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•  Mo8va8on 
–  background of BAO as a “standard ruler” 
–  modeling the evolu8on of acous8c peak allows us to accurately 

constrain cosmological parameters 
•  nonlinearity 
•  redshi-‐space distor8ons 

•  Previous work on nonlinearity and redshi-‐space distor8ons 
–  standard perturba8on theory 

•  New approach to perturba8on theory in configura8on space 
–  mo8va8on 
–  results 
–  direc8ons for future research 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BAO Signal is a “Standard Ruler” 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xBAO 

Linear Theory: 

Angular diameter distance as a 
func8on of redshi- places 
constraints on Dark Energy 

δ̂(k, t) =
∞∑

n=1

D(t)nδ̂(n)(k)

x(q, t) = q−D(t)"∇φ(q)

δ(x, t) = D(t)δL(x)

∇2φ(q) = δL(q)

ξL(r) = 〈δL(x)δL(x + r)〉

(2π)3PL(k)δ3
D(k− k′) = 〈δ̂L(k)δL(k′)〉

H2 =

(
ȧ

a

)2

= H2
0 (ΩRa−4 + Ωma−3 + Ωka

−2 + ΩΛ)

ξ(r, t) = D(t)2ξL(r)

P (k, t) = D(t)2PL(k)

1
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x(q, t) = q−D(t)"∇φ(q)
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δ̂(k, t) =
∞∑

n=1

D(t)nδ̂(n)(k)

x(q, t) = q−D(t)"∇φ(q)

δ(x, t) = D(t)δL(x)

∇2φ(q) = δL(q)

ξL(r) = 〈δL(x)δL(x + r)〉
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δ̂(k, t) =
∞∑

n=1

D(t)nδ̂(n)(k)

x(q, t) = q−D(t)"∇φ(q)

δ(x, t) = D(t)δL(x)

∇2φ(q) = δL(q)

ξ(r, t) = 〈δ(x, t)δ(x + r, t)〉

(2π)3P (k)δ3
D(k− k′) = 〈δ̂(k, t)δ̂(k′, t)〉

H2 =

(
ȧ

a

)2
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Percival, et al. 2006, 2007 
SDSS DR6+2dF 

DA =
1

1 + z

∫
cdz

H(z)

∇2Φ = 4πGρ̄a2δ

1



Nonlinearity and Redshi-‐space Distor8ons 

δ(x, t) =
∞∑

n=1

D(t)nδ(n)(x)

x(q, t) = q−D(t)"∇φ(q)

δx(x, t) = D(t)δL(q)

∇2φ(q) = δL(q)

1

• Perturba8on theory is used to 
understand the effects of nonlinearity on 
quasi‐linear scales (Vishniac, 1983) 

100 Mpc/h • Redshi- measured from Doppler shi-, 
used to calculate distance 

• Galaxies are not at rest in comoving 
frame 

• Linear in‐fall (large scales) 
• FlaLening of redshi-‐space 
correla8ons 

• Thermal mo8on (small scales) 
• ‘Fingers of God’ 

π 
[M

pc
/h
] 

σ [Mpc/h] 
0  20 ‐20 

0 
20

 
‐2
0 

Hawkins et al. (2002), astro‐ph/0212375 
2dFGRS: β=0.49±0.09 



Standard Perturba8on Theory 

The effect of nonlinearity on the BAO peak is usually studied using perturba8on 
theory in Fourier space (e.g. Jain & Bertschinger, 1994) 
Goal is to write the nonlinear power spectrum in terms of the linear/ini8al quan88es. 

Mo8va8on for developing perturba8on theory in configura8on space: 

• Structure of the Fourier space kernels suggest that in real space, the result may be 
simpler 
• Real space can be easily extended to redshi- space 
• It may be simpler to calculate terms beyond 2nd order in configura8on space than in 
Fourier space 

– 8 –

The recursion relations in equations (10) may be used to compute the power spectrum
at any order in perturbation theory. Substituting equation (5) into equation (3), we have

P (k, τ) δD(#k + #k′) = 〈δ(#k, τ) δ(#k′, τ)〉

= a2(τ)〈δ1(#k) δ1(#k
′)〉 + a4(τ)

[

〈δ1(#k) δ3(#k
′)〉 + 〈δ2(#k) δ2(#k

′)〉

+〈δ3(#k) δ1(#k
′)〉

]

+ O(δ6
1) . (12)

Equation (12) explicitly shows all the terms contributing to the power spectrum at fourth
order in the initial density field δ1 (or second order in the initial spectrum), as the nth order

field δn(#k) involves n powers of δ1(#k). With the definition

〈δm(#k) δn−m(#k′)〉 ≡ Pm,n−m(k) δD(#k + #k′) (13)

the power spectrum up to second order (i.e., fourth order in δ1) is given by equation (12) as

P (k, τ) = a2(τ)P11(k) + a4(τ)[P22(k) + 2P13(k)]

