
A Step towards Hadoop Dynamic Scaling
Qiaobin Fu

Department of Computer Science
Boston University

Boston, USA
qiaobinf@bu.edu

Nicholas Timkovich
University of Chicago

Chicago, USA
npt@uchicago.edu

Pierre Riteau
University of Chicago

Chicago, USA
priteau@uchicago.edu

Kate Keahey
Argonne National Laboratory

Lemont, USA
keahey@mcs.anl.gov

Abstract—Many application portals successfully manage to
scale elastically in order to provide a stable response time by
integrating on-demand cloud resources. This is more challenging
for applications that have to manage a dynamic configuration.
Our paper investigates the question: under what circumstances (if
any) dynamically adding more nodes to the Hadoop computation
will result in performance improvement? On one hand, if we
add more nodes to a Hadoop computation, the computation
will potentially finish faster since more computational power
will be brought to bear on the problem. On the other hand,
ensuring that we can use those nodes effectively may require
data redistribution, thus creating additional overhead which may
obviate any performance advantages. In this paper, we identified
the container allocation as a key factor that affects Hadoop
performance. Moreover, to mitigate the overhead, we describe
and evaluate three methods for data redistribution in this use
case and discuss their advantages and disadvantages.

Keywords-Hadoop, Dynamic scaling, Geospatial processing,
Cloud computing

I. INTRODUCTION

Many applications today are provided via the software-as-
a-service (SaaS) paradigm where a user can request execution
of an application through a portal, and the application provider
takes responsibility for allocating resources, deploying the
application, and returning results to the user. This has become
popular in business as in science where the science gateway
paradigm � as exemplified by the CyberGIS or NanoHUB
platforms � is increasingly popular [15]. One challenge that
arises in this context is how a portal can adapt to a varying
number of users/requests with varying workloads, and provide
a predictable response time for all requests. By providing
on-demand resources, cloud computing offers one possible
answer to this question: if we can elastically expand the
platform backing up the portal and effectively integrate the
additional resources into the computation, we can manipulate
the response time on demand.

Although integrating resources dynamically into an ongoing
computation has proven effective in the case of e.g., high
throughput computing (HTC) workloads, it is much more
challenging for applications that have to manage a dynamic
configuration, such as data distribution, targeting a fixed num-
ber of nodes. In particular, in the case of dynamically scaling
Hadoop applications the overhead of making the application
aware of additional resources can incur more cost than it brings
benefit if not done carefully.

Over the past decade, many excellent methods [2], [5]–[9],
[11], [12], [14], [16], [18], [20], [22], [25] have been proposed
to translate Hadoop application requirements into an optimal
resource allocation and data distribution pattern. However,
most of these efforts focus on optimal static resource allo-
cation; only few approaches address dynamic environments.
In particular, state-of-the-art method discussed in [7] can
dynamically determine the resources required to successfully
complete Hadoop jobs. However, dynamically reconfiguring
the Hadoop cluster to reach that optimal node allocation for
a specific operation involves a data redistribution overhead
that can make the overall operation too costly; this aspect
of dynamic resource adjustments has not been studied as
extensively.

Our paper investigates the scalability pattern of Hadoop in
such dynamic situations. In particular, we sought to answer
the question: Under what circumstances (if any) dynamically
adding more nodes to the Hadoop computation will result
in performance improvement? If we add more nodes to a
Hadoop computation, there is potential that the computation
will finish faster since more computational power will be
brought to bear on the problem. However, ensuring that we
can use those nodes effectively may require data redistribution,
thus creating additional overhead which may obviate any
performance advantages.

Our contributions in this paper are threefold:
• We investigated the trade-off between dynamically adding

more nodes to the Hadoop computation and its overall
performance improvement.

• We identified the Hadoop container allocation as a key
factor that affects performance.

• We evaluated three methods for data redistribution and
analyzed their advantages and disadvantages.

The remainder of this paper shows the background on
related techniques (section II), conducts extensive experiments
on a geospaital application (section III), reviews the related
work on cloud auto-scaling techniques (section IV), and then
concludes (section V).

II. BACKGROUND

A. Hadoop Overview

Apache Hadoop is an open-source project, aiming for par-
allel processing of large-scale data sets on distributed systems.

Fig. 1. Overview of the Hadoop dynamic scaling system

It has three key building blocks: Hadoop Distributed File
System (HDFS), Hadoop YARN, and Hadoop MapReduce
[23]. HDFS is a distributed file system that provides high-
throughput access to application data. Hadoop YARN is a
generalized container oriented framework for job scheduling
and cluster resource management, which is adopted by the
MapReduce version 2 [24]. MapReduce is a YARN-based sys-
tem for parallel processing of large data sets. The MapReduce
programming paradigm includes two stages: map stage and
reduce stage. The map stage has 6 phases: compute, collect,
sort, spill, combine, and merge spills; and the reduce stage has
3 phases: shuffle, sort, and reduce.

