

Cosmological Constraints from Moments of the Thermal SZ Effect

Colin Hill

Princeton Astrophysics 5 July 2012

arXiv:1203.6633 arXiv:1205.5794

Work with: Blake Sherwin, David Spergel, Michael Wilson, Atacama Cosmology Telescope Collaboration

> Colin Hill Princeton

Outline

- The Sunyaev-Zel'dovich (SZ) Effect
- Thermal SZ Moments: $\langle T^N \rangle$

- ACT Measurement: $\langle T^3 \rangle$
- Cosmological Constraints

The Sunyaev-Zel'dovich Effect

- Sunyaev-Zel'dovich Effect: change in brightness of CMB photons due to inverse Compton scattering off hot electrons in intracluster medium (ICM)
 - Thermal (tSZ): caused by thermal motion of ICM electrons
 - Kinematic (kSZ): caused by bulk velocity of ICM electrons
- tSZ: decrement below 218 GHz increment above 218 GHz
- $\Delta T \sim 100-1000 \ \mu K$ for massive clusters
- Nearly redshift-independent

- Integrated signal probes LOS integral of temperature-weighted mass (total thermal energy)
- Found on arcminute angular scales in CMB

The Sunyaev-Zel'dovich Effect

Colin Hill Princeton

The Sunyaev-Zel'dovich Effect ↓

ESA/Planck Collaboration

Colin Hill Princeton

Thermal SZ Measurements

- Method I: individual cluster observations
 - Goal: measure masses, redshifts, (peculiar velocities?), gas properties
 - Cosmological analysis: directly reconstruct halo mass function
 - Difficulties: selection function; measuring masses sufficiently accurately is hard

Colin Hill Princeton

Reese, ..., JCH, et al. (2012)

Thermal SZ Measurements

Method II: power spectrum of tSZ signal in entire map

- Goal: amplitude of temp. fluctuations due to tSZ as a function of angular scale
- Cosmological analysis: compare to halo model calculations or full simulations
- Difficulties: need ICM electron pressure profile for halos over wide mass and redshift ranges; must separate signal from other sources of CMB power

Thermal SZ Power Spectrum

• Why use the tSZ power spectrum for cosmology?

- Insensitive to selection effects
- No mass-observable calibration

- Very sensitive to σ_8 : rms amplitude of density fluctuations on 8 h^{-1} Mpc scales

- Initial hope: fairly insensitive to ICM gastrophysics around *I*~3000

$$\frac{l(l+1)C_l}{2\pi}\simeq 330\,\mu\mathrm{K}^2 \sigma_8^7 \Big(\frac{\Omega_\mathrm{b}h}{0.035}\Big)^2$$

Thermal SZ Power Spectrum

- It all changed in ~2009-10 when ACT+SPT measured tSZ power
- Lower than predicted! Would require lowering of σ_8

ACT (tSZ+kSZ at /=3000): SPT (tSZ+0.5kSZ at /=3000): $\begin{pmatrix} 6.8 \pm 2.9 \ \mu K^2 \\ 4.71 \pm 0.64 \ \mu K^2 \end{pmatrix}$

Naive interpretation: $\sigma_8 \sim 0.75$ rather than 0.8-0.82 (WMAP5/7)

- Or: the ICM is more complicated than we thought
- Error bars dominated by systematic uncertainty due to gastrophysics!
- What can we learn with data we already have?

Thermal SZ Moments

• Thermal SZ temperature decrement at position $\vec{\theta}$ on the sky with respect to the center of a cluster of mass *M* at redshift *z*:

$$T(\vec{\theta}; M, z) = g(\nu) T_{\text{CMB}} / m_e c^2 \int P_e \left(\sqrt{l^2 + d_A^2(z) |\vec{\theta}|^2}; M, z \right) dl$$

tSZ spectral CMB temp. Thomson function today cross-section

ICM electron pressure profile integrated over LOS

Gastrophysics

Colin Hill Princeton

Thermal SZ Moments

• Thermal SZ temperature decrement at position $\vec{\theta}$ on the sky with respect to the center of a cluster of mass *M* at redshift *z*:

$$T(\vec{\theta}; M, z) = g(\nu) T_{\text{CMB}} / m_e c^2 \int P_e \left(\sqrt{l^2 + d_A^2(z) |\vec{\theta}|^2}; M, z \right)$$

tSZ spectral CMB temp. Thomson function today cross-section ICM electron pressure profile integrated over LOS

Gastrophysics

• Nth thermal SZ moment:

$$\langle T^N \rangle = \int \frac{dV}{dz} dz \int \frac{dn(M,z)}{\sqrt{dM}} dM \int d^2 \vec{\theta} T(\vec{\theta};M,z)^N$$

$$\begin{array}{c} \text{comoving} \\ \text{volume per} \\ \text{steradian} \end{array} \longrightarrow \begin{array}{c} \text{Cosmology} \end{array}$$

