
ARCHITECTING A LARGE-SCALE ELASTIC ENVIRONMENT
Recontextualization and Adaptive Cloud Services for Scientific Computing

Paul Marshall1, Henry Tufo1,2, Kate Keahey3,4, David LaBissoniere3,4, and Matthew Woitaszek2
1Department of Computer Science, University of Colorado at Boulder, Boulder, CO, USA

2Computer Science Section, National Center for Atmospheric Research, Boulder, CO, USA
3Computation Institute, University of Chicago, Chicago, IL, USA

4Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, USA
{paul.marshall, henry.tufo}@colorado.edu, keahey@mcs.anl.gov, labisso@uchicago.edu, mattheww@ucar.edu

Keywords: Infrastructure-as-a-Service: Cloud Computing: Elastic Computing: Recontextualization

Abstract: Infrastructure-as-a-service (IaaS) clouds, such as Amazon EC2, offer pay-for-use virtual resources on-
demand. This allows users to outsource computation and storage when needed and create elastic computing
environments that adapt to changing demand. However, existing services, such as cluster resource managers
(e.g. Torque), do not include support for elastic environments. Furthermore, no recontextualization services
exist to reconfigure these environments as they continually adapt to changes in demand. In this paper we
present an architecture for a large-scale elastic cluster environment. We extend an open-source elastic IaaS
manager, the Elastic Processing Unit (EPU), to support the Torque batch-queue scheduler. We also develop
a lightweight REST-based recontextualization broker that periodically reconfigures the cluster as nodes join
or leave the environment. Our solution adds nodes dynamically at runtime and supports MPI jobs across dis-
tributed resources. For experimental evaluation, we deploy our solution using both NSF FutureGrid and
Amazon EC2. We demonstrate the ability of our solution to create multi-cloud deployments and run batch-
queued jobs, recontextualize 256 node clusters within one second of the recontextualization period, and
scale to over 475 nodes in less than 15 minutes.

1 INTRODUCTION

Utilization of resources, such as a batch-queued
cluster, fluctuates as users gather data, setup their
applications and simulations, execute them, and
analyze the results. Demand for resources typically
bursts when users are actively debugging their appli-
cations and running simulations to generate results
for a deadline. Demand often decreases between
deadlines when users focus on gathering data or
writing code. Physical resource deployments, how-
ever, only provide static capacity. If a resource is
under-utilized, compute cycles that could be used to
run scientific simulations are effectively wasted. At
other times, demand for the resource may surpass
the capacity of the static physical resource, resulting
in increased queue wait times and possibly missed
deadlines.

With the recent introduction of infrastructure-as-
a-service (IaaS) clouds (Armbrust, 2009), users can
choose to outsource computation and storage when
needed. IaaS clouds offer pay-for-use virtual

infrastructure resources, such as virtual machines
(VMs), to users on-demand. On-demand resource
provisioning is an attractive paradigm for users
working toward deadlines or responding to
emergencies. Users in the scientific community, in
particular, have begun to adopt IaaS clouds for their
workflows (Juve 2010, Rehr 2010, Wilkening 2009,
and Jackson 2010). Additionally, the pay-for-use
charging model means that a resource provider can
choose to reduce his initial purchase of capital
equipment, selecting a resource that meets the needs
of his users the majority of the time, and opt to
budget for future outsourcing costs. When the
demand of the physical resource exceeds its
capacity, the resource provider can elastically extend
the static resource with IaaS resources or deploy a
standalone elastic environment in the cloud to
process excess demand. In previous work we
developed a cloud charging model for high-
performance compute (HPC) resources (Woitaszek,
2010), allowing a resource provider to analyze the
cost of cloud resources in the context of physical

HPC resource deployments. The virtual nature of
IaaS clouds is another advantage for users. With
virtual resources, users can customize the entire
software stack, from the operating system (OS)
upward, often a key requirement for complex
scientific workflows.

IaaS clouds provide the underlying building
blocks for elastic computing environments.
However, policies are needed to ensure the
environment adjusts appropriately to demand; tools
to deploy and manage the environments are also
needed. In (Marshall, 2012) we propose policies for
elastic environments that balance user and
administrator requirements; we evaluate them using
workload traces and a discrete event simulator. In
(Marshall, 2010) we developed a prototype elastic
IaaS environment that extended a PBS/Torque
(Bode, 2000) queue with Nimbus (Keahey 2005,
Nimbus 2012) and Amazon EC2 clouds (Amazon
Web Services, 2012). However, the prototype had a
number of limitations. It was not sufficiently
scalable, scaling to 150 nodes in 60 minutes. It also
lacked the ability to recontextualize, preventing the
environment from executing parallel jobs. And it
could not leverage multiple clouds simultaneously.