B. YARN Architecture
The Hadoop YARN splits up the functionalities of resource

management and job scheduling/monitoring into separate dae-
mons: (1) the ResourceManager with its core component �
Scheduler is responsible for allocating resources to the various
running applications in the cluster, according to the constraints
like capacities, queues, etc.; (2) the NodeManager is the per-
machine framework agent who is responsible for containers,
monitoring their resource usage and reporting the same to the
ResourceManager; (3) the per-application ApplicationMaster
negotiates resources from the ResourceManager and works
with the NodeManager to execute and monitor the tasks. Note
that, the resource container is a general resource model for
applications. An application (via the ApplicationMaster) can
request resources with specific requirements such as: memory,
CPU, etc.

C. Implementation
Figure 1 gives an overview of the Hadoop dynamic scaling

system: at its heart is a scaling engine that adds nodes to
the Hadoop computation as needed to achieve service level
objectives. In our implementation nodes are added using
OpenStack [27], in particular the Heat and Nova components.
First, we launch a new stack on Chameleon testbed using
HEAT template as shown in Figure 2. Due to the master
slave architecture of Hadoop framework, we define three
important resources: (1) a Hadoop master server with resource
type of OS::Nova::Server; (2) Hadoop slaves with resource

(a) Hadoop cluster nodes (b) Hadoop scaling policy

Fig. 2. HEAT template for launching stacks

type of OS::Heat::AutoScalingGroup, which depends on the
Hadoop master server; (3) Hadoop scaling up policies with
resource type of OS::Heat::ScalingPolicy. For both (1) and
(2), we specify the Hadoop installation scripts in the user
data template. Notice that, we cannot simply define the scaling
down policies as the way we define scaling up policies, since
it’s possible that HEAT shuts down all the nodes that contain
the same copy of a data chunk, and lose that data chunk forever
in Hadoop setting. One needs to ensure there is no data loss
when removing Hadoop nodes, etc. Considering these factors,
we decide to remove slave nodes on the fly by using the HDFS
exclude file as specified in the dfs.hosts.exclude attribute at
hdfs-site.xml file. Then, we can add nodes that need to be
decommissioned to that file, and call HDFS commands to
decommission the nodes. Finally, we can safely delete the node
instances via nova in OpenStack.

After configuring the Hadoop cluster, a user can specify
the the desired response time (t) of the Hadoop application.
The Hadoop dynamic scaling engine takes t as an input
parameter, and then derives the desired number of containers
allocated to the application based on the existing work [7].
The monitoring module monitors the running state of the
Hadoop cluster, and reports the state to the scaling engine
every second. For now, we identified the number of containers
as one key factor that influences the application performance.
So, we simply monitor runningContainers for the running
application via the ResourceManager REST API. However
the monitoring module is flexible and scalable and it can
easily incorporate various other metrics (e.g., cluster metrics,
application request attempts, or system metrics) as needed.
Based on the monitoring data, the scaling engine calculates the
number of nodes that need to be added to or removed from the
Hadoop cluster, and then it issues a Heat command to execute
the corresponding policy defined in the HEAT template.

Finally, the Data Redistribution module monitors the change
of the cluster size. Once it detects some change, e.g., more
new nodes are added to the cluster, it issues data redistribution
operation on the Hadoop cluster, so that the application can
better utilize the resources available on the cluster. This
module takes one of the three data redistribution methods
discussed in section III-C.

D. UrbanFlow
We conducted experiments in the context of a geospatial

application, UrbanFlow [21], to understand its scalability
patterns. UrbanFlow integrates geolocated Twitter data with

(a) Filtering performance (b) Aggregating performance

Fig. 3. UrbanFlow performance (static vs dynamic)

detailed landuse map (parcel level) to detect and analyze
individual human mobility patterns. It runs common geospatial
analysis operations like point in/nearest polygon.

In terms of implementation, UrbanFlow includes two main
MapReduce jobs in its pipeline: (1) a filtering job, that filters
tweets based on text, spatial and temporal constraints, and
(2) an aggregating job that performs integration of Twitter
data and the secondary dataset. The filtering job parallelizes
the processing of the dataset via multiple mapper tasks. Each
mapper task will process a chunk of data stored on the local
or remote machine.

This split � into map and reduce operations � typifies the
general class of MapReduce applications. In this paper, we use
UrbanFlow as an exemplar of such an application; our results
generalize to a larger class of applications corresponding the
the map-reduce pattern. Thus, our references to the filtering
component are synonymous with the map component of the
application and our references to aggregating component are
synonymous to reduce.

