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Abstract—In the era of rapid experimental expansion data
analysis needs are rapidly outpacing the capabilities of small
institutional clusters and looking to integrate HPC resources
into their workflow. We propose one way of reconciling on-
demand needs of experimental analytics with the batch managed
HPC resources within a system that dynamically moves nodes
between an on-demand cluster configured with cloud technology
(OpenStack) and a traditional HPC cluster managed by a batch
scheduler (Torque). We evaluate this system experimentally both
in the context of real-life traces representing two years of a
specific institutional need, and via experiments in the context
of synthetic traces that capture generalized characteristics of
potential batch and on-demand workloads. Our results for the
real-life scenario show that our approach could reduce the
current investment in on-demand infrastructure by 82% while
at the same time improving the mean batch wait time almost by
an order of magnitude (8x).

Index Terms—Computers and information processing, Dis-
tributed computing, Metacomputing, Grid computing.

I. INTRODUCTION

The recent improvements in experimental devices, ranging
from light sources to sensor-based deployments, lead not only
to the generation of ever larger data volumes but to the
need to support time-sensitive execution that can be used
effectively in the management of experiments, observations,
or other activities requiring quick response turnaround. This
means that small, dedicated analysis clusters used by many
experimental communities are now no longer sufficient and
their users are increasingly looking to expanding their capacity
by integrating high performance computing (HPC) resources
into their workflow. This presents a challenge: how can we
provide on-demand execution within HPC clusters which are
today operated mostly as batch?

The inspiration for our project was provided by scientists
from the Advanced Photon Source (APS) at the Argonne
National Laboratory (ANL). APS is currently operating a
cluster dedicated to experiment support: the execution of jobs
run on the cluster has to be completed in the shortest time
possible; thus the need for dedicated resources. However, as
the experiments increasingly require greater processing power,
an interest arose in using HPC resources so long as they
can be provisioned on demand in a cost-effective manner
and with environments suitable to APS computations. This
conflicts with the modus operandi of HPC resources today,
which are usually available via batch schedulers maximizing
utilization and thus amortization of expensive resources, and

do not provide environment management. In this paper, we
propose a solution to this use case.

Our paper presents the design and evaluation of the Bal-
ancer: a service that dynamically moves nodes between an
on-demand cluster configured with cloud technology (in our
case OpenStack) and an on-availability cluster configured
with a batch scheduler (in our case Torque) as the need
for on-demand availability changes. The ability to integrate
commodity, generally used technologies was an important
requirement of our design. Another requirement was to make
it as non-invasive as possible, i.e., to not kill or checkpoint
running batch jobs as we have done in [1], or rely on
specialized adjustments to scheduling policies of the existing
tools. We propose three different algorithms for moving nodes
between the on-demand and batch partitions and evaluate
them, first experimentally in the context of real-life traces
representing two years of a specific institutional need, and then
via experiments in the context of synthetic traces that capture
generalized characteristics of potential batch and on-demand
traces.

Our results, based on a real-life scenario, show first that
combining capacities and workloads of on-demand and batch
clusters can provide sufficient capacity to satisfy all on-
demand requests while reducing the dedicated portion of the
cluster by 82%, improving the mean batch wait time almost
by an order of magnitude (8x), and improving the overall
utilization as well. We secondly show that in a general case we
can support bursty on-demand workloads corresponding to up
to 10% capacity of the cluster it shares with batch workload
in a non-invasive way.

In summary, our paper makes the following contributions:

• We describe an architecture and implementation for dy-
namic non-invasive resource reassignment between two
systems: a system providing resources on-demand and a
system providing resources based on availability, that bal-
ances their respective objectives in terms of the number
of satisfied on-demand requests and utilization.

• We propose three algorithms for balancing resources in
this context: the basic Algorithm providing a baseline of
our systems, the hint Algorithm that models the behavior
where experimental users can register the upcoming need
for on-demand cycles, and the predictive algorithm for
cases where such advance notice is not possible.
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• We evaluate these algorithms for different Balancer be-
haviors, to understand what workloads we can success-
fully balance under this system, using two years of traces
from an experimental and a mid-scale cluster at Argonne.
We show that we can not only support the existing use
case with dedicated resources significantly reduced, but
also scale the bursty on-demand workload to up to 10%
of the capacity of the cluster it shares with the batch
workload in a non-invasive way.

II. APPROACH

The inspiration for our project was provided by scientists
from the Advanced Photon Source (APS) at the Argonne
National Laboratory (ANL). APS provides a facility for exper-
iments in many scientific domains. To support them, it operates
a on-demand cluster dedicated to experimental analytics; the
execution of jobs on this cluster is typically time-critical,
where completion of the computation is needed within a time
determined by the type of measurement. At the APS, nodes
are reserved for specific experiments and are allowed to sit idle
between data collection events, resulting in very low utilization
but high responsiveness. While use of a larger-scale HPC
cluster with many more nodes might provide a result much
faster, which would be greatly desirable, the chance that a
queue backlog could produce an unpredictable delay cannot
be tolerated.

