-
quest to the broker service. The broker responds 
with the newly generated context ID, a uniform 
resource identifier (URI) for the context (e.g. context 
1 would have the following URI: 
https://hostname:port/ctx/1), and a unique context 
key and secret. The context key and secret are simp-
ly random strings and allow only those that know 
them to join the context. When the user launches a 
cloud instance, this information is passed to the 
instance via the IaaS cloud’s userdata field. The 
agent starts when the instance boots and reads the 
instance’s userdata field to get the context infor-
mation. The agent then sends its node information 
(hostnames, etc.) to the broker. The broker maintains 
an ordered list of nodes that join or leave a context, 
beginning with list ID 0, signifying no updates. Each 
entry in the list denotes whether the node joined or 
left the context. 

 After the agent sends its information to the bro-
ker, it enters into a loop referred to as the 
recontextualization period, requesting updates from 
the broker and applying them. To request updates, 
the agent sends its current ID in the ordered list, 
beginning at 0, to the broker. The broker compares 
the node’s current list ID to the latest list ID for the 
context. If they do not match, the broker sends the 
updated portion of the list to the requesting agent. 
The agent then applies the updates, in order, by 
calling its scripts for each entry in the list of updates. 
After the agent applies the updates, it calls the restart 
scripts to restart any services impacted by the up-
dates and then sleeps for a short time before looping 
again. The amount of time the agent sleeps between 
loop iterations determines the frequency that the 
environment recontextualizes. Highly adaptive envi-
ronments should loop frequently whereas relatively 
stable environments would loop less often. 

4 EVALUATION 

For evaluation, we examine the reactivity of the 
environment, its ability to recontextualize quickly, 
and its scalability. We do not compare the perfor-
mance of different cloud providers or instance types, 
which are tied directly to the performance of the 
underlying hardware and software configuration of 

 
Figure 2: The recontextualization process. 
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the particular cloud. Other studies have examined 
the performance of virtual environments and IaaS 
clouds (Huang 2006, Gavrilovska 2007, Ostermann 
2010, He 2010, Ghoshal 2011). And in November 
2011, Amazon EC2 ranked #42 on the Top500 
(Top500, 2012). Users with applications that have 
strict performance requirements should select appro-
priate clouds for their deployment. 

NSF FutureGrid and Amazon EC2 are used for 
the evaluation. On FutureGrid we use the Hotel (fg-
hotel) system, at the University of Chicago (UC), 
and Sierra (fg-sierra), at the San Diego Supercom-
puter Center (SDSC). Both systems use Xen 
(Barham, 2003) for virtualization. We deploy the 
recontextualization broker and cluster head node in 
separate VMs on Hotel for all tests. The recontextu-
alization broker runs inside a VM with 8 2.93 GHz 
Xeon cores and 16 GB of RAM. The head node runs 
on a VM with 2 2.93 GHz Xeon cores and 2 GB of 
RAM. The head node contains the Torque 2.5.9 
server software, Maui 3.3.1 (Jackson 2001, Maui 
2012), as well as the EPU provisioner and decision 
engine. The setup process for the head node is com-
pletely automated using the cloudinit.d tool 
(Bresnahan, 2011). We created a cloudinit.d launch 
plan to deploy a base VM on Hotel and then install 
and configure the software, allowing us to repeated-
ly deploy these environments with a single 
command. Worker nodes are deployed on both Hotel 
and Sierra and consist of 2 2.93 GHz Xeon cores 
with 2 GB of RAM. For EC2 worker nodes we use 
64-bit EC2 east micro instances, primarily due to 
cost, since Amazon only charges two cents per hour. 
Micro instances use Elastic Block Storage (EBS) 
and contain up to 2 EC2 compute units with 613 MB 
of RAM. (An EC2 compute unit is defined as the 
equivalent CPU capacity of a 1.0-1.2 GHz 2007 
Opteron or 2007 Xeon processor.) Deployment and 
configuration of worker nodes is completely auto-
mated as well. Worker nodes use a base Linux 
image on each cloud and Chef installs and config-
ures the software, specifically, the Torque 2.5.9 
worker software (pbs_mom) and an EPU sensor. 
Worker nodes also use NFS to mount the /scratch 
directory on the head node. 