III. EXPERIMENTS

For our experiments we used the Chameleon testbed [4], a
large-scale configurable experimental environment. Each node
in our experiments is configured with 24 cores, 128 GB RAM,
230 GB disk space, and 10 Gbps network, CentOS 7 and
Hadoop version 2.7.1. Unless specified otherwise, we use the
default Hadoop configuration, such as block size as 64 MB.
In the experiments, we investigate two metrics: UrbanFlow
performance in terms of running time, and UrbanFlow eco-
nomic cost defined as the resources used multiplied by the
time we used them for. We compare the above metrics in two
modes: (1) in static mode, the application runs on a Hadoop
cluster with optimal data distribution for the specific number
of nodes; (2) in dynamic mode, the application starts out with
data distributed optimally for a small cluster and subsequently
nodes are dynamically added during the Hadoop cycle without
distributing the data. We measure runtime as well as economic
cost (a.k.a., Machine Time) defined as number of nodes used
⇥ runtime.

A. Establishing a Baseline
First, we conduct experiments on a static cluster to establish

a baseline. The dashed yellow lines in Figure 3 show the run-
ning time of the filtering job and aggregating job respectively
under various cluster sizes in the static mode, up to 16 nodes.

(a) Filtering economic cost (b) Aggregating economic cost

Fig. 4. UrbanFlow economic cost (static vs dynamic)

(a) Filtering performance (b) Filtering economic cost

Fig. 5. UrbanFlow performance and economic cost on 16-node cluster

As the size of the static cluster increases, both UrbanFlow
jobs (filtering and aggregating) finish faster. As expected, the
application scales well, i.e., the running time is almost halved
as we double the cluster size each time.

Then, we show what happens in response to dynamically
adding new nodes to a 4 node Hadoop cluster by the red lines
in Figure 3. In the dynamic mode, we add 2, 4, 8, 12 nodes in
turn to the cluster. As we can see, for the filtering application
(map – which relies on data distribution on the nodes) the
running time in the dynamic mode will also decrease with
more nodes, but it takes longer time than a static configuration
on the same number of nodes. By comparing the results, we
conclude that the performance degradation is caused by factors
inherent to adding nodes dynamically and hypothesize that the
main factor has to do with data distribution. The aggregating
application (reduce) is unaffected by data distribution.

Looking at the economic cost (static versus dynamic) in
Figure 4, we see that for the filtering method in the case
of the dynamic scenario the cost is going up (despite the
runtime going down) making the investment in additional
nodes unviable from a cost perspective. This does not compare
well with the static scenario where additional nodes result in
cost going down. As before, the aggregating application is
unaffected by data distribution.

To verify that data distribution on Hadoop clusters does
affect UrbanFlow’s performance as well as its economic cost
in finer granularity, we conduct more experiments on 16-node
clusters. Firstly, we start with an n�node (n 2 [4, 16]) cluster,
that is all the dataset is distributed among the n nodes. Then,
we dynamically add 16�n new nodes to the n�node Hadoop
cluster. Figure 5 presents UrbanFlow filtering performance
and its economic cost on the 16-node cluster. As can be
seen, as we increase the number of nodes that have dataset,

TABLE I
SYSTEM METRICS (DYNAMIC VS STATIC)

Metrics CPU Disk Load Net Net IO
(usr:%) (writ:B) (avg) (recv:B) (send:B) (writ)

Dynamic 1.52 808005 0.62 1852728 1853332 8.81
Static 2.42 1287723 0.93 884529 884540 13.54
Ratio 0.63 0.63 0.67 2.09 2.10 0.65

both UrbanFlow filtering’s running time and economic cost
decreases. The questions we will explore now are: (1) why
data distribution affects UrbanFlow performance; and (2) how
to best neutralize the cost of data distribution in this dynamic
scenario both in terms of runtime and economic cost.

B. Profiling UrbanFlow

To support the hypothesis that we proposed in the previous
section, in the following experiments, we launch a cluster with
16 nodes in both static and dynamic modes (we omit the
results for a cluster with 8 nodes, since the results are similar).
In dynamic mode, we distribute all of the dataset among 4
nodes. In both modes, each node is configured with 8GB
memory for YARN, and each Mapper and Reducer container
is configured with 8GB memory and 1 CPU, separately.
Therefore, the maximum number of available containers in the
Hadoop cluster is 16. Sometimes, the number can be below 16
due to YARN scheduler’s behavior. For instance, the scheduler
may reserve some containers for future jobs. In both modes,
we run UrbanFlow for 10 iterations.

