

SC12 Cloud Computing for Science Tutorial: Introduction to Infrastructure Clouds

John Breshnahan, Patrick Armstrong, **Kate Keahey**, Pierre Riteau

Argonne National Laboratory

Computation Institute, University of Chicago

Outsourcing Computing for Science

Control over environment

- Complexity
- Consistency

Control over availability

- Many real-time scenarios
- Naturally bursty character

Introducing Infrastructure Clouds

- Infrastructure-as-a-Service (laaS) Cloud Computing
 - Access to remote storage and compute resources
- Benefits:
 - On-demand access
 - Pay-as-you-go charging model
 - Virtualization, environment control
 - Convenience via outsourcing

Everything as a Service

Infrastructure-as-a-Service: Quickstart

laaS Modus Operandi

laaS Modus Operandi

Types of laaS Resources

- Resource shapes/types
 - Bundles of virtual resource parameters
 - Exact (memory/storage) and vague (I/O performance, "compute units")
 - Special hardware (e.g., GPUs)
 - Different types of storage options: e.g., S3 vs EBS
- Resource availability/persistence
 - On-demand instances
 - Subscription instances ("reserved" instance)
 - Spot instances
 - Standard vs reduced redundancy
- Pricing models
 - From 2 cents to ~\$3 per hour for on-demand instances
 - Consolidated billing
 - Storage: per storage, access, and outgoing transfer

Infrastructure Cloud Resources

Community clouds

Commercial clouds

Configure your own private cloud

laaS Modus Operandi

Applications: What Can You Do with Infrastructure Clouds?

Sam Angiuoli Institute for Genome Sciences University of Maryland School of Medicine

- The emergent need for processing
- A virtual appliance for automated and portable sequence analysis
- Approach:
 - Running on user's desktop
 - Then running on Nimbus Science Clouds, Magellan and EC2
 - A platform for building appliances representing push-button pipelines
 - Leveraging spot instances
- Impact
 - From desktop to cloud
 - http://clovr.org

Work by the UVIC team

- Detailed analysis of data from the MACHO experiment Dark Matter search
- Provide infrastructure for six observational astronomy survey projects
- Approach:
 - Appliance creation and management
 - Running on a Nimbus cloud on WestGrid
 - Dynamic Condor pool for astronomy
- Status:
 - In production operation since July 2010

Sky Computing

- Sky Computing = a Federation of Clouds
- Approach:
 - Combine resources obtained in multiple Nimbus clouds in FutureGrid and Grid' 5000
 - Combine Context Broker, ViNe, fast image deployment
 - Deployed a virtual cluster of over 1000 cores on Grid5000 and FutureGrid – largest of this type at the time
- Grid'5000 Large Scale Deployment Challenge award
- Demonstrated at OGF 29 06/10
- TeraGrid '10 poster

Dr. Dobb's
THE WORLD OF SOFTWARE DEVELOPMENT

More at: www.isgtw.org/?pid=1002832

Work by Pierre Riteau et al, University of Rennes 1

- BarBar Experiment at SLAC in Stanford, CA
- Using clouds to simulate electron-positron collisions in their detector
- Exploring virtualization as a vehicle for data preservation
- Approach:

Appliance preparation and management

- Distributed Nimbus clouds
- Cloud Scheduler
- Running production BaBar workloads

Resource	Cores	Notes
FutureGrid @Argonne Lab	100 Cores Allocated	Resources allocation to support BaBar
Elephant Cluster @UVic	88 Cores	Experimental cloud cluster hosts (xrootd for cloud)
NRC Cloud in Ottawa	68 Cores	Hosts VM image repository (repoman)
Amazon EC2	Proportional to \$	Grant funding from Amazon
Hermes Cluster @Uvic	Variable (280 max)	Occasional Backfill access

Ocean Observatory Initiative

- Towards Observatory Science
- Sensor-driven processing
 - Real-time event-based data stream processing capabilities
 - Highly volatile need for data distribution and processing
 - An "always-on" service
- Nimbus team building platform services for integrated, repeatable support for ondemand science
 - High-availability
 - Auto-scaling
- From regional Nimbus clouds to commercial clouds

The STAR Experiment

- Use case: cloud processing for W-boson reconstruction
- Overall achievement
 - "10 months became 3 months"
- Benefits:
 - Reduce "time to science"
 - Near real-time processing

Trends and Patterns

- On-demand, elastic processing...
 - Observatories, experiments, conference deadlines, fluctuating workload, growth management...
- ... over multiple providers....
 - Risk-mitigation: not enough cycles, failure, market factors
- ... with elementary ease of use...
 - Automated provisioning of infrastructure resources
 - Harness the power while avoiding complexity
- ...facilitates going from one-offs to **production** runs...
 - Steadily increasing in both size and buy-in
- ...given the right model
 - Failure-prone environment
 - Management at scale
 - Achieving "uninterrupted power supply"

Infrastructure Platform Requirements

Turnkey Virtual Clusters

- Configuring a turnkey virtual cluster
 - Shared trust/security context
 - Shared configuration/context information

Managing Complexity

Elastic Scaling Examples

- The ALICE Example
- ElasticSite prototype
- OOI pilot

Plan for the Day

- First things first: start using laaS clouds!
 - AWS demonstration
 - Do it on your own: deploy a VM on FutureGrid!
- Which cloud should I use?
 - Comparison of commercial and community clouds
- How can I go beyond deploying a few VMs?
 - Infrastructure Platform Tools: virtual clusters, managing deployment complexity, autoscaling and high availability
- Put it all in practice
 - Applications: environment management, bioinformatics, high-energy physics