Infrastructure-as-a-Service cloud technologies, such as
OpenStack [2], have been a popular solution for on-demand
access as they also provide environment management via
the deployment of virtual machines (VMs) or containers.
We propose to use those existing cloud technologies and
provide a system that will combine them with HPC schedulers
in a non-invasive way, by arbitrating resource assignment
between them. Specifically, the system will meet the following
objectives:

• Inject on-demand and environment management for the
on-demand resources into batch clusters such that we can
schedule as many on-demand leases as possible with as
little impact on utilization as possible (i.e., maximizing
utilization while minimizing the number of rejected on-
demand requests).

• Provide a solution in terms of existing commodity frame-
works for both on-demand and batch, such as OpenStack
or Torque, such that the user’s interface to those systems
does not change and the changes to the systems them-
selves are minimal though flexible.

• The solution should be minimally invasive in terms
of interference with the normal operation of the batch
scheduler. We will not e.g., kill or checkpoint/snapshot
jobs in order to make room for on-demand leases [1] or
rely on the availability of specialized queues with smaller
sized jobs that can be used for backfilling [3].

A. Leases

To explain our approach, we will use the concept of a lease,
defined as a temporary ownership of resources, taking place

between a well-defined start time and end time. In this paper,
we will differentiate leases based on their start time; the end
time may be bounded (e.g., assumed or specified to last a
specific amount of time) or unbounded (used until terminated
by an event).

We define two types of leases, one reflecting the concern
of users who are interested in controlling the start time of
their computations, and the other reflecting the concern of the
providers, who are interested in optimizing the utilization of
their resources:

• An on-demand lease starts within a window of time W
after the request has been made and may or may not have
a defined end time. Time W is typically understood to
be short, e.g., under a minute or two, and may comprise
actions such as virtual machine deployment and boot.
This startup time can be arbitrary and can include some
system management, e.g., terminating jobs in order to
make room for a lease. On-demand leases are the most
common type of request in compute clouds and are
implemented by all major cloud providers.

• An on-availability lease starts whenever the provider
makes resources available for the lease. Examples of on-
availability leases include resource assignments given out
by a batch scheduler, high throughput leases implemented
by systems such as SETI@home [4], or spot pricing
leases implemented by Amazon EC2 [5]. Since the lease
may not (and generally does not) start immediately, the
request is typically placed on a queue; the provider selects
it for resource allocation based on a variety of concerns
that generally favor increasing utilization but may also
take other factors into account (e.g., EC2 spot pricing).

B. Architecture

Our approach is to soft-partition nodes in a large cluster
into two scheduling pools, an on-demand pool and an on-
availability pool, and to implement a mechanism that will
dynamically move nodes from one pool to the other to
maximize our objectives.

In keeping with our assumptions, both resource managers
(on-demand and on-availability) are independent of each other;
nodes in the on-demand pool are managed by an on-demand
resource manager (ODRM) while nodes in the batch pool are
managed by an on-availability resource manager (OARM).
The clients of each resource manager – such as a job queuing
or scheduling systems – use their respective interfaces to
request resources; they are not affected by the presence of
the other resource manager, except as by having some requests
rejected or delayed due to changes in resource availability. For
example, an ODRM could be implemented by a job queuing
system submitting resource requests to OpenStack; an OARM
could be implemented as a combination of a Maui [6] job
scheduler working with a Torque [7] resource manger.

Our architecture (Figure 1) consists of a service, called
the Balancer, which negotiates adjustments in the respective
sizes of the on-demand and on-availability resource pools
with ODRM and OARM. Implementing the Balancer as a



Fig. 1: High-Level Architecture

separate service, distinct from both resource managers, allows
us to implement bilateral negotiation and also to implement
the system with minimal changes to both resource managers.
The Balancer understands the status of each node in the
whole resource, as well as whether at any given moment
they belong to the ODRM or OARM pool. However, the
Balancer only manages which nodes belong to which pool;
the scheduling decisions are left to ODRM and OARM. The
boundaries between the pools are re-evaluated by the Balancer
on an ongoing basis, negotiating with each scheduler for the
availability of nodes in the respective clusters.

The on-demand pool contains a group of nodes called the
reserve R, which may be set to zero. The reserve represents
nodes that cannot be moved to the batch pool and is intended
to ensure that the system has up-front capacity to schedule
resources when on-demand requests come in. Otherwise, the
division between the on-demand and on-availability parts
of the cluster is fluid and constantly re-evaluated. Another
parameter of the system is the time window W , which defines
how long the system can wait before scheduling an on-demand
request.

In the context of this paper, the Balancer implements a
simple one-way negotiation which requests nodes from the
OARM as needed; nodes from the ODRM are only contributed
by the resource manager itself. Under the current assumptions,
execution on the nodes in the on-availability pool has to be
finished before they are contributed to the Balancer; this means
that the Balancer’s request for nodes from OARM to be con-
tributed in the allotted time may be unsuccessful. Ultimately,
this negotiation protocol can be extended to implement more
complex constraints.