To profile UrbanFlow, we use Linux dstat tool to generate
system resource statistics, which provide us with some general
and instantaneous information on CPU, IO, and network
utilization, interrupts, system loads, context switches, and
other system statistics [26]. For Hadoop metrics, we use
YARN’s ResourceManager REST API 1 to collect cluster
and application metrics, including the number of applica-
tions pending, the number of containers reserved, the number
of containers currently running for an application, etc. We
collect these metrics every second. The profiling processes
are lightweight. In addition, we collected the UrbanFlow job
counters over the 10 iterations, like file system counters, Map-
Reduce framework, etc. Note that, we profiled 31 system
metrics using the dstat tool, 18 Hadoop metrics using YARN’s
ResourceManager REST API, and 31 counters for Filtering
job, 51 counters for Aggregating job. After analyzing these
metrics in both modes, we only show the ones that differ from
each other significantly in following sections.

1) Profiling system resource metrics: Table I shows the
average values of the system metrics in the 16-node Hadoop
cluster in both modes, as well as the ratio of the system metrics
in dynamic mode to the ones in static mode. Looking at the
ratios for CPU utilization for userspace processing (CPU usr),

1The ResourceManager REST API’s allow the user to get information about
the cluster - status on the cluster, metrics on the cluster, scheduler information,
information about nodes in the cluster, and information about applications on
the cluster.

(a) Filtering (static) (b) Aggregating (static)

(c) Filtering (dynamic) (d) Aggregating (dynamic)

Fig. 6. UrbanFlow running containers

Disk total write bytes (writ), system average load, and the
average number of I/O write requests completed (IO writ),
we know that the Hadoop cluster in dynamic mode has less
utilization (around 0.6) than the static mode. Notice that, table
I shows the metrics treating Filtering jobs and Aggregating
jobs as a whole, so the Filtering jobs should have much lower
cluster utilization than 0.6 of the static cluster utilization. How-
ever, the network usage, in terms of receiving (i.e., Net recv)
and sending (i.e., Net send) bytes, is higher in dynamic mode.
Since in the dynamic mode, only 4 nodes hold all the dataset,
we also observed that the average network sending speed of
the 4 nodes is 48.37Mbps, which is 7.17⇥ the one in the
static mode. Moreover, by checking all nodes’ instantaneous
network throughput at any time point, we found the maximum
network throughput in the dynamic mode is 3.53Gbps, which
is below the configured network speed limit (i.e., 10Gbps).
Therefore, the network delay for transferring a data block from
one machine to another is around 64 ⇤ 8/(1024 ⇤ 10) = 0.05
seconds. Since UrbanFlow needs to launch 256 map tasks to
complete the Filtering job, in the worst case (i.e., every block
is transferred through the network), the total network delay
should be bounded by 0.05 ⇤ 256 = 12.8 seconds. However,
in reality, the total delay could be much smaller than it due
to the reason that the YARN scheduler prefers to schedule
resources taking advantages of data locality, and the number
of blocks that need to be transferred should be smaller than
256. Therefore, the network utilization could be a factor that
affects Filtering job’s performance, but not a dominant one.

2) Profiling Hadoop metrics: For metrics obtained from
Hadoop cluster via REST API, we only show the results for the
number of running containers of UrbanFlow. Figure 6 shows
the results over 10 iterations in both static mode and dynamic
mode. The experiments start at time 0. As can be seen, Figure
6 (c) is not like the other three. More specifically, both jobs
in the static mode and the Aggregating job in the dynamic
mode can always fully utilize the available containers (i.e.,

(a) Filtering performance (b) Aggregating performance

Fig. 7. UrbanFlow performance (Copy&Rename)

14 � 16 containers). However, the number is around 4 � 7
most of the time for the Filtering job in the dynamic mode.
The difference in container allocation for both jobs can explain
their running time behavior as we explored in section III-A and
the system resources utilization difference in previous section.
In this case, the total running time of the UrbanFlow jobs
over 10 iterations is 2272 seconds in the static mode, while
3762 seconds in the dynamic mode. The time difference (i.e.,
1490 seconds) is mostly caused by the Filtering jobs with
different data distribution. Since the container allocation is
dynamic, one also needs dynamic models to predict/guarantee
the applications’ response time. Moreover, we analyzed the
job counters over the 10 iterations. Two counters (i.e., data-
local map tasks and rack-local map tasks) in the Filtering jobs
are significantly different from each other in the two modes.
Briefly, the average number of launched rack-local map tasks
in the dynamic mode is much higher (i.e., 45 : 1) than the one
in static mode.