= a2(τ)P11(k) + a4(τ)P2(k) , (14)

where the net second order contribution P2(k) is defined as

P2(k) = P22(k) + 2P13(k) . (15)

To determine P2(k) we need to evaluate the 4-point correlations of the linear density

field δ1(#k ). For a gaussian random field, all cumulants (irreducible correlation functions)
of δ1(#k ) vanish aside from the 2-point cumulant, which is given by equation (3) for

m = n−m = 1. All odd moments of δ1(#k ) vanish. Even moments are given by symmetrized
products of the 2-point cumulants. Thus the 4-point correlation function of δ1(#k) is

〈δ1(#k1) δ1(#k2) δ1(#k3) δ1(#k4)〉 = P (k1)P (k3)δD(#k1 + #k2)δD(#k3 + #k4)

+P (k1)P (k2)δD(#k1 + #k3)δD(#k2 + #k4) + P (k1)P (k2)δD(#k1 + #k4)δD(#k2 + #k3) . (16)

With the results and techniques described above, we can proceed to obtain the second
order contribution to the power spectrum. The two terms contributing at second order
simplify to the following 3-dimensional integrals in wavevector space:

P22(k) = 2
∫

d3q P11(q) P11(|#k − #q|)
[

F (s)
2 (#q,#k − #q)

]2
, (17)

with F (s)
2 given by equation (11a), and

2P13(k) = 6P11(k)
∫

d3q P11(q) F (s)
3 (#q,−#q,#k ) . (18)

– 7 –

From equations (7)–(9) we obtain recursion relations for Fn and Gn:

Fn(!q1, . . . , !qn) =
n−1
∑

m=1

Gm(!q1, . . . , !qm)

(2n + 3)(n − 1)

[

(1 + 2n)
!k · !k1

k2
1

Fn−m(!qm+1, . . . , !qn)

+
k2(!k1 · !k2)

k2
1k

2
2

Gn−m(!qm+1, . . . , !qn)

]

, (10a)

Gn(!q1, . . . , !qn) =
n−1
∑

m=1

Gm(!q1, . . . , !qm)

(2n + 3)(n − 1)

[

3
!k · !k1

k2
1

Fn−m(!qm+1, . . . , !qn)

+n
k2(!k1 · !k2)

k2
1k

2
2

Gn−m(!qm+1, . . . , !qn)

]

, (10b)

where !k1 ≡ !q1 + · · · + !qm, !k2 ≡ !qm+1 + · · · + !qn, !k ≡ !k1 + !k2 and F1 = G1 = 1. Equations
(10) are equivalent to equations (6) and (A1) of Goroff et al. (1986), with Fn = Pn and
Gn = (3/2)Qn in their notation.

2.2. Power Spectrum at Second Order

To calculate the power spectrum we shall prefer to use symmetrized forms of Fn and

Gn, denoted F (s)
n and G(s)

n and obtained by summing the n! permutations of Fn and Gn

over their n arguments and dividing by n!. Since the arguments are dummy variables of
integration the symmetrized functions can be used in equations (9) without changing the

result. The symmetrized second-order solutions of equations (10) are given by

F (s)
2 (!k1,!k2) =

5

7
+

2

7

(!k1 · !k2)2

k2
1k

2
2

+
(!k1 · !k2)

2

(

1

k2
1

+
1

k2
2

)

, (11a)

G(s)
2 (!k1,!k2) =

3

7
+

4

7

(!k1 · !k2)2

k2
1k

2
2

+
(!k1 · !k2)

2

(

1

k2
1

+
1

k2
2

)

. (11b)

Note that F (s)
2 and G(s)

2 have first-order poles as k1 → 0 or k2 → 0 for fixed !k:

F (s)
2 ∼ G(s)

2 ∼ (1/2) cosϑ (k1/k2 + k2/k1) where ϑ is the angle between !k1 and !k2. The
expression for F (s)

3 will also be required, but since it is very long we shall wait to write a

simplified form below.



New Approach: Perturba8on Theory in 
Configura8on Space 

δ(x, t) =
∞∑

n=1

D(t)nδ(n)(x)

x(q, t) = q−D(t)"∇φ(q)

δx(x, t) = D(t)δL(q)

∇2φ(q) = δL(q)

1

ξ(r, t) = 〈δx(x)δx(x + r)〉

∇2Φ(q) = 4πGρ̄δL(q)

1

δq(q) = I1(q)D +
(
I1(q)2 − I2(q)

)
D2 +

(
I1(q)3 − I1(q)I2(q) + I3(q)

)
D3 + ...

Φ(q) ≡ 4πGρ̄φ(q)

1

δq(q) = I1(q)D +
(
I1(q)2 − I2(q)

)
D2 +

(
I1(q)3 − I1(q)I2(q) + I3(q)

)
D3 + ...