The interaction with OARM and ODRM takes place via the
following interfaces.

Balancer Interface:

• request nodes(int n): request n additional nodes from
the Balancer (the decision of which specific nodes from
the on-availability pool should be made available to the
ODRM is made by the Balancer)

• release nodes(node list): release specific nodes to the
Balancer

• update nodes(node states): attempts to update status
of specific nodes. Can return an error if the status update
is incorrect. This interface is used by OARM when: (1) it
attempts to run a job on a node it believes is in the OARM
pool and calls this interface to avoid a race condition
with Balancer reclaiming this node for ODRM at the
same time; and (2) it finishes executing a job, giving the
opportunity for the Balancer to reclaim it if needed.

OARM Interface:
• reclaim node(nodename): reclaim a specific node,

identified by its hostname, from Balancer to OARM
• restore node(nodename): restore a specific node, iden-

tified by its hostname, from Balancer to OARM
• get status of all nodes(): returns a list of data struc-

tures that for each node describes if it is busy executing
a job, free, or offline, and if it is executing a job what is
the remaining wall time.

C. Algorithms

The Balancer algorithms make time-varying estimations of
the amount of resources to provision to on-demand requests.
The primary goal of the algorithms is to reduce the number
of on-demand rejections. When the primary goal is met, the
secondary goal is to reduce the aggregated amount of resources
that are provisioned to the on-demand workloads, such that
more resources will be remained for batch workloads.

1) Basic algorithm: The objective of the basic algorithm
is to implement a simple mechanism whereby the Balancer
requests nodes from the OARM as on-demand requests come
in and uses reserve as well as wait time to “pad” availability.
Algorithm 1 shows the pseudo-code. At any point of time, a
node can be in any one of 4 states: OD Reserve, OD Alloc,
OA Idle, and OA Busy.
R is the number of nodes that are statically reserved for

the ODRM pool. When an on-demand request comes in,
the Balancer allocates nodes from: (1) OD Reserve, (2)
OA Idle, and (3) OA Busy nodes whose jobs finish before
time W . A request is rejected if the Balancer cannot allocate
n nodes before time W or immediately when W = 0.

2) Hint algorithm: The hint algorithm is a refinement of our
original attempt at the basic algorithm and reflects the fact that
in experimental communities it is often possible to determine
resource need within a short time (15-30 minutes), though
it may not always be possible to pinpoint it to a particular
time days in advance. This allows us to implement a dynamic
reserve (i.e., a reserve that changes according to the situation).

Both functions request nodes and release nodes stay
the same as in the basic algorithm. The Balancer introduces
another interface add reserve(H,N), mandating the Bal-
ancer to add N extra reserve nodes before time H . Here
we are essentially parameterizing the hint algorithm by two
parameters: time H for “advance notice” or “hint”, and N
the number of nodes that are requested by the user or a third
party. Note that no nodes are statically reserved in the hint
algorithm—any nodes that are in OD Reserve state for more
than I seconds will be released to OARM pool.



Input: R (default = 0), W (default = 0)
Function request_nodes(n):

nr ← nodes currently in OD Reserve state
ni ← number of nodes in OA Idle state
if nr ≥ n then

allocate n OD Reserve nodes
change node state to OD Alloc
return node list

else
if nr + ni ≥ n then

reclaim nodes(n− nr)
change node state to OD Alloc
return node list

else
if W = 0 then

return Rejection
else

reclaim nodes(ni)
wait for W seconds
foreach received update nodes message do

reclaim nodes(1)
if n nodes can be allocated then

change node state to OD Alloc
return node list

end
end
if W expires then

return Rejection
reclaimed nodes are kept in
OD Reserve state for I seconds
before release to OARM pool

end
end

end
end

Function release_nodes(node list):
foreach node in node list do

change node state OD Alloc → OD Reserve
if node is not statically reserved then

node is kept in OD Reserve state for I
seconds before release to OARM pool

end
end

Algorithm 1: Basic algorithm

3) Predictive algorithm: The predictive algorithm is an-
other refinement of the basic algorithm that also implements
the notion of a dynamic reserve but in situations when an
advance notice is not possible. The predictive algorithm is run
by an out of band predictor which invokes the add reserve
interface on behalf of the users. The predictor collects histor-
ical data from the Balancer and use history to predict future
on-demand requests.

Our predictive algorithm is based on three observations of
the arrival time of on-demand requests. Firstly, the arrival time
follows a strong diurnal pattern which can be explained by the
interactive nature of the APS workload. Secondly, the arrival
time shows moderate correlation between adjacent weeks,
meaning that if there is a burst of requests during several hours
of one week, then there is likely a similar burst during the same
hours of the next week. Thirdly, sometimes there are bursts

of requests during the same hours of consecutive days. Our
predictive algorithm is described as follows:

The predictor divides each day into four 6-hour slots. At
the end of each time slot, the predictor queries the Balancer
for how many nodes were requested during the time slot.
At the beginning of each time slot, the predictor invokes
add reserve(0, N) to reserve N nodes where N is estimated
based on the peak number of requested nodes during the same
time slot of the last month, week, and day.