In summary, UrbanFlow filtering job doesn’t fully utilize
some of the cluster’s resources (e.g., CPU, Disk) in dynamic
mode, because data imbalance leads to limited number of
allocated containers. The network utilization is higher than
the static mode, but it’s not a dominant factor that affects
UrbanFlow’s performance, in the order of several seconds.

C. A Tale of Three Data Redistribution Methods
To mitigate the overhead caused by data distribution when

dynamically adding nodes to the Hadoop cluster, we conduct
experiments on three data redistribution methods: (1) copy
and rename (Copy&Rename), (2) change replication factor
(Replication Factor), and (3) use Hadoop balancer tool (Bal-
ancer), as suggested by the Hadoop community [28]. In our
experiments, we start with a 4-node cluster, dynamically add
12 nodes, and apply each data redistribution method in turn.
Notice that, we run UrbanFlow for 32 iterations with one
redistribution for each method, after that the running time of
UrbanFlow in all the three cases converges. We then evaluate
how they compare. We repeat the experiments five times with
small variation (4.5%). In all three cases, we see that the
aggregating (reduce) component of the UrbanFlow application
is largely unaffected by the data distribution and shows optimal
performance for all cases. Below we discuss the behavior of
the filtering (map) component of our application.

1) Copy&Rename: In this method, we first copy the dataset
to a new location in HDFS which automatically redistributes

(a) Filtering performance (b) Aggregating performance

Fig. 8. UrbanFlow performance (Replication Factor)

(a) Filtering performance (b) Aggregating performance

Fig. 9. UrbanFlow performance (Balancer)

it to the new number of nodes. We then remove the old copy,
and rename the new copy (a quick operation on the order of
milliseconds). To prevent confusion, the service needs to be
interrupted when removing and renaming the data. However,
we can overlap copying the data with the execution of filtering
job and remove the old copy once filtering completes. As
shown in Figure 7, the increase in filtering job’s running
time at the first iteration is caused primarily by the cost of
performing the data copy operation in HDFS at the same time.
Moreover, when copying the data, the cluster needs to store
two copies of the data, thus, it takes double storage volume
of the dataset for copying files. As shown in the figure, this
method converges to the static mode in the second iteration.

2) Replication Factor: HDFS allows users to specify the
number of replicas of a file (3 as the default value). If
we set a higher replication factor, HDFS will automatically
distribute the replicas among the new number of nodes. We
leverage this feature in this method: we first turn up the
replication factor of the dataset to 6, wait for transfers to
stabilize, and then turn the replication back down which leaves
us with the replica distributed over the new nodes. In our
experiments (see Figure 8), we perform data redistribution

(a) Filtering performance (b) Aggregating performance

Fig. 10. UrbanFlow performance (Combination)

TABLE II
FILTERING COST ANALYSIS (MACHINE TIME)

Method (1) (2) (3) (2) + (3) S4 S16

MAX 5152 3616 3680 3504 2240 1520
MEAN 1509.5 1613.5 2222.5 1482.5 2016 1380.5

MEDIAN 1376 1552 2008 1408 2162 1360
SD 666.7 373 779.2 371.9 296.1 54.9

Cost 48304 51632 71120 47440 64512 44176

via replication at the first iteration, which later gets filtering
runtime close to optimal. Overall, the execution time increase
caused by data redistribution is significantly lower (⇠30%)
than in the Copy&Rename method; this is because UrbanFlow
can make use of the replicated chunks while it’s performing
data replication. This method also doesn’t interrupt the service,
however it results in data distribution that is not well balanced
among nodes and the associated slight increase in average
execution time after redistribution. Indeed, the execution time
increase depends on the resulted data distribution. Since HDFS
will randomly remove over-replicated blocks from different
nodes when turning down the replication factor, each run may
result in different data distribution, and most of the observed
execution time increase is greater than 12%. It also requires
double storage volume since we set the replication factor to 6
and then turn it back down to 3.

3) Balancer: Administrators can rebalance the data across
the data nodes using the Hadoop balancer tool provided by
HDFS. It is a lightweight process that rebalances the data
during operations. Through experiments, we know that this
method results in a dataset that is well balanced among cluster
nodes, and since it rebalances the data in place so there is
no need for additional storage capacity as in previous two
methods. However, it takes much more time to rebalance the
dataset. In our experiments (see Figure 9), it takes around 3
hours to complete the rebalancing process. Notice that, we
only show the results for the first 32 iterations, which took
around 2.4 hours, since the running time becomes stable after
that.

4) Combination: We note that these two methods are
complementary to each other: method (2) doesn’t distribute
the dataset very well as method (3), while method (3) needs
much longer time than method (2). In this approach, we first
redistribute the dataset leveraging replication factor, and then
use Hadoop balancer tool to refine the data distribution. Figure
10 presents the results. In the first iteration, it has similar
runtime to method (2), and it converges to the static mode in
the second iteration. Moreover, the Hadoop balancer just takes
25.4 minutes to redistribute the dataset.