For all tests, the EPU sensor queries Torque eve-
ry 60 seconds to gather job and worker information. 
The EPU decision engine executes every 5 seconds, 
querying IaaS clouds for changes in instance state 
and executing its policy. Recontextualization agents 
send their information to the broker when they first 
launch and query the broker every 120 seconds for 
updates. For batch-queued workloads, we believe 
that a 120 second recontextualization period is suffi-

ciently adaptive. Many scientific workloads contain 
jobs that run for hours, if not days. 

As a metric, we define the reactivity time to be 
the time from when the first job is submitted until 
the time the last job begins running for a group of 
jobs submitted at the same time. In the case of MPI 
jobs, enough cores must be available to run all tasks 
for all jobs. We also define the metric recontextual-
ization time to be the time from when a new node 
attempts to join a context by sending its information 
to the broker until the time when all nodes in the 
context have received and applied the update for the 
new node. For example, if 256 nodes are running 
and all 256 nodes are aware of each other and have 
exchanged information, and then a new node at-
tempts to join the context, the recontextualization 
time is the amount of time from when the new node 
sends its information until the time the other 256 
nodes receive the update and apply it. In addition to 
these metrics, we examine the ability of the elastic 
environment to leverage multiple clouds simultane-
ously and scale to hundreds of nodes, shown with a 
series of traces.   

For the reactivity and recontextualization tests, 
the workloads consist of a simple MPI application 
that sleeps for 60 minutes. For the recontextualiza-
tion test, 60 minutes is more than enough time for 
the initial nodes to stabilize and wait for an addition-
al node to launch and join the context. For the multi-
cloud and scalability tests, the workloads consist of 
individual “sleep” jobs that sleep for 30 minutes, 
demonstrating the ability of the environment to scale 
up and down as demand changes. 

4.1 Understanding System Responsive-
ness 

To understand system responsiveness we consid-
er two metrics. First, we examine the reactivity time. 
This includes the time to detect the change in de-
mand, execute the policy, request instances from an 
IaaS provider, and wait for the instances to boot. 
Once the instances boot, they must then install and 
configure worker software and join the cluster. To 
measure reactivity time, we configure the EPU to 
launch EC2 east micro worker nodes (single core). 
We perform a series of tests, beginning with 2 node 
clusters, increasing to 256 nodes, shown in Figure 3. 
For each test we submit a simple MPI sleep job for 
the desired number of nodes, causing the environ-
ment to launch the needed number of nodes. We run 
each test 3 times for each cluster size. 



 

As we can see in Figure 3, small cluster sizes, 
from 2 nodes through 16, all have relatively similar 
reactivity times. However, interestingly, 32 and 64 
node clusters each have one test with a reactivity 
time similar to smaller clusters while the other 2 
tests are much higher. The reason for this is related 
to the fact that our decision engine detects and re-
places stalled nodes after 10 minutes. In our 
evaluation we observed that EC2 micro instances 
would periodically fail (most often the instance 
failed to boot or access the network). Because larger 
cluster sizes boot more instances, they are more 
likely to encounter these failed instances, even when 
booting replacements. It should be noted that a small 
cluster could encounter a failed instance even though 
we didn’t experience this in our evaluation. 

The second area we explore is the recontextual-
ization time where all nodes in the context must 
query the broker for updates, receive the updates and 
apply them. To measure the recontextualization 
time, we again configure the EPU to use EC2 east 
micro instances (single core). Similar to the reactivi-
ty tests, we perform a series of tests from 2 nodes 
through 256, running 3 tests for each cluster size. 
We submit a simple MPI sleep job that requests the 
appropriate number of cores and allow the cluster to 
boot, contextualize, and begin running the job. Once 
the cluster stabilizes, we submit another single-core 
sleep job, causing an extra instance to launch and 
join the cluster. We measure the time from when the 
new instance sent its information to the broker until 
the time when all nodes in the environment receive 
and apply the update. We rely on Amazon’s ability 
to synchronize the clocks of instances, which is done 
through NTP, for our time-based measurements. 