D. Implementation

Our implementation of the Balancer is configured to work
with the Torque resource manager and the Maui cluster
scheduler, used as OARM, and OpenStack (with the KVM
hypervisor [8]) as ODRM. It consists of a simple web service
developed using the Flask Python micro web framework,
separately from either OpenStack or Torque. It offers an
HTTP endpoint capable of receiving resource requests as well
as notifications of resource status changes. To move nodes
between the on-demand and on-availability pools, the Balancer
enables or disables them in Torque using the pbsnodes
command with arguments -o to disable or -c to enable.

The update nodes interface is implemented for Torque
nodes as prologue and epilogue scripts which are triggered
respectively when a job starts and ends execution (whether
successfully or not). These notifiers make HTTP requests to
the balancer in order to update its record of resource status, i.e.,
nodes available for stealing. No other changes were required
to integrate Torque into the system.

In order to make OpenStack work with the Balancer, we
had to make small modifications to the OpenStack implemen-
tation: the scheduler (Nova) requests more resources from the
Balancer if it does not have enough available for schedul-
ing virtual machines requested by on-demand users (using
request nodes), and resources are released to the Balancer
when instances are terminated (using release nodes). We also
had to fix concurrency issues in the scheduler when using
large wait times which can make many independent resource
requests block and then resume execution at the same time.

III. EXPERIMENTAL EVALUATION

We conduct our experimental evaluation in two stages. We
first evaluate our approach using the basic algorithm in the
context of a real-life scenario defined by two years worth of
traces reflecting the needs of on-demand and batch jobs at
the Argonne National Laboratory; this gives us insight into
realistic demand and submission patterns. Second, we use
synthetic traces to generalize the problem and evaluate and
compare the three algorithms we formulated.

Our overall experimental methodology consisted of em-
ulating the actual runs by submitting traces of on-demand
and batch requests to OpenStack and Torque configurations
respectively, on a cluster managed by the Balancer. The
OpenStack submissions use a mechanism called FakeDriver
which, instead of launching a real VM, generates the suitable
internal events that track resource consumption. The Torque



submissions use a ”sleep” script for the duration of the job
walltime. In addition, CPU overcommitment is disabled in
OpenStack.

A. Evaluating a Real-Life Scenario

To evaluate our approach we first ask the question: how
would it fare under existing shared on-demand/on-availability
workloads in real-life computational centers? To answer this
question, we combined both workloads and resources of two
systems used at the Argonne National Laboratory (ANL). The
on-demand side is represented by workloads ran on a small
Sun Grid Engine cluster in the Advanced Photon Source (APS)
used for analytics supporting real-time experiments; hence the
need for immediate execution. The batch side is represented
by a general purpose mid-scale batch cluster in Laboratory
Computing Resource Center (LCRC). Given this context, a
more specific version of our question is: if we combined both
the on-demand/on-availability workloads and the resources
currently executing those workloads under our approach, what
advantages or disadvantages would we observe?

To create a combined APS/LCRC workload we combined
two years worth of job execution traces from APS and LCRC
(between 2013-10-06 and 2015-09-05). We first mapped the
job execution trace from APS onto on-demand VM deploy-
ment requests in OpenStack as follows. All APS jobs are, or
can be treated as, single-core jobs 1. The APS trace records the
start/stop timestamps of all the jobs. At any APS job start/stop
event, we evaluated how many single-core jobs should be
running in the APS cluster and how many 16-core VMs would
be needed to support them, assuming that jobs would be tightly
packed. If more or fewer VMs would be needed as a result of
a job start/stop event, an on-demand VM deployment request
or termination event would be generated. We then combined
the APS on-demand trace and the LCRC batch trace using
the same start time for both, such that the VM deployment
requests are submitted to OpenStack and batch job requests
are submitted to Torque.

To create a combined APS/LCRC cluster we proceeded as
follows. The LCRC cluster comprises 304 homogeneous 16-
core nodes. The APS cluster consists of 57 heterogeneous
multi-core nodes amounting to a total of 1092 cores. Since
cores represent the main scheduling concern in our experiment,
we modeled APS capacity as 68 16-core nodes (a total of
1088 cores, close to the actual 1092 capacity). The combined
APS/LCRC cluster is thus modeled as 304 + 68 = 372 16-core
nodes.