5) Economic cost analysis: Figure 11 shows the cumulative
economic cost of Filtering jobs at each iteration in all three
cases, with two additional cases in static clusters as base-
line. As can be seen, the Copy&Rename method is almost
consistently more costly than the 16-node static cluster over
all the iterations; The Replication Factor method has less
cumulative economic cost than the Copy&Rename method

Fig. 11. Filtering cumulative economic cost over 32 iterations

before iteration 13, however, after that, it costs more than
the Copy&Rename method; The Balancer method has the
highest cumulative economic cost, even higher than the cost
of 4-node static cluster for most of the iterations. Combining
methods (2) and (3) gives a better option, since the cumulative
economic cost is the smallest. Table II shows the detailed
statistics of Filtering economic cost after convergence. SD
represents standard deviation. Among the three methods, the
Combination method has the lowest total cost for Filtering
jobs, the Copy&Rename method has similar but slightly larger
cost, while the Balancer method has the highest cost.

In summary, all the methods have advantages and disad-
vantages. The Copy&Rename method has optimal runtime
in most cases as well as evenly distributed data �� but
very high runtime impact during data redistribution and uses
double storage. The Replication Factor method has smaller
runtime impact during data redistribution and most iterations
are close to optimal �� however, it ends up with less evenly
distributed data and uses double storage. The Balancer method
has smallest runtime impact during data redistribution as well
as evenly distributed data and it does not require extra storage
�� but on the other hand, it has slow convergence and high
average runtime impact. Finally, combining the methods (2)
and (3) has most of advantages overall, but it requires extra
storage.

D. Synthetic Workloads
In this section, we conduct an experiment by looking at

synthetic workload. The experiment will work off of the
assumption that we initially don’t redistribute the old data but
add nodes only when we get new data, that is then distributed
perfectly for the new number of nodes. We design a trace
based on UrbanFlow that mixes requests for different data
(old and new) for a period of time such that data gets updated
daily, and the experiment runs for a week, with new dataset
added to the Hadoop cluster each day. We assume that there

TABLE III
PERFORMANCE IMPROVEMENT (%) BY DATA REDISTRIBUTION

Zipf Day 2 Day 3 Day 4 Day 5 Day 6 Day 7
Exponent

0 8.37 19.07 26.3 29.36 30.63 32.56
0.5 7.1 15.94 22.03 24.3 24.88 26.37
1.0 5.84 12.75 17.42 18.78 18.55 19.41
1.5 4.68 9.74 12.98 13.42 12.56 12.82
2.0 3.64 7.16 9.13 8.95 7.76 7.64

Fig. 12. UrbanFlow Filtering Response Time under Various Workloads

will be requests for a mix of old and new data with the old
data gradually phasing out. To generate the request traces, we
use a Zipfian distribution, which has been applied to model
the Internet traffic [1], [3]. Briefly, the Zipf’s law states that
given a set of items, the frequency of any item is inversely
proportional to its rank in the frequency table. So, the most
frequent item will occur approximately twice as often as the
second most frequent item, three times as often as the third
most frequent item, etc. The probability distribution of an item
with rank k out of N items is described by the equation below:

f(k; s,N) =
1/ks

PN
n=1(1/n

s)
(1)

Where, k is the rank of an item, N is the total number
of items in the set, and s is the value of the exponent
characterizing the distribution. When s = 0, it means that all
the items occurs with equal probability, and a larger s means
larger skewness of the probability distribution.

We start with a 4-node cluster, and then we add 2 nodes
to the cluster each day with new data coming into the
cluster. Figure 12 shows the UrbanFlow filtering job’s response
time under various workloads, both with and without data
redistribution. The workloads are generated by varying the
zipf’s exponent s, i.e., s = 0, 0.5, 1.0, 1.5, 2.0. When s = 0,
all the data sets are requested equally. As one can see,

with a larger value of s, the average response time becomes
smaller. With data redistribution, the average response time
approaches the static configuration. As we can see, when s
is small, the benefits of data redistribution are obvious. More
specifically, table III shows the response time improvement in
percentage by data redistribution leveraging replication factor.
When s = 0, the data redistribution improves the response
time by 8.37% � 32.56% on average; when s = 2.0, the
average response time is improved by 3.64%� 9.13%. Since
the aggregating jobs’ response time for different traces is
almost the same as explained in previous sections, we omit
the results for the aggregating job.