In this paper we address these limitations of our
previous prototype. We present an architecture for a
large-scale elastic computing environment that is
highly available, scalable, and adapts quickly to
changing demand. We extend an open-source elastic
IaaS manager to support the Torque batch-queue
scheduler, allowing existing scientific workflows to
integrate with elastic IaaS environments for minimal
software engineering cost. To support parallel jobs,
we develop a lightweight REST-based
contextualization broker that recontextualizes the
cluster (e.g. exchanges host information between
nodes) as nodes join and leave the environment. For
evaluation, we deploy our solution using NSF
FutureGrid (FutureGrid, 2012) and Amazon EC2.
Our solution leverages multiple clouds
simultaneously, recontextualizes 256 node clusters
within one second of the recontextualization period,
and scales to over 475 nodes in less than 15 minutes.

2 APPROACH

In previous work (Marshall, 2010) we discuss the
specifics required to extend a physical cluster with
IaaS resources. Therefore, in this paper we will only
briefly discuss our previous prototype and its limita-
tions before presenting our large-scale architecture
and implementation.

2.1 Initial Prototype

Our initial prototype (Marshall, 2010) imple-
mented a standalone service that created elastic IaaS
environments, providing valuable insight into the
challenges faced by large-scale elastic computing
environments. The prototype elastic manager service
monitored a Torque queue and responded by launch-
ing cloud instances, which joined the cluster and
executed jobs, and then terminating idle instances
once all jobs completed. The Nimbus context broker
(Keahey, 2008) contextualized the cloud nodes with
the head node, exchanging host information and
SSH keys. However, the prototype contained a num-
ber of design and implementation limitations that
prevented it from scaling appropriately, using multi-
ple cloud providers simultaneously, and
recontextualizing the environment.

In particular, the prototype elastic manager ser-
vice called Torque commands directly to gather
information about the queue, requiring that both the
service and Torque run on the same system. It also
called the Java-based Nimbus cloud client, which
polls continuously for updates (sometimes taking up
to a few hundred seconds), to perform the actual
launches and terminations. This meant the system
could only launch approximately a dozen nodes
every few hundred seconds. Additionally, the initial
prototype used a single cluster image with prein-
stalled software for each cloud provider. Due to VM
image compatibility differences between cloud pro-
viders, adding support for a new cloud required
installing and configuring the cluster software from
scratch in a base image on the new cloud. The proto-
type deployment also used the Nimbus context
broker, which facilitates the exchange of host infor-
mation between nodes in a context, for
contextualization. The Nimbus context broker, how-
ever, does not allow additional nodes to join the
context after the initial launch. This meant that each
node exchanged host information and SSH keys with
the head node but not with each other, preventing
the system from running parallel jobs. Lastly, the
prototype elastic manager service was not highly
available; it did not contain any self-monitoring or
self-repairing capabilities.

2.2 Large-Scale Elastic Computing
Environments

In this section we build on our prototype archi-
tecture in (Marshall, 2010) and present an updated
architecture for large-scale elastic computing envi-

ronments. We address the challenges discussed in
the previous section, focusing primarily on improv-
ing scalability, leveraging multiple clouds, and
developing a solution for recontextualization.

2.2.1 Elastic Management

Instead of tightly integrating the application sen-
sor with the elastic manager service, we select a
distributed design as shown in Figure 1.

We extend an open-source elastic manager ser-
vice, the Elastic Processing Unit (EPU) (Keahey,
2012), under development by the Ocean Observato-
ries Initiative (OOI) (OOI EPU, 2012). The EPU
aims to be a highly available and scalable service. It
is publicly available on GitHub (GitHub EPU, 2012)
as an alpha release for initial testing. It contains the
necessary framework and functionality to create
elastic computing environments. The EPU consists
of three major components that we leverage for our
elastic environments: sensors to monitor application
demand, a decision engine that responds to sensor
information, and a provisioner that interfaces with
various cloud providers to launch, terminate, and
manage the instances. The provisioner interfaces
with IaaS clouds using their REST APIs. Unlike the
Java-based cloud client, these operations return
quickly, typically within a second or two. The deci-
sion engine loops continually, processing sensor
information and executing a policy that elects to
launch or terminate a specific number of instances.
We refer to each loop iteration as a policy evaluation
iteration. The sensors are deployed throughout the
environment and monitor demand (e.g. jobs in a
queue).

In the EPU’s current implementation, however, it
only supports a “pull” queue model where individual
workers request tasks from a central queue. There-

fore, we extend the OOI EPU model to support a
“push” queue model where a central scheduler, such
as a batch-queue scheduler, monitors worker in-
stances and dispatches single-core or parallel jobs to
workers in the environment. In our model, the sen-
sors both monitor demand and execute commands
on behalf of the decision engine.

2.2.2 Automating Deployment and
Configuration

To support multiple cloud providers seamlessly,
the installation and configuration of worker nodes
should be automated using a system integration
framework, such as Chef (Jacob, 2009), instead of
preinstalling and preconfiguring VM images manu-
ally. With this approach, a base image that is likely
available on any cloud (e.g. a Debian 5.0 image) can
be used. When a new worker boots the base image,
the system integration framework downloads the
cluster software, installs it, and configures the work-
er to join the cluster head node automatically. This
can be a lengthy process if a lot of software needs to
be installed, therefore, software packages can either
be cached on the node or they can be completely
installed, allowing nodes to boot quickly and be
appropriately configured.