We now set out to replay the combined APS/LCRC work-
load on a model of the APS/LCRC combined cluster. Since
we could not replay two years worth of traces in real-time, we
scaled down the experiment in space and time. To scale it in
space, we created an experimental environment that mapped
each of the 372 combined cluster nodes onto a Docker con-
tainer, each with a unique hostname and IP address, connected

1Some APS jobs contain an array of subjobs. But each subjob runs on a
single core.

by an overlay network. An additional container represented the
controller node. We deployed the Docker containers on the
Chameleon testbed [9] version 53, using the 24-core 128 GiB
RAM Xeon Haswell compute nodes, such that 24 containers
were mapped to each node. To scale the experiment in time,
we mapped hours to minutes (i.e., accelerated 60x). Finally,
we eliminated the ramp-up effect by preloading the cluster
with running jobs.

This still left us with a potentially very long experiment, so
instead of replaying two years worth of traces we focused on
one week that would represent the greatest challenge to our
system. In the case of the batch trace, we defined ”challenging”
as low average node availability across 60 second periods,
measured every second. In the case of the on-demand trace,
we defined ”challenging” as high total resource usage coming
from on-demand requests, calculated as a sum over the product
of the time used by a job and number of cores on which the
job was running. We picked the week which had the highest
sum of usage and inverse of availability.

We now ran the experiments using traces from the most
challenging week reflecting the modifications above, such that
the modified APS trace was submitted to OpenStack and
the LCRC trace was submitted to Torque. We measured the
following qualities:

• Average utilization, defined as usage over time
• Mean batch wait time, defined as the time between when

the job is submitted and when it starts running
• Number of on-demand rejections, or reject rate, cal-

culated as the ratio between number of rejections and
number of requests

Table I summarizes the results of this experiment in both
static and dynamic configurations. The shaded column in
the static section reflects the existing scenario in which the
APS and LCRC clusters are separate: the LCRC cluster has
1002.8 minutes mean batch wait time and the APS cluster
has no rejections. A hypothetical scenario where 100% of the
combined resources are devoted to batch workload shows that
the lower bound of batch wait time for this trace is 122.5 min.

In the dynamic section of the table, we see the results of
seven scenarios reflecting different combinations of parameters
R and W . We notice that the utilization of the combined
cluster improves by 4.8 to 5.6% across all dynamic scenarios,
with mean batch wait time decreasing by 85 to 88%; this is due
to the fact that we can now utilize the previously idle nodes
of the dedicated on-demand cluster. However, there are 30 on-
demand rejections when we choose R = 0 and W = 0; we
can decrease them by increasing either one of the parameters
or both. From a practical perspective, the most interesting
observation is that the challenging week yielded no rejections
for R = 12 nodes which corresponds to roughly 18% of the
on-demand cluster: this means that under the basic balancer
algorithm, we could reduce our investment in hardware for
the on-demand cluster by 82% and still have all on-demand
requests satisfied. Further, the mean batch wait time under
this scenario is almost the same as the lower bound for the



TABLE I: Experimental results for the most challenging week: there are 24,177 batch jobs and 141 on-demand leases being
submitted in each experiment. The wait time is measured in minutes and the reserve values are given in nodes. For the
dynamic case, the on-demand and batch utilization refer to the portion of utilization coming from on-demand and batch
requests respectively.

Parameter settings

Static (Baseline) Dynamic
Dedicated batch nodes W
372 304 0 0 5 10 0 5 10 0

Dedicated on-demand nodes R
0 68 372 0 6 12

Combined utilization 84.4% 80.1% 1.25% 84.9% 85.7% 85.7% 85.3% 85.3% 85.3% 85.3%
Batch utilization 84.4% 78.8% NA 84.5% 84.4% 84.4% 84.0% 84.1% 84.0% 84.0%
On-demand utilization NA 1.25% 1.25% 0.38% 1.25% 1.25% 1.25% 1.25% 1.25% 1.25%
Batch wait time (min) 122.5 1002.8 NA 122.0 147.0 147.0 150.0 140.6 150.4 130.0
Rejections 141 0 0 30 3 3 1 1 0 0

combined cluster established in the static column; this brings
significant benefits to the batch side as well.

Another scenario with no rejections occurs for R = 6 and
W = 10; this means that an on-demand request would execute
“within 10 minutes” which is a relatively long wait time in the
context of this use case. This has been deemed not useful for
our problem formulation and thus we don’t explore on-demand
wait time further in our experiments.

B. Evaluating Balancer Algorithms

We next asked the question: how does our system perform
in a generalized scenario? What would happen if the on-
demand or on-availability workloads were different—larger
or composed of a different mix of applications than in our
real-life scenario? In general, we sought to discover the
relationship between the cluster capacity, the type of workload,
and configuration parameters or Balancer algorithms we would
need to employ to accommodate the on-demand workload
while running the on-availability workload undisturbed. We
answered these questions by generating synthetic traces rep-
resenting both on-demand and batch workloads and running
experiments with those traces. In order to preserve continuity
with our real-life experiments, we continue to use the 372-
node cluster as a base and each experiment represents one
week.