The above analysis on workload shows guidelines on
whether or not one should perform data redistribution on the
data set depending on the QoS requirements of the Hadoop
applications. Such workloads can be designed approximating
the number of requests in time by using the request workloads
from Wikipedia and FIFA’98 [25]. While this is not the focus
of our paper, it points to an interesting direction for future
work.

IV. RELATED WORK

In order to support a large number of users with varying
workloads, and provide a controlled response time to users, the
cloud computing platform must dynamically manage deploy-
ments of compute resources in such a way that they provide a
stable response time. For Hadoop dynamic scaling, Kambatla
et al. introduced a signature-based approach [11] to optimize
Hadoop provisioning in the cloud. However, it doesn’t show
a solution to find the number of nodes needed in the cluster.
Leverich et al. [13] proposed a strategy to allow the cluster
to scale down when the workload is low to improve energy-
efficiency. GreenHDFS [12] employs the distribution of the
dataset in the cluster, proposed a hybrid multi-zone layout of
hot and cold zones, and energy management policies to handle
dataset in different zones. However, both of them don’t solve
the automation of scaling operations. Elastisizer [9] allows
users to express cluster sizing problems as queries in a declar-
ative fashion. Maheshwari et al. [17] proposed an auto-scaling
algorithm for MapReduce framework simply based on the
average cluster utilization. Herodotos Herodotou [8] proposed
fine grained Hadoop performance models. Gandhi et al. [7]
proposed a model-driven auto-scaling solution to dynamically
determine the resources required to successfully complete the
Hadoop jobs as per the user-specified SLA under various
scenarios. Romer [20] proposed an auto-scaling framework for
Hadoop clusters based on the average load with a cooldown
period. Li et al. [14] proposed several schemes to automatically
scale Hadoop clusters for dynamic geo-processing workload.

Moreover, there are some auto-scaling techniques for cloud
applications [2], [5], [6], [10], [16], [18], [22]. Especially,
Riteau et al. [19] introduced an auto-scaling algorithm for
some web service based on the the number of current requests
in the system. CherryPick [2] leverages Bayesian Optimization
to automatically identify the optimal or near-optimal cloud

configurations with low cost. Lorido-Botran et al. [16] clas-
sify auto-scaling techniques based on static threshold-based
rules, reinforced learning, queuing theory, control theory, and
time-series analysis. Although some excellent work has been
proposed to scale Hadoop applications by adding resources
to a computation based on need, the overhead of making the
application aware of those resources can make this operation
too costly, which has not been studied as extensively.

V. CONCLUSION

Our results show that while adding nodes dynamically to
a Hadoop cluster without data redistribution for map compo-
nents of applications brings improvements in terms of runtime,
those improvements are significantly lower �� and costlier
�� than can be expected of a cluster with optimal data
distribution. To improve both factors we experimented with
3 methods for dynamic data data redistribution that can be
applied to better utilize the additional resources. We found that
each of the methods presents different trade-offs, of interest
to providers and clients with different QoS requirements. The
Copy&Rename method provides the most optimal response
time for most runs however a small number of runs will
see an outsize impact; it is thus most suitable for situations
where response time QoS is defined as a high percentage of
responses within a low time limit. The Balancer method on the
other hand, has the lowest maximum response time that comes
with high cost and is thus suitable for situations when we
want to guarantee that response time will never exceed certain
threshold. Combining different methods in certain cases can
allow us to create a “best of both worlds” situation providing
a good balance of different factors depending on specific
response time and cost equation.

ACKNOWLEDGEMENT

Results presented in this paper were obtained using the
Chameleon testbed supported by the National Science Foun-
dation. The project was funded by the NSF-1443080 award.

REFERENCES

[1] L. A. Adamic and B. A. Huberman. Zipf’s law and the Internet.
Glottometrics, 3:143-150, 2002.

[2] O. Alipourfard, H. H. Liu, J. Chen, S. Venkataraman, M. Yu, and M.
Zhang. Cherrypick: Adaptively unearthing the best cloud configurations
for big data analytics. In NSDI, pp. 469-482. 2017.

[3] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web caching and
zipf-like distributions: Evidence and implications,” In INFOCOM’99.
Eighteenth Annual Joint Conference of the IEEE Computer and Com-
munications Societies. Proceedings. IEEE, vol. 1, pp. 126-134. IEEE,
1999.

[4] Chameleon cloud: A configurable experimental environment for large-
scale cloud research. https://www.chameleoncloud.org

[5] A. Gandhi, P. Dube, A. Karve, A. Kochut, and L. Zhang. “Adaptive,
Model-driven Autoscaling for Cloud Applications.” In ICAC, vol. 14,
pp. 57-64. 2014.

[6] A. Gandhi, P. Dube, A. Karve, A. Kochut, and L. Zhang. “Model-
driven optimal resource scaling in cloud.” Software & Systems Modeling
(2017): 1-18.