2.2.3 Contextualization

Creating a shared and trusted environment, or
context, is a key requirement for elastic computing
environments. To support parallel jobs, all resources
in the environment need to exchange information
and data. However, with elastic computing environ-
ments, contextualization is a continual process since
demand fluctuates constantly with nodes joining and
leaving the environment. Perhaps the most salient
example is a context where nodes exchange SSH
keys to support SSH host-based authentication. In
this case, all nodes must add the hostname, IP ad-
dress, and SSH key of all other nodes in the context
to its ssh_known_hosts file. Existing contextualiza-
tion solutions, such as the Nimbus context broker,
provide mechanisms to exchange host information
between all nodes that are launched at the same
time. However, the Nimbus context broker does not
support recontextualization of existing contexts, that
is, it doesn’t allow additional nodes to join the con-
text at a later time.

We propose a recontextualization service that pe-
riodically exchanges information between all nodes
in the context. The recontextualization service main-
tains an ordered list of nodes in the context. The list
includes hostnames, IP addresses, SSH keys, and a

Figure 1: Example elastic Torque deployment.

FutureGrid)
(hotel))

Launch)or)
Terminate)

Compute)
Nodes)

Torque))
Head)Node)

Elas<c)Manager)

64Acore)
job)

32Acore)
job)

Decision)
Engine)
(Policy))

Provisioner)

Amazon)
EC2)Sensor)

Cloud)Compute)
Nodes)

Recontextualiza<on)
Broker)

A) A)

A)

Recontext)
Client)

generic data field for all nodes. As nodes join or
leave the context, the recontextualization service
updates the ordered list. Every node in the context
periodically checks in with the recontextualization
service. If there are updates to the context, the recon-
textualization service sends the updated section of
the list to the node, which applies the updates in
order (e.g. adding the SSH keys of nodes that joined
the context to the SSH known hosts file).

3 IMPLEMENTATION

For our elastic cluster implementation we extend
the EPU to support the Torque batch-queue sched-
uler. We also create a set of scripts to setup and
configure worker nodes automatically. Lastly, we
develop a service for recontextualization that period-
ically exchanges host information between all nodes
in the environment. An example deployment, shown
in Figure 1, consists of the main EPU components (a
sensor, decision engine, and provisioner), our recon-
textualization service, and a deployment across
multiple IaaS clouds.

3.1 EPU Extensions

The EPU uses the Advanced Message Queuing
Protocol (AMQP) (Vinoski, 2006) to communicate
between its various components. In the EPU's cur-
rent implementation it only implements sensors for
AMQP queues, which use a “pull” queue model.
Many scientific workloads would need a significant
investment in software engineering to support
AMQP natively. Therefore, we develop a custom
EPU sensor to integrate with a widely used cluster
resource manager, Torque, thereby allowing any
Torque-based workload to use the elastic environ-
ment seamlessly. We also develop a custom decision
engine to respond to the Torque sensors.

The Torque sensor, written in Python, monitors
the queue and sends information to the decision
engine. The pbs_python package (pbs_python,
2012), a Python wrapper class for the Torque C
library, is used to gather Torque information. This
includes job information, e.g., the total number of
queued jobs and the total number of cores requested
by queued jobs. It also includes node information,
e.g., a list of Torque worker hostnames along with
the current state of the node (free, busy, offline,
down, etc.). The Torque sensor also executes com-
mands sent to it by the decision engine. For
example, when the EPU service launches a new

instance, it sends the hostname to the sensor on the
Torque head node and instructs it to add the node to
Torque’s host file. Other commands include marking
a Torque node as offline and removing the node.

The custom EPU decision engine elects to launch
or terminate instances. At each policy evaluation
iteration, the decision engine performs a number of
actions: it determines whether or not to launch in-
stances based on queued jobs and available workers,
instructs the Torque sensor to add any recently
launched instances to Torque, instructs the sensor to
mark any idle Torque workers as offline in prepara-
tion to terminate them, and finally, it terminates any
nodes that were previously marked offline. To de-
termine the number of instances to launch, the
decision engine first calculates the total number of
available workers, that is, the number free Torque
instances plus the number of pending instances
(those that have launched but have not yet joined the
Torque environment). The number of instances
launched by the decision engine is then simply the
total number of cores requested by queued jobs
minus the number of available workers. If the result
is a positive integer, the decision engine notifies the
provisioner of the number of instances to launch.
The decision engine also replaces stalled instances
after 10 minutes (a configurable option). Pending
instances are considered stalled if there are no
changes to them within 10 minutes.

3.2 Automated Worker Deployment

After the EPU launches worker instances, soft-
ware packages need to be installed, the instances
need to be configured as Torque worker nodes, and
they need to join the cluster. We use the Chef (Jacob
2009, Chef 2012) systems integration framework to
download, install, and configure cluster and user
software. Chef uses “recipes” to automate system
administration tasks, such as downloading Linux
packages, installing software, or running bash
scripts. For our elastic environment we develop a set
of Chef recipes to download, compile, and install
Torque, the pbs_python package, and user software.
This allows us to use any base Linux image on any
IaaS cloud as a worker image, greatly reducing the
time required to support additional clouds. When the
base Linux node boots, a simple Python agent, bun-
dled in the image ahead of time, automatically
retrieves the Chef recipes from a GitHub repository
and then executes them, installing and configuring
the node from scratch. To speed up the deployment
and limit possible points of failure, the recipes and
software can be cached in the base image.