Colin Hill Princeton

dl

Intracluster Medium Gastrophysics I

• ICM to lowest order: hydrostatic equilbrium between gas pressure and DM potential; gas traces DM; polytropic EOS (Komatsu-Seljak)

$$\frac{dP_{gas}(r)}{dr} = -\rho_{gas}(r)\frac{d\Phi_{DM}(r)}{dr}$$

- Problems: central cooling catastrophe, non-convergent profile at edge
- Additional physics needed:
 - Formation shock heating
 - Star formation, supernova feedback, cosmic rays
 - Active galactic nucleus feedback
 - Magnetic fields, plasma instabilities
 - Turbulent pressure support
- Non-thermal pressure support (from feedback, turbulence, ...) suppresses tSZ signal

Komatsu & Seljak (2001,02) Battaglia et al. (2010,11), Shaw et al. (2010) 12

Sun et al. (2011)

Colin Hill Princeton

Thermal SZ Moments: Variance

JCH & Sherwin (2012)

4

Colin Hill Princeton

Thermal SZ Moments: Skewness 🗘 🖒

Bhattacharya et al. (2012)

Which Clusters Contribute?

Bhattacharya et al. (2012)

í Lì

Which Clusters Contribute?

Bhattacharya et al. (2012)

How to Measure the Skewness

- Atacama Cosmology Telescope (ACT) maps at 148 GHz and 218 GHz covering ~300 sq. deg. on the equatorial strip (2008-10)
- Includes: primordial (lensed) CMB, thermal and kinetic SZ, dusty starforming galaxies, radio sources, atmospheric and instrumental noise
- Only tSZ and point sources contribute to skewness
- Map processing:

 Filter to upweight cluster scales (I ~ 3000)
 Remove identified point sources via template subtraction
 Construct mask using 218 GHz (tSZ-null) channel to remove any additional point source emission

Wilson, Sherwin, JCH, et al. (2012)

G Filtered Temperature PDF

Wilson, Sherwin, JCH, et al. (2012)

Colin Hill Princeton

The Skewness Measurement

Wilson, Sherwin, JCH, et al. (2012)

20

Colin Hill Princeton

Wilson, Sherwin, JCH, et al. (2012)

Derived Cosmological Constraints

• Simple constraint: $\sigma_8^D = \sigma_8^S \left[\frac{\left< \tilde{T}^3 \right>^D}{\left< \tilde{T}^3 \right>^S} \right]^{1/10.5}$

sims from Battaglia, Sehgal

$$\sigma_8 = 0.78^{+0.03}_{-0.04} \ (68\% \,\text{CL})^{+0.05}_{-0.16} \ (95\% \,\text{CL})$$

- Forecast for South Pole Telescope: 15 σ detection, 1-2% σ_8 constraint
- Systematic uncertainty due to ICM gastrophysics is comparable to but slightly less than statistical uncertainty -- much better than tSZ PS
- We have neglected any degeneracy with other cosmological parameters; most are irrelevant (Bhattacharya et al. 2012)
- Exception: $\langle T^3 \rangle \propto (\Omega_b h)^{3-4}$

Overcoming Gastrophysics

- Idea: tSZ variance and skewness depend differently on cosmological parameters and ICM gastrophysics
 —— construct combinations that 'cancel' one or the other
- Possibility I: statistic that cancels gastrophysics
 —— surprisingly, may be possible
- Possibility 2: statistic that cancels cosmological dependence \longrightarrow easy to find after determining scalings with σ_8

Overcoming Gastrophysics

JCH & Sherwin (2012)

Colin Hill Princeton

Which Clusters Contribute?

CH & Sherwin (2012)

í

î

ACT+SPT Result

10 |Filtered Skewness|/(C₃₀₀₀)^{1.4} 8 $|\langle \widetilde{T}^{3}_{148 \ GHz} \rangle|/C^{1.4}_{3000,152.9 \ GHz} [\mu K^{0.2}]$ 6 4 2 σ_8 0 0.75 0.85 0.8 σ_{8} Battaglia K-S Arnaud ACT+SPT Batt. Adia.

> Colin Hill Princeton

JCH & Sherwin (2012)

□ Future Constraints: Beyond $σ_8$ <= | ⇒

- In principle, thermal SZ signal is sensitive to any parameter that affects mass function
- Problem has been degeneracy of such effects with uncertainties in ICM gastrophysics

$$\left\langle T^{N}\right\rangle = \int \frac{dV}{dz} dz \int \frac{dn(M,z)}{dM} dM \int d^{2}\vec{\theta} T(\vec{\theta};M,z)^{N}$$
Neutrino masses

- Primordial non-Gaussianity
- Dark energy EOS

JCH & Sherwin (2012)

Ichiki & Takada (2011)

Neutrino Masses

 Massive neutrinos suppress linear theory matter power spectrum

Leads to decreased abundance of massive halos at late times

Colin F Princet

Neutrino Masses

~quadratic-cubic dependence

JCH & Sherwin (2012)

1

- Planck forecast: difficult given bandpass uncertainties and CO contamination
- CV-limited, full-sky forecast:
 - 90 σ detection of variance

- 35σ detection of skewness
- 55 detection of 'rescaled skewness'
- → 'solve' gastrophysics model to <2%
- <1% error on σ_8 after constraining gastrophysics to 5% (more realistic)

n

Summary

- Thermal SZ measurements are a sensitive probe of both cosmology and the gastrophysics of the ICM.
- Using higher-order statistics we may be able to learn something about both.

Colin Hill Princeton