1) Generating Synthetic Batch Workloads: We create five
synthetic batch workloads as follows:

The Mainstream workload (U66-Main) represents the
“mainstream” workload condition in the LCRC cluster. The
workload is derived by randomly sampling 1% of all the jobs
in the LCRC traces. We retain the node number, walltime,
and runtime of each job. Each job’s submission time is
calculated as the time offset from the beginning of the week
which the job is selected from, so that they add up to one
week’s worth of submissions. Since the Mainstream workload
has a lower utilization compared to the real-life workload
described in Section III-A (66.5% versus 78.8%), we also
generated workloads with higher utilizations of 77% and 88%,
and named them U77-Main, and U88-Main. Specifically, we
generate higher utilization workloads by injecting additional
jobs into the U66-Main workload.

The Wide workload (U66-Wide) is designed to model a
workload composed of relatively large parallel jobs. We derive
the Wide workload directly from the mainstream workload
(U66-Main) by doubling the number of nodes of each job and
randomly removing approximately half of the jobs to maintain
close to the same aggregate utilization.

The Narrow workload (U66-Narrow) is designed to repre-
sent a workload composed of small parallel jobs. To generate
it, we split each job from the mainstream workload (U66-
Main) into two smaller jobs, each requiring half the number
of nodes (thus the utilization stays the same).

Table II summarizes the job statistics of synthetic batch
workloads.

TABLE II: Job statistics of 5 synthetic batch workloads.

U66-N U66-M U66-W U77-M U88-M
Avg. Nodes 1.6 2.9 5.7 2.9 2.9
Std. Nodes 3.4 6.6 12.7 6.5 6.2
Avg. Runtime 62.6 64.1 60.8 64.8 65.4
Std. Runtime 293.6 303.1 299.2 310.7 302.1

2) Generating Synthetic On-demand Workloads: Similar
to the synthetic batch workloads, we create synthetic on-
demand workloads by abstracting workload patterns from real-
life traces. In particular, we see to preserve their burstiness
corresponding to periods when an APS experiment occurs
causing the demand for time-sensitive computation. We thus
reuse the VM leases’ submission times and durations from the
challenging week. Since the utilization (denoted by ρ) of the
challenging week’s on-demand workload is 1.25%, in order to
achieve higher utilization, we multiply the number of nodes
in the lease by 2x, 4x, 8x, 16x, and 24x. Thus, the ρ of the
synthetic workloads equals to 2.5%, 5%, 10%, 20%, and 30%
respectively. These synthetic workloads preserve the burstiness
quality in real-life trace while exerting much higher pressure
on the Balancer. For example, when ρ = 30%, the peak arrival
rate of on-demand requests is 264 requests per minute.

3) Result analysis of the basic algorithm: The experiments
are similar to experiments in the previous section; we use
various combinations of traces submitted to OpenStack and
Torque respectively, having preloaded the cluster with running
jobs to mitigate the ramp-up effect. Figure 2 shows the
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Fig. 2: Performance results of the basic algorithm, with 5 batch
workloads and 6 on-demand workloads, R = 0, W = 0.

performance results of running the five batch workloads with
six on-demand workloads (x-axis) with the basic algorithm
(zero reserve). We skipped combinations for which the sum
of batch and on-demand workloads exceeds the capacity of
the cluster.

Figure 2 shows that rejection rates are influenced by both
the shape of batch jobs in the trace and their density (i.e.,
batch utilization). While for the U66-Narrow trace we don’t
see rejections with ρ as high as 10%, this threshold drops to
5% as jobs become wider, and the rejection rate stays firmly
above zero for every ρ value for other traces. Mean batch
wait time follows a similar pattern as both smaller jobs and
less utilization make it easier for batch jobs to be scheduled.

Our explanation for how batch job shape affects performance
is that it is easier for the batch scheduler to schedule narrower
jobs than wider ones. Thus jobs finish earlier such that more
space will be left open when on-demand requests arrive.

The utilization patterns follow strongly utilization of the
batch traces, although all go up slightly as more on-demand
jobs are added. Without any additional configuration, our
approach is thus able to support on-demand workloads de-
manding less than 10% of cluster capacity, depending on the
shape and utilization of batch jobs. To put this number in
perspective, ρ from our real-life scenario was an order of
magnitude lower.

To make the basic algorithm work for larger on-demand
workloads, we need to use the static reserve. We thus rerun
the basic algorithm with increasing R and observe the trends
of rejection rate dropping. Note that since the performance is
mainly determined by utilization compared to job shape, we
will only use the mainstream batch workload for the rest of
this paper.

Figure 3 illustrates what happens for ρ = 10%. We see that a
relatively small increase in the value of R (30 or 60 depending
on on-demand trace density) can decrease the number of
rejections by a significant factor. However, to reduce them
to or near zero, we need a reserve of 120 nodes, roughly
a third of the cluster. The negative effect of reserving more
nodes is that the batch job performance becomes significantly
worse (exponentially worse for ρ > 10%). This is reflected
in the combined utilization, which goes down with increased
reserve for batch traces requiring higher capacity. A high static
reserve is thus a very expensive solution for accommodating
on-demand workloads higher than 10%; to look for a better
one we turn to the hint algorithm.