3.3 Recontextualization Broker

The recontextualization broker is the final com-
ponent of our large-scale elastic computing
environment. It is a lightweight, REST-based recon-
textualization service that securely exchanges host
information between all nodes in the same context. It
is also important to note that while our recontextual-
ization solution was developed specifically for use
with IaaS clouds and VMs, it can also be used on
physical resource deployments.

All components of our recontextualization solu-
tion are written in Python and use representational
state transfer (REST) over HTTPS for communica-
tion; symmetric keys are used for both user and
context security. Our solution consists of three com-
ponents: a client for managing contexts, an agent
that runs on all nodes in the context, and a central
broker service to facilitate the secure exchange of
host information between agents. The information
exchanged by nodes in the context includes the short
hostname, full hostname, IP address, SSH public
host key, and a generic text data field. In the current
implementation, the broker stores this information in
a RAM-based SQLite database, although this could
easily be changed to a more robust database solu-
tion. The agent contains a set of scripts (e.g. bash),
typically written by the administrator deploying the
agent, which allows the administrator to customize
how the agent should process updates to the context
(e.g. by adding other node’s SSH keys to the
ssh_known_hosts file). The scripts are grouped into
four categories: initialization scripts that are called
by the agent only once, when it first starts, “add
node” scripts that are called by the agent when it is
processing an update for a node that has been added

to the context, “delete node” scripts that are called
by the agent when it is processing an update for a
node that has left the context, and restart scripts that
are called for all updates.

The recontextualization process is shown in Fig-
ure 2. Recontextualization begins when a user
creates a context with the client, which sends a re-
quest to the broker service. The broker responds
with the newly generated context ID, a uniform
resource identifier (URI) for the context (e.g. context
1 would have the following URI:
https://hostname:port/ctx/1), and a unique context
key and secret. The context key and secret are simp-
ly random strings and allow only those that know
them to join the context. When the user launches a
cloud instance, this information is passed to the
instance via the IaaS cloud’s userdata field. The
agent starts when the instance boots and reads the
instance’s userdata field to get the context infor-
mation. The agent then sends its node information
(hostnames, etc.) to the broker. The broker maintains
an ordered list of nodes that join or leave a context,
beginning with list ID 0, signifying no updates. Each
entry in the list denotes whether the node joined or
left the context.

 After the agent sends its information to the bro-
ker, it enters into a loop referred to as the
recontextualization period, requesting updates from
the broker and applying them. To request updates,
the agent sends its current ID in the ordered list,
beginning at 0, to the broker. The broker compares
the node’s current list ID to the latest list ID for the
context. If they do not match, the broker sends the
updated portion of the list to the requesting agent.
The agent then applies the updates, in order, by
calling its scripts for each entry in the list of updates.
After the agent applies the updates, it calls the restart
scripts to restart any services impacted by the up-
dates and then sleeps for a short time before looping
again. The amount of time the agent sleeps between
loop iterations determines the frequency that the
environment recontextualizes. Highly adaptive envi-
ronments should loop frequently whereas relatively
stable environments would loop less often.

4 EVALUATION

For evaluation, we examine the reactivity of the
environment, its ability to recontextualize quickly,
and its scalability. We do not compare the perfor-
mance of different cloud providers or instance types,
which are tied directly to the performance of the
underlying hardware and software configuration of

Figure 2: The recontextualization process.

Recontextualiza-on.
Client.

Resource.
Provider.

Metadata.
Server.

Recontextualiza-on.
Broker.

Instance.
Disk.Image.

1. Create.
Context.

Recontextualiza-on.
Agent.

2.

3.

4.

5.

6.

7.

Context.created,.
responds.with:.
•  Context.ID.
•  Context.URI.
•  Context.key.
•  Context.secret.

Launch.
resources.
(ID,.URI,.key,.secret).

Context.

Read.userdata.
(ID,.URI,.key,.secret).

Provide..
informa-on..
(IP.address,.etc.).

Query.for.updates.

Send.updates.

the particular cloud. Other studies have examined
the performance of virtual environments and IaaS
clouds (Huang 2006, Gavrilovska 2007, Ostermann
2010, He 2010, Ghoshal 2011). And in November
2011, Amazon EC2 ranked #42 on the Top500
(Top500, 2012). Users with applications that have
strict performance requirements should select appro-
priate clouds for their deployment.