[7] A. Gandhi, S. Thota, P. Dube, A. Kochut, and L. Zhang. “Autoscaling for
hadoop clusters.” In Cloud Engineering (IC2E), 2016 IEEE International
Conference on, pp. 109-118. IEEE, 2016.

[8] H. Herodotou. “Hadoop performance models.” arXiv preprint
arXiv:1106.0940 (2011).

[9] H. Herodotou, F. Dong, and S. Babu. “No one (cluster) size fits all:
automatic cluster sizing for data-intensive analytics.” In Proceedings of
the 2nd ACM Symposium on Cloud Computing, p. 18. ACM, 2011.

[10] K. C. Kamal. Performance Tuning of MapReduce Programs. North
Carolina State University, 2015.

[11] K. Kambatla, A. Pathak, and H. Pucha. “Towards Optimizing Hadoop
Provisioning in the Cloud.” HotCloud 9 (2009): 12.

[12] R. T. Kaushik, and M. Bhandarkar. “Greenhdfs: towards an energy-
conserving, storage-efficient, hybrid hadoop compute cluster.” In Pro-
ceedings of the USENIX annual technical conference, vol. 109, p. 34.
2010.

[13] J. Leverich, and C. Kozyrakis. On the energy (in) efficiency of hadoop
clusters. ACM SIGOPS Operating Systems Review, 44(1), pp.61-65.
2010.

[14] Z. Li, C. Yang, K. Liu, F. Hu, and B. Jin. “Automatic scaling hadoop
in the cloud for efficient process of big geospatial data.” ISPRS Inter-
national Journal of Geo-Information 5, no. 10 (2016): 173.

[15] Y.Y. Liu, A. Padmanabhan, S. Wang. CyberGIS gateway for enabling
data-rich geospatial research and education. Concurr Comput.: Pract
Exper, 27 (2) (2015), pp. 395407

[16] T. Lorido-Botrán, J. Miguel-Alonso, and J. A. Lozano. “Auto-scaling
techniques for elastic applications in cloud environments.” Department
of Computer Architecture and Technology, University of Basque Coun-
try, Tech. Rep. EHU-KAT-IK-09-12 (2012).

[17] N. Maheshwari, R. Nanduri, and V. Varma, “Dynamic energy efficient
data placement and cluster reconfiguration algorithm for mapreduce
framework.”, Future Generation Comp. Syst., vol. 28, no. 1, pp. 119127,
2012.

[18] H. Nguyen, Z. Shen, X. Gu, S. Subbiah, and J. Wilkes. Agile: Elastic
distributed resource scaling for infrastructure-as-a-service. In Autonomic
Computing (ICAC), pages 6982. USENIX, 2013.

[19] P. Riteau, M. Hwang, A. Padmanabhan, Y. Gao, Y. Liu, K. Keahey,
and S. Wang. “A cloud computing approach to on-demand and scalable
cybergis analytics.” In Proceedings of the 5th ACM workshop on
Scientific cloud computing, pp. 17-24. ACM, 2014.

[20] T. Röme. “Autoscaling Hadoop Clusters.” Master’s Thesis, University
of Tartu, Tartu, Estonia, 2010.

[21] K. Soltani, A. Soliman, A. Padmanabhan, and S. Wang. “UrbanFlow:
Large-scale Framework to Integrate Social Media and Authoritative Lan-
duse Maps.” In Proceedings of the XSEDE16 Conference on Diversity,
Big Data, and Science at Scale, p. 2. ACM, 2016.

[22] S. Venkataraman, Z. Yang, M. J. Franklin, B. Recht, and I. Stoica.
“Ernest: Efficient Performance Prediction for Large-Scale Advanced
Analytics.” In NSDI, pp. 363-378. 2016.

[23] T. White. Hadoop: The definitive guide. O’Reilly Media, Inc., 2015.
[24] H. Chouraria, (21 October 2012). “MR2 and YARN Briefly Explained”.

cloudera.com. Cloudera. Retrieved 11 November 2017.
[25] H. Arabnejad, C. Pahl, P. Jamshidi, and G. Estrada. “A Comparison

of Reinforcement Learning Techniques for Fuzzy Cloud Auto-Scaling.”
In Proceedings of the 17th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing, pp. 64-73. IEEE Press, 2017.

[26] dstat(1) - Linux man page. Retrieved 9 November 2017 from
https://linux.die.net/man/1/dstat

[27] OpenStack. Retrieved 18 November 2017 from
http://www.openstack.org.

[28] Hadoop wiki. Retrieved 20 November 2017 from
https://wiki.apache.org/hadoop/FAQ