4) Result analysis of the hint algorithm: To run experiments
with the hint algorithm, we used a program that simulated a
user notification to the Balancer 15 or 30 minutes before actual
requests arrive. We used two values for this user notification:
15 minutes and 30 minutes (H15 and H30, respectively).
Recall that our traces follow a real-time experimental pattern
where a user would be able to make such notification.

Figure 4 shows the rejection rates for the hint algorithm.
With ρ = 10% and given a 30-minute hint, we get zero
rejection rates for U66-* and U77-Main and near zero (< 1%)
rejection rate for U88-Main. Although the H=15 results are
omitted in the graph for conciseness, with a slightly shorter
advance notice of 15 minutes, we get near zero (< 1%)
rejection rate for U66-Main and low rejection rates (less than
4%) for U77-Main and U88-Main. In comparison, the basic
algorithm evaluated in the previous section needed a static
reserve of 120 nodes, i.e., almost a third of the cluster to
achieve the same rejection rate. A relatively accurate but short-
term estimate of resource need can be then used to activate a
dynamic reserve that is effectively equal to a static reserve of
120 nodes. Since a static reserve typically means purchasing
and operating a cluster set aside for on-demand experimental
support, this observation has significant potential for creating
on-demand capacity.
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Fig. 3: Performance results of the basic algorithm with static
reserve, three batch workload, ρ = 10% on-demand work-
loads.

At the same time, the impact on batch workload is much
lower: for U66-Main, batch job mean wait time when R = 120
is over 9 hours, while the same measurement for a hint of 30
minutes is merely 50 minutes. This is because the dynamic
reserve implemented by the hint algorithm acquires the nodes
only when they are known to be needed and for as long as
they are needed. To understand how effective it is, we looked
at how much time nodes spent in reserved state without being
used. Using the basic algorithm with R = 120; this time is
13,959 node hours whereas in the H30 case it is only 578
node hours, a reduction of 96%. This significantly increases
the flexibility of the system as nodes are free to be allocated
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Fig. 4: Performance results of the hint algorithm, with 5 batch
workloads and 6 on-demand workloads (only H = 30 min is
displayed for conciseness).

to the most pressing tasks.
Another benefit of the hint algorithm is that it improves

combined utilization: most importantly, the combined uti-
lization goes up rather than down as in the case of high
reserve. In particular, batch utilization stays approximately the
same, meaning that combining on-demand workload didn’t
hurt batch overall. The increased utilization is contributed by
more on-demand workload being scheduled, e.g. the biggest
boost comes from (U66-Main, ρ=30%, H30), when on-demand
utilization increases by 5.1% compared to (U66-Main and
ρ=30%, basic algorithm). This is also the first time the
combined utilization goes above 85% (for U66 and ρ=30%)
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Fig. 5: Performance results of the predictive algorithm, with
5 batch workloads and 6 on-demand workloads.

demonstrating that we can indeed combine concerns of on-
demand and on-availability workloads better.

5) Results analysis of the predictive algorithm: Sometimes,
it is impossible to get a reliable estimate of an incoming bursty
workload. In those situations, we apply a heuristic algorithm as
described in section II-C3 to predictively adjust the reserve.
To evaluate our algorithm, we first ran the predictor offline
using historical data and then run live experiments using the
predictor’s output.

Figure 5 shows that the predictive algorithm performs
equally well as the hint algorithm in terms of reject rates.
When on-demand workload is low (<5%), batch wait time
achieved by the predictive algorithm is comparable to that
of the hint algorithm. However, when on-demand workload

becomes higher, batch wait time is 1-4 times longer than
the hint algorithm (H = 30 min). This can be explained by
the fact that without additional information, the predictor can
only approximately estimate on-demand request arrival time.
To lower reject rate, our predictive algorithm over-reserves
nodes, indicating that the predictive algorithm is significantly
less efficient at estimating when the nodes will be needed.

Figure 5 also shows that the differences in utilization
compared to the hint algorithm results are relatively small for
low ρ and are correlated primarily to batch utilization and
over-reserving nodes. Thus with larger ρ and consequently
more time spent in reserve, despite the increase in on-demand
utilization, it is not big enough to overshadow the drop in
batch utilization. Unless there is a predictor that can accurately
predict user behavior and make precise estimations of on-
demand request arrival, the predictive algorithm does not
perform as well as the hint algorithm in balancing batch and
on-demand performance, even though the predictive algorithm
performs better than the basic algorithm.