NSF FutureGrid and Amazon EC2 are used for
the evaluation. On FutureGrid we use the Hotel (fg-
hotel) system, at the University of Chicago (UC),
and Sierra (fg-sierra), at the San Diego Supercom-
puter Center (SDSC). Both systems use Xen
(Barham, 2003) for virtualization. We deploy the
recontextualization broker and cluster head node in
separate VMs on Hotel for all tests. The recontextu-
alization broker runs inside a VM with 8 2.93 GHz
Xeon cores and 16 GB of RAM. The head node runs
on a VM with 2 2.93 GHz Xeon cores and 2 GB of
RAM. The head node contains the Torque 2.5.9
server software, Maui 3.3.1 (Jackson 2001, Maui
2012), as well as the EPU provisioner and decision
engine. The setup process for the head node is com-
pletely automated using the cloudinit.d tool
(Bresnahan, 2011). We created a cloudinit.d launch
plan to deploy a base VM on Hotel and then install
and configure the software, allowing us to repeated-
ly deploy these environments with a single
command. Worker nodes are deployed on both Hotel
and Sierra and consist of 2 2.93 GHz Xeon cores
with 2 GB of RAM. For EC2 worker nodes we use
64-bit EC2 east micro instances, primarily due to
cost, since Amazon only charges two cents per hour.
Micro instances use Elastic Block Storage (EBS)
and contain up to 2 EC2 compute units with 613 MB
of RAM. (An EC2 compute unit is defined as the
equivalent CPU capacity of a 1.0-1.2 GHz 2007
Opteron or 2007 Xeon processor.) Deployment and
configuration of worker nodes is completely auto-
mated as well. Worker nodes use a base Linux
image on each cloud and Chef installs and config-
ures the software, specifically, the Torque 2.5.9
worker software (pbs_mom) and an EPU sensor.
Worker nodes also use NFS to mount the /scratch
directory on the head node.

For all tests, the EPU sensor queries Torque eve-
ry 60 seconds to gather job and worker information.
The EPU decision engine executes every 5 seconds,
querying IaaS clouds for changes in instance state
and executing its policy. Recontextualization agents
send their information to the broker when they first
launch and query the broker every 120 seconds for
updates. For batch-queued workloads, we believe
that a 120 second recontextualization period is suffi-

ciently adaptive. Many scientific workloads contain
jobs that run for hours, if not days.

As a metric, we define the reactivity time to be
the time from when the first job is submitted until
the time the last job begins running for a group of
jobs submitted at the same time. In the case of MPI
jobs, enough cores must be available to run all tasks
for all jobs. We also define the metric recontextual-
ization time to be the time from when a new node
attempts to join a context by sending its information
to the broker until the time when all nodes in the
context have received and applied the update for the
new node. For example, if 256 nodes are running
and all 256 nodes are aware of each other and have
exchanged information, and then a new node at-
tempts to join the context, the recontextualization
time is the amount of time from when the new node
sends its information until the time the other 256
nodes receive the update and apply it. In addition to
these metrics, we examine the ability of the elastic
environment to leverage multiple clouds simultane-
ously and scale to hundreds of nodes, shown with a
series of traces.

For the reactivity and recontextualization tests,
the workloads consist of a simple MPI application
that sleeps for 60 minutes. For the recontextualiza-
tion test, 60 minutes is more than enough time for
the initial nodes to stabilize and wait for an addition-
al node to launch and join the context. For the multi-
cloud and scalability tests, the workloads consist of
individual “sleep” jobs that sleep for 30 minutes,
demonstrating the ability of the environment to scale
up and down as demand changes.

4.1 Understanding System Responsive-
ness

To understand system responsiveness we consid-
er two metrics. First, we examine the reactivity time.
This includes the time to detect the change in de-
mand, execute the policy, request instances from an
IaaS provider, and wait for the instances to boot.
Once the instances boot, they must then install and
configure worker software and join the cluster. To
measure reactivity time, we configure the EPU to
launch EC2 east micro worker nodes (single core).
We perform a series of tests, beginning with 2 node
clusters, increasing to 256 nodes, shown in Figure 3.
For each test we submit a simple MPI sleep job for
the desired number of nodes, causing the environ-
ment to launch the needed number of nodes. We run
each test 3 times for each cluster size.

As we can see in Figure 3, small cluster sizes,
from 2 nodes through 16, all have relatively similar
reactivity times. However, interestingly, 32 and 64
node clusters each have one test with a reactivity
time similar to smaller clusters while the other 2
tests are much higher. The reason for this is related
to the fact that our decision engine detects and re-
places stalled nodes after 10 minutes. In our
evaluation we observed that EC2 micro instances
would periodically fail (most often the instance
failed to boot or access the network). Because larger
cluster sizes boot more instances, they are more
likely to encounter these failed instances, even when
booting replacements. It should be noted that a small
cluster could encounter a failed instance even though
we didn’t experience this in our evaluation.

The second area we explore is the recontextual-
ization time where all nodes in the context must
query the broker for updates, receive the updates and
apply them. To measure the recontextualization
time, we again configure the EPU to use EC2 east
micro instances (single core). Similar to the reactivi-
ty tests, we perform a series of tests from 2 nodes
through 256, running 3 tests for each cluster size.
We submit a simple MPI sleep job that requests the
appropriate number of cores and allow the cluster to
boot, contextualize, and begin running the job. Once
the cluster stabilizes, we submit another single-core
sleep job, causing an extra instance to launch and
join the cluster. We measure the time from when the
new instance sent its information to the broker until
the time when all nodes in the environment receive
and apply the update. We rely on Amazon’s ability
to synchronize the clocks of instances, which is done
through NTP, for our time-based measurements.