As we can see in Figure 4, all clusters fully re-
contextualize within 1 second of the 120-second 
recontextualization period. The tests that recontextu-
alize before the 120 second period do so simply 
because all of the existing nodes in the environment 
check in with the broker shortly after the new node 
has sent its information to the broker. The three 2-
node cluster tests are perhaps the most interesting 
case. For one of the tests, both nodes check in with 
the broker shortly after the new node joined the 
context and contextualize in less than 20 seconds, 
whereas with another 2-node test, at least one of the 
nodes waits almost the full 120 second period before 
it queries the broker again. This is simply the result 
of the random timing of when nodes boot and install 
the required software. As the number of nodes in a 
context increases, the likelihood that at least one of 
the nodes will query the broker 120 seconds after the 
additional node joins the context increases. 

4.2 Multi-Cloud and Scalable Elastic 
Environments 

In addition to system responsiveness, we also ex-
amine the ability of the elastic environment to scale 
up and down as demand fluctuates. For our first test, 
we configure the EPU to launch workers on Hotel 
and then we submit 256 single-core jobs that sleep 
for 30 minutes (not shown). Hotel’s workers are dual 
core instances with 2 GB of RAM. The elastic envi-
ronment scales up to over 100 VMs, however, it 
doesn’t quite reach 128 VMs (or 256 cores), because 
Hotel’s underlying hardware is unable to deploy 128 
VMs within 30 minutes. As the first jobs begin to 

 
Figure 3: Reactivity time, showing three data points for 
each cluster size (those showing fewer are cases where 
values overlap). 

 

 
Figure 4: Recontextualization time, showing three data 
points for each cluster size (those showing fewer are cases 
where values overlap). 

 



 

complete, those instances become free and run the 
remaining jobs.  

In our second test, we configure the EPU to dis-
patch workers on both Hotel and Sierra, shown in 
Figure 5. Both Hotel and Sierra deploy dual core 
workers with 2 GB of RAM. The workers from both 
clouds are configured to trust each other and process 
the same jobs from the main queue. (However, it 
should be noted that if the jobs or workflow are not 
amenable to multi-cloud environments (typically 
connected over the Internet with relatively high 
latencies), that it is possible to configure the envi-
ronment to restrict parallel jobs to individual 
resource infrastructures using either node attributes 
or multiple queues with routing.) For evaluation, we 
submit 512 single-core jobs that sleep for 30 
minutes. In this case we observe the limited scalabil-
ity of private clouds (likely due to other users on the 
cloud). Hotel and Sierra are not able to provide 512 
cores, as both clouds reach the maximum number of 
instances that they can deploy at the time, shown by 
the horizontal line for VMs running on each cloud. 
Sierra reaches this point just before 2,000 seconds 
into the evaluation while Hotel reaches this point 
just before 3,000 seconds.  

In our final test, we configure the EPU to deploy 
single-core EC2 east micro instances, shown in 
Figure 6. We submit 512 jobs that each request a 
single core and sleep for 30 minutes. The environ-
ment scales to 476 instances in less than 15 minutes. 
The key difference in the ability of the EC2 test to 
scale quickly, compared to the FutureGrid tests, is 
related to the underlying hardware and software 
configuration differences between EC2 and Fu-
tureGrid. Unfortunately, EC2 was not able to reach 
512 instances within the first 30 minutes of the eval-
uation. While the environment scales quickly, it 
begins to trail off around 400 instances, only reach-

ing a total of 490 instances. The remaining 22 in-
stances simply fail to boot completely on EC2, even 
after the EPU detects stalled instances and tries to 
replace them, multiple times. To date we have not 
been able to diagnose the reason, however, we have 
not observed any problems with the EPU or recon-
textualization broker. (Our EC2 instance limit is set 
well beyond 490.) Finally, it is worth noting that 
while we use cheap single-core EC2 micro instances 
for these tests (only running sleep jobs) because of 
their cost, all of our software and evaluation is run 
on a per-node basis. For example, our 490-node 
scalability test would result in a 5,880-core cluster if 
12-core worker nodes were deployed. A 512-node 
cluster on Amazon with their largest cluster instance 
size, cc2.8xlarge, would cost $1,228.80 for one hour 
compared to $10.24 for a 512-node cluster of micro 
instances for one hour. 