IV. RELATED WORK

Several research groups have been exploring the suitability
of the cloud environment for HPC applications in terms of
virtualizing HPC execution (e.g. Palacios [10]), enabling a
cloud interface for grid computing (e.g. Globus [11], Mag-
ellan [12]), and using on-demand/on-availability leases [13],
[14]. Other work has focused on combining HPC and cloud
systems in a hybrid environment to enable cloud bursting of
HPC workload from HPC clusters to the public cloud to meet
deadline constraints of HPC applications [15], [16], [17]. To
reduce the cost using public clouds, a number of groups have
proposed using cheaper yet unreliable spot instances to reduce
the cost of executing HPC applications [18], [19], [20], [21],
[22], [23]. Spot instances suffer from volatility due to price
fluctuation and some work has proposed prediction methods
to calculate statistical availability guarantees [23]. Our work
differs from the hybrid cloud paradigm in two ways. First, it
bursts on-demand applications to HPC clusters in a controlled
fashion to meet the requirements of both on-demand and
HPC batch applications. Second, unpredictable start times are
avoided by reclaiming resources from the on-availability HPC
cluster to convert them to on-demand resources.

In the realm of executing mixed workloads, cluster and
data center operators have configured resource schedulers to
improve facility utilization through co-scheduling of multiple
batch and latency-critical workloads. In the HPC community,
prior efforts such as Marshall et al. [1] target improving
utilization of private IaaS clouds by opportunistically back-
filling VMs on idle nodes which are not in use by on-demand
leases, allowing HTC workloads to run on backfilled VMs.
The backfilled VMs do not support start time constraints and
are preemptible, unlike our work. SpeQuloS [24] explores
providing QoS for executing Bag-of-Tasks applications on
opportunistic grids or cloud spot instances. More recent works
[25], [26] aim to improve the value of reclaimed cloud capacity
by providing Service Level Objectives (SLOs) or guarantees



for their use. TR-spark [27] proposed a big-data analysis
framework customized to exploit transient cloud servers for
Spark applications. Other systems have addressed the prob-
lem of reconciling conflicts incurred at finer-grained resource
sharing (e.g., [28], [29]). Elastic schedulers such as [30] enable
slots to be shared across applications to meet their SLOs
and improve utilization. In this environment, slots can be
taken away from loosely-coupled applications at run-time (e.g.
Hadoop), but this is not applicable to the HPC environment.
Through combining batch and on-demand leases, the Balancer
also achieves utilization improvements but within the operating
constraints of an HPC environment where batch applications
are first-class citizens. The Balancer does not preempt running
batch jobs to enable on-demand job execution. Additionally,
due to the node-exclusive requirement of most HPC applica-
tions (unlike in a data center environment), the Balancer does
not consider node-level sharing between batch and on-demand
workloads, thus performance conflict is not a major concern
in our work.

Finally, our work differs from prior work in that it enables
resources to be dynamically shared between batch and on-
demand schedulers. Thus, it is not another cluster scheduler
that manages only the flow of jobs, but it also manages the flow
of resources from one class of service to another. Mesos [31] is
most similar to our work. Mesos adopts a two-level scheduling
model which (1) offers available resources to frameworks (e.g.
Torque) such that a framework can either accept or reject an
offer, and (2) each framework scheduler schedules its own
tasks onto the accepted resources. The Mesos master plays
a similar role as the Balancer in cross-framework resource
allocation. However, unlike the Balancer, Mesos does not
support time-bounded resource allocation nor performance-
aware resource reclamation. Both mechanisms are critical in
the Balancer’s target environment. Similarly, Google’s Borg
[32] and open-source Kubernetes enable the co-scheduling of
mixed workloads, but do not adhere to the specific constraints
in our HPC environment, namely, that batch jobs are the
main tenant and run exclusively on allocated nodes. Thus, the
Balancer must operate with fewer degrees of freedom than
these general-purpose schedulers. For this reason, we opted
to design a new scheduling system targeted to HPC and on-
demand environments.

V. CONCLUSIONS

We proposed a model reconciling the needs of on-demand
and batch workloads within one system in a non-invasive
way, i.e., by operating on cycle stealing rather than disrupting
job execution. The model consists of a lightweight Balancer
service that dynamically arbitrates resource usage between an
on-demand and on-availability scheduling framework and can
be adapted to existing technologies, such as OpenStack or
Kubernetes for on-demand, or Torque or Slurm for batch.

Based on a real-life scenario representing two years’ worth
of on-demand and batch workloads at Argonne National
Laboratory, we demonstrated that by using our model on
existing resources we could reduce the current investment in

on-demand infrastructure by 82%, while at the same time
improving the mean batch wait time almost by an order
of magnitude (8x). By exploring how our model behaves
under various configurations and workloads, we found that
it performs best in scenarios where the on-demand workload
represents less than 10% of the overall capacity (our real-life
usage example needed only 1.25%). When trying to increase
this limit, we found that a relatively short (15 to 30 minutes)
advance notice of resource need is as effective as placing a
static reservation on a third of the cluster, which has significant
implications for resource usage and cost. In cases when it is
not possible to obtain such advance notice, a simple prediction
algorithm provides a reasonable compromise, yielding near
zero rejection rates with reasonable resource usage.
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