As we can see in Figure 4, all clusters fully re-
contextualize within 1 second of the 120-second
recontextualization period. The tests that recontextu-
alize before the 120 second period do so simply
because all of the existing nodes in the environment
check in with the broker shortly after the new node
has sent its information to the broker. The three 2-
node cluster tests are perhaps the most interesting
case. For one of the tests, both nodes check in with
the broker shortly after the new node joined the
context and contextualize in less than 20 seconds,
whereas with another 2-node test, at least one of the
nodes waits almost the full 120 second period before
it queries the broker again. This is simply the result
of the random timing of when nodes boot and install
the required software. As the number of nodes in a
context increases, the likelihood that at least one of
the nodes will query the broker 120 seconds after the
additional node joins the context increases.

4.2 Multi-Cloud and Scalable Elastic
Environments

In addition to system responsiveness, we also ex-
amine the ability of the elastic environment to scale
up and down as demand fluctuates. For our first test,
we configure the EPU to launch workers on Hotel
and then we submit 256 single-core jobs that sleep
for 30 minutes (not shown). Hotel’s workers are dual
core instances with 2 GB of RAM. The elastic envi-
ronment scales up to over 100 VMs, however, it
doesn’t quite reach 128 VMs (or 256 cores), because
Hotel’s underlying hardware is unable to deploy 128
VMs within 30 minutes. As the first jobs begin to

Figure 3: Reactivity time, showing three data points for
each cluster size (those showing fewer are cases where
values overlap).

Figure 4: Recontextualization time, showing three data
points for each cluster size (those showing fewer are cases
where values overlap).

complete, those instances become free and run the
remaining jobs.

In our second test, we configure the EPU to dis-
patch workers on both Hotel and Sierra, shown in
Figure 5. Both Hotel and Sierra deploy dual core
workers with 2 GB of RAM. The workers from both
clouds are configured to trust each other and process
the same jobs from the main queue. (However, it
should be noted that if the jobs or workflow are not
amenable to multi-cloud environments (typically
connected over the Internet with relatively high
latencies), that it is possible to configure the envi-
ronment to restrict parallel jobs to individual
resource infrastructures using either node attributes
or multiple queues with routing.) For evaluation, we
submit 512 single-core jobs that sleep for 30
minutes. In this case we observe the limited scalabil-
ity of private clouds (likely due to other users on the
cloud). Hotel and Sierra are not able to provide 512
cores, as both clouds reach the maximum number of
instances that they can deploy at the time, shown by
the horizontal line for VMs running on each cloud.
Sierra reaches this point just before 2,000 seconds
into the evaluation while Hotel reaches this point
just before 3,000 seconds.

In our final test, we configure the EPU to deploy
single-core EC2 east micro instances, shown in
Figure 6. We submit 512 jobs that each request a
single core and sleep for 30 minutes. The environ-
ment scales to 476 instances in less than 15 minutes.
The key difference in the ability of the EC2 test to
scale quickly, compared to the FutureGrid tests, is
related to the underlying hardware and software
configuration differences between EC2 and Fu-
tureGrid. Unfortunately, EC2 was not able to reach
512 instances within the first 30 minutes of the eval-
uation. While the environment scales quickly, it
begins to trail off around 400 instances, only reach-

ing a total of 490 instances. The remaining 22 in-
stances simply fail to boot completely on EC2, even
after the EPU detects stalled instances and tries to
replace them, multiple times. To date we have not
been able to diagnose the reason, however, we have
not observed any problems with the EPU or recon-
textualization broker. (Our EC2 instance limit is set
well beyond 490.) Finally, it is worth noting that
while we use cheap single-core EC2 micro instances
for these tests (only running sleep jobs) because of
their cost, all of our software and evaluation is run
on a per-node basis. For example, our 490-node
scalability test would result in a 5,880-core cluster if
12-core worker nodes were deployed. A 512-node
cluster on Amazon with their largest cluster instance
size, cc2.8xlarge, would cost $1,228.80 for one hour
compared to $10.24 for a 512-node cluster of micro
instances for one hour.

5 RELATED WORK

Prior to the introduction of IaaS clouds, several
projects developed dynamic resource managers that
adjust resource deployments based on demand (Ruth
2005, Ruth 2006, Murphy 2009). More recently,
applications have begun to add support for IaaS
clouds. Specifically, Sun Grid Engine (Gentzsch,
2001), now Oracle Grid Engine contains support for
Amazon EC2 resource provisioning (Oracle Grid
Engine, 2012). Evangelinos et al. (Evangelinos,
2008) use Amazon EC2 to support interactive cli-
mate modeling. In both cases these applications only
include support for Amazon EC2, and they both
bundle support for EC2 directly into the application.
Application-specific approaches, such as these,
require that each individual application include
support for all cloud providers that users may need.

Figure 5: Multi-cloud trace running 512 single-core
jobs.

Figure 6: Scalability test on EC2 running 512 single-
core jobs.