5 RELATED WORK 

Prior to the introduction of IaaS clouds, several 
projects developed dynamic resource managers that 
adjust resource deployments based on demand (Ruth 
2005, Ruth 2006, Murphy 2009). More recently, 
applications have begun to add support for IaaS 
clouds. Specifically, Sun Grid Engine (Gentzsch, 
2001), now Oracle Grid Engine contains support for 
Amazon EC2 resource provisioning (Oracle Grid 
Engine, 2012). Evangelinos et al. (Evangelinos, 
2008) use Amazon EC2 to support interactive cli-
mate modeling. In both cases these applications only 
include support for Amazon EC2, and they both 
bundle support for EC2 directly into the application. 
Application-specific approaches, such as these, 
require that each individual application include 
support for all cloud providers that users may need. 

 
Figure 5: Multi-cloud trace running 512 single-core 
jobs. 

 

 
Figure 6: Scalability test on EC2 running 512 single-
core jobs. 



 

Amazon CloudWatch (Amazon CloudWatch, 2012) 
is a cloud-specific approach for elastic resource 
provisioning. CloudWatch can scale environments 
based on demand; however, it only uses Amazon 
EC2. OpenNebula (Sotomayor, 2009), an IaaS 
toolkit, also provides a cloud-specific approach, 
bundling support for Amazon EC2. Our solution is 
more general than cloud-specific and application-
specific approaches, allowing any application to 
share a single service and code base for IaaS re-
source provisioning. 

Juve et al. (Juve, 2011) present a generic IaaS 
management solution, Wrangler, that provisions 
IaaS resources across multiple clouds and deploys 
applications on those resources. Wrangler, however, 
is not an elastic management solution that adapts the 
environment based on changing demand; instead, 
Wrangler focuses on deploying relatively standalone 
environments for users. The University of Victoria’s 
Cloud Scheduler (Armstrong, 2010) is perhaps the 
most similar to our solution. Cloud Scheduler moni-
tors a Condor queue and provisions resources across 
Nimbus clouds and Amazon EC2. Currently, Cloud 
Scheduler does not contain a mechanism for recon-
textualizing nodes, and instead it focuses on high 
throughput computing (HTC) jobs. 

6 FUTURE WORK 

In future work we will investigate additional data 
movement solutions. Efficient data movement is a 
key requirement for elastic IaaS environments where 
cloud providers may charge (either with allocation 
credits or actual money) for data transfers. Data 
movement solutions should avoid sending excessive 
amounts of data or duplicate datasets to cloud re-
sources. However, data movement solutions must 
also be easy to use or, if possible, completely auto-
mated. 

We will also extend a physical batch-queued 
cluster with our elastic resource manager and exam-
ine its impact on a wide variety of workloads. The 
environment will integrate physical cluster resources 
with resources distributed across multiple cloud 
providers. Because some applications may have 
strict requirements, such as latency sensitive applica-
tions, users will be able to specify basic 
requirements related to application placement on the 
resources (e.g. specifying whether to run the applica-
tion on local physical resources vs. distributed 
across all resources). 

7 CONCLUSIONS 

In this work we present an architecture for a 
large-scale elastic computing environment. We 
extend an open source elastic resource manager, the 
Elastic Processing Unit (EPU), to support the 
Torque scheduler. We also develop a lightweight 
REST-based recontextualization broker to exchange 
host information between nodes in a context, which 
allows the environment to support parallel jobs. 

We evaluate our elastic environment by examin-
ing its ability to scale rapidly and recontextualize 
quickly as resources join and leave the environment. 
We demonstrate an environment that is able to lev-
erage multiple clouds, recontextualize 256 nodes 
within one second of the recontextualization period, 
and scale to over 475 nodes within 15 minutes. 
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