Amazon CloudWatch (Amazon CloudWatch, 2012)
is a cloud-specific approach for elastic resource
provisioning. CloudWatch can scale environments
based on demand; however, it only uses Amazon
EC2. OpenNebula (Sotomayor, 2009), an IaaS
toolkit, also provides a cloud-specific approach,
bundling support for Amazon EC2. Our solution is
more general than cloud-specific and application-
specific approaches, allowing any application to
share a single service and code base for IaaS re-
source provisioning.

Juve et al. (Juve, 2011) present a generic IaaS
management solution, Wrangler, that provisions
IaaS resources across multiple clouds and deploys
applications on those resources. Wrangler, however,
is not an elastic management solution that adapts the
environment based on changing demand; instead,
Wrangler focuses on deploying relatively standalone
environments for users. The University of Victoria’s
Cloud Scheduler (Armstrong, 2010) is perhaps the
most similar to our solution. Cloud Scheduler moni-
tors a Condor queue and provisions resources across
Nimbus clouds and Amazon EC2. Currently, Cloud
Scheduler does not contain a mechanism for recon-
textualizing nodes, and instead it focuses on high
throughput computing (HTC) jobs.

6 FUTURE WORK

In future work we will investigate additional data
movement solutions. Efficient data movement is a
key requirement for elastic IaaS environments where
cloud providers may charge (either with allocation
credits or actual money) for data transfers. Data
movement solutions should avoid sending excessive
amounts of data or duplicate datasets to cloud re-
sources. However, data movement solutions must
also be easy to use or, if possible, completely auto-
mated.

We will also extend a physical batch-queued
cluster with our elastic resource manager and exam-
ine its impact on a wide variety of workloads. The
environment will integrate physical cluster resources
with resources distributed across multiple cloud
providers. Because some applications may have
strict requirements, such as latency sensitive applica-
tions, users will be able to specify basic
requirements related to application placement on the
resources (e.g. specifying whether to run the applica-
tion on local physical resources vs. distributed
across all resources).

7 CONCLUSIONS

In this work we present an architecture for a
large-scale elastic computing environment. We
extend an open source elastic resource manager, the
Elastic Processing Unit (EPU), to support the
Torque scheduler. We also develop a lightweight
REST-based recontextualization broker to exchange
host information between nodes in a context, which
allows the environment to support parallel jobs.

We evaluate our elastic environment by examin-
ing its ability to scale rapidly and recontextualize
quickly as resources join and leave the environment.
We demonstrate an environment that is able to lev-
erage multiple clouds, recontextualize 256 nodes
within one second of the recontextualization period,
and scale to over 475 nodes within 15 minutes.

ACKNOWLEDGEMENTS

We would like to thank the Nimbus team, including
John Bresnahan, Tim Freeman, and Patrick Arm-
strong for their help and advice with this work.

REFERENCES

Amazon CloudWatch. Amazon, Inc. [Online]. Retrieved
January 8, 2012, from:
http://aws.amazon.com/cloudwatch/

Amazon Web Services. Amazon.com, Inc. [Online]. Re-
trieved January 8, 2012, from:
http://www.amazon.com/aws/

Armbrust M., et al., “Above the clouds: A berkeley view
of cloud computing,” EECS Department, University of
California, Berkeley, Tech. Rep., February 2009.

Armstrong P., et al., “Cloud scheduler: a resource manager
for distributed compute clouds,” CoRR, vol.
abs/1007.0050, 2010.

Barham P., et al., Xen and the art of virtualization. SI-
GOPS Oper. Syst. Rev., 37:164--177, October 2003.

Bode B., et al. The Portable Batch Scheduler and the Maui
Scheduler on Linux Clusters. Usenix, 4th Annual
Linux Showcase and Conference, 2000.

Bresnahan J., et al., Managing Appliance Launches in
Infrastructure Clouds. Teragrid 2011. Salt Lake City,
UT. July 2011.

Chef. Opscode. [Online]. Retrieved January 8, 2012, from:
http://www.opscode.com/chef/

Evangelinos C., Hill C., “Cloud Computing for Parallel
Scientific HPC Applications: Feasibility of Running
Coupled Atmosphere-Ocean Climate Models on Ama-
zon’s EC2,” The First Workshop on Cloud Computing
and its Applications (CCA’08), October 2008.

FutureGrid. [Online]. Retrieved February 29, 2012, from:
http://futuregrid.org/

Gavrilovska A., et al., “High-Performance Hypervisor
Architectures: Virtualization in HPC Systems,” In 1st
Workshop on System-level Virtualization for High
Performance Computing (HPCVirt 2007).

Gentzsch W., “Sun grid engine: towards creating a com-
pute power grid,” in Cluster Computing and the Grid,
2001. Proceedings. First IEEE/ACM International
Symposium on, 5 2001, pp. 35 –36.

Ghoshal D., et al., I/O performance of virtualized cloud
environments. In Proceedings of the second interna-
tional workshop on data intensive computing in the
clouds, DataCloud-SC '11, 71--80, New York, NY,
USA, 2011. , ACM.

GitHub EPU. GitHub. [Online]. Retrieved January 8,
2012, from: https://github.com/ooici/epu

He Q., et al. Case study for running hpc applications in
public clouds. In Proceedings of the 19th acm interna-
tional symposium on high performance distributed
computing, HPDC '10, 395--401, New York, NY,
USA, 2010. , ACM.

Huang W., et al. A Case for High Performance Computing
with Virtual Machines. In Proceedings of the 20th An-
nual International Conference on Supercomputing,
Queensland, Australia, 2006.

Jackson D., et al., Core algorithms of the maui scheduler.
In D. Feitelson and L. Rudolph, editors, Job schedul-
ing strategies for parallel processing, volume 2221,
page 87-102. Springer Berlin / Heidelberg, 2001.

Jackson K. R., et al., “Seeking supernovae in the clouds: a
performance study,” in Proceedings of the 19th ACM
International Symposium on High Performance Dis-
tributed Computing, ser. HPDC ’10. New York, NY,
USA: ACM, 2010, pp. 421– 429.

Jacob A., “Infrastructure in the cloud era,” in Proceedings
at International O’Reilly Conference Velocity, 2009.

Juve G., Deelman E.,“Automating application deployment
in infrastructure clouds,” Cloud Computing Technolo-
gy and Science, IEEE International Conference on,
vol. 0, pp. 658– 665, 2011.

Juve G., et al., “Data sharing options for scientific work-
flows on amazon ec2,” in Proceedings of the 2010
ACM/IEEE International Conference for High Per-
formance Computing, Networking, Storage and
Analysis, ser. SC ’10. Washington, DC, USA: IEEE
Computer Society, 2010, pp. 1–9.

Keahey K. and Freeman T., Contextualization: Providing
One-Click Virtual Clusters, eScience 2008, Indianapo-
lis, IN. December 2008.

Keahey K., et al., Virtual Workspaces: Achieving Quality
of Service and Quality of Life in the Grid. Scientific
Programming Journal, vol 13, No. 4, 2005, Special Is-
sue: Dynamic Grids and Worldwide Computing, pp.
265-276.

Keahey, K., et al., “Infrastructure Outsourcing in Multi-
Cloud Environments,” submitted to XSEDE 2012,
Chicago, IL.

Marshall P., Keahey K., and Freeman T., “Elastic Site:
Using clouds to elastically extend site resources,” in

IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGrid), May 2010.

Marshall P., Tufo H., and Keahey K., Provisioning Poli-
cies for Elastic Computing Environments, 9th High-
Performance Grid and Cloud Computing Workshop
(HPGC), Proceedings of the 26th International Parallel
and Distributed Processing Symposium (IPDPS 2012),
Shanghai, China, May 2012 (to appear).

Maui. [Online]. Retrieved February 29, 2012, from:
http://www.clusterresources.com/pages/products/maui
-cluster-scheduler.php

Murphy M., et al., "Dynamic Provisioning of Virtual
Organization Clusters" 9th IEEE International Sympo-
sium on Cluster Computing and the Grid, Shanghai,
China, May 2009.

Nimbus. [Online]. Retrieved January 8, 2012, from:
http://www.nimbusproject.org

OOI EPU. [Online]. Retrieved February 29, 2012, from:
https://confluence.oceanobservatories.org/display/syse
ng/CIAD+CEI+OV+Elastic+Computing

Oracle Grid Engine. Oracle. [Online]. Retrieved January
8, 2012, from:
http://www.oracle.com/us/products/tools/oracle-grid-
engine-075549.html

Ostermann S., et al. A performance analysis of ec2 cloud
computing services for scientific computing. In cloud
computing, volume 34, page 115-131. Springer Berlin
Heidelberg, 2010.

pbs_python. [Online]. Retrieved January 8, 2012, from:
https://subtrac.sara.nl/oss/pbs_python

Rehr J., et al., “Scientific computing in the cloud,” Com-
puting in Science Engineering, vol. 12, no. 3, pp. 34 –
43, may-june 2010.

Ruth P., et al. Autonomic live adaptation of virtual compu-
tational environments in a multi-domain infrastructure.
IEEE International Conference on Autonomic Compu-
ting, 2006.

Ruth P., et al., VioCluster: Virtualization for Dynamic
Computational Domains, Cluster Computing, 2005.
IEEE International, pages 1-10, Sept. 2005.

Sotomayor B., et al., “Virtual infrastructure management
in private and hybrid clouds,” Internet Computing,
IEEE, vol. 13, no. 5, pp. 14 –22, sept.- oct. 2009.

Top500 List. [Online]. Retrieved February 29, 2012, from:
http://top500.org/list/2011/11/100

Vinoski S., “Advanced message queuing protocol,” Inter-
net Computing, IEEE, vol. 10, no. 6, pp. 87 –89, 2006.

Wilkening J., et al., “Using clouds for metagenomics: A
case study,” in Cluster Computing and Workshops,
2009. CLUSTER ’09. IEEE International Conference
on, 31 2009-sept. 4 2009, pp. 1 –6.

Woitaszek M. and Tufo H., “Developing a cloud compu-
ting charging model for high-performance computing
resources,” in 10th IEEE International Conference on
Computer and Information Technology, Bradford,
UK, June 2010.