Φ(q) ≡ 4πGρ̄φ(q)

1

δq(q) = I1(q)D +
(
I1(q)2 − I2(q)

)
D2 +

(
I1(q)3 − I1(q)I2(q) + I3(q)

)
D3 + ...

Φ(q) ≡ 4πGρ̄φ(q)

1

We begin with 1st order Lagrangian perturba8on theory (Zel’dovich approxima8on) to 
verify our approach: 

2

& Zeldovich 1989). The linear potential is related to the linear density field through the Poisson equation:

x(q, t) = q−D(t)∇qφ(q) , (1)
D(t)∇2

qφ(q) = δL(q, t) .

In the rest of this paper, we will shorten D(t) to D for convenience. The real-space density is then related to the
Jacobian of the transformation from Lagrangian to Eulerian coordinates.

ρ(x, t)
ρ̄

=
∣∣∣∣
∂xi

∂qj

∣∣∣∣
−1

=
1

J(q, t)
= 1 + δ(q(x)) , (2)

where x and q are related by the Zel’dovich formula (1). Here, δ (without subscript L) is the weakly nonlinear over-
density. Equation (2) for the Eulerian density is only strictly valid before shell-crossing, where the mapping from q
to x is one-to-one. As is discussed in Kofman et al. (1994), when there is multi-streaming, multiple values of q = qi
map to the same point x, thus the Eulerian density at a given point is a sum over all of the streams at that point.

ρ(x) =
Nstreams(x)∑

i=1

%(qi(x)) . (3)

Here, ρ(x) is the full Eulerian density, and %(qi) are the “single-stream” densities. However, shell-crossing does not
contribute greatly at the large scales we are concerned with, and so we assume the “single-stream” density is the full
density. We will show that this assumption leads to a result that agrees with the usual perturbative results.

The Jacobian can be written in terms of invariants, I1, I2, and I3, of the symmetric matrix dij(q) (Zel’dovich 1970).

dij(q) =
∂2φ(q)
∂qi∂qj

, (4)

J(q, t) = 1−DI1(q) + D2I2(q)−D3I3(q) . (5)

The invariants can be written in terms of the eigenvalues of dij(q): λ1, λ2, and λ3.

I1(q) = λ1 + λ2 + λ3 ,

I2(q) = λ1λ2 + λ1λ3 + λ2λ3 , (6)
I3(q) = λ1λ2λ3 .

Therefore, the Eulerian overdensity can be expressed by the Taylor expansion of the inverse Jacobian, to any order:

δ(q, t) = DI1(q) + D2
(
I1(q)2 − I2(q)

)
+ D3

(
I1(q)3 − 2I1(q)I2(q) + I3(q)

)
+ ... (7)

Note that the first term in this expansion corresponds to linear theory: δL = DI1(q).
However, as our goal in this paper is to calculate the density correlation function at a fixed Eulerian distance, we

need to be careful about the details of the difference between the Eulerian and Lagrangian coordinates. Instead of
the usual forward relation, writing x in terms of q, we will need the reverse and express q with x, using the Taylor
expansion around x in a recursive fashion.

q(x) = x + D∇qφ(q(x)) . (8)

To zeroth order, ∇qφ(q(x)) = ∇qφ(x), but when considering the higher order terms in the density, it is necessary to
express ∇qφ(q(x)) to linear order in D.

∂φ(x(q))
∂qi

=
(

∂φ(q)
∂qi

+ D
∑

j

∂2φ(q)
∂qi∂qj

∂φ(q)
∂qj

)∣∣∣∣∣
q=x

. (9)

Because the correlation function, ξ(r), is a function of Eulerian distance, r = x1 − x2, we must express the over-
density as a function of the Eulerian coordinate, x. By expanding the function δ(q) about the point q = x, we arrive
at an expression for δ(x) that is a power series in D.

δ(x, t) = δ (x + D∇qφ(q(x))) . (10)

A Taylor expansion of the right hand side of Equation (10) gives:

δ(x, t) =
(

δ(q, t) + D
∑

i

∂φ(q(x))
∂qi

∂δ(q, t)
∂qi

+
1
2
D2

∑

i,j

∂2δ(q, t)
∂qi∂qj

∂φ(q)
∂qi

∂φ(q)
∂qj

)∣∣∣∣∣
q=x

. (11)

3

With this, we can write the Eulerian density in terms of the Lagrangian density to third order in D:

δ(x, t) =
(

δ(q, t) + D
∑

i

∂φ(q)
∂qi

∂δ(q, t)
∂qi

+ D2
∑

i,j

∂2φ(q)
∂qi∂qj

∂φ(q)
∂qj

∂δ(q, t)
∂qi

+
1
2
D2

∑

i,j

∂2δ(q, t)
∂qi∂qj

∂φ(q)
∂qi

∂φ(q)
∂qj

)∣∣∣∣∣
q=x

. (12)

We use Equation (7) to express δ in terms of the linear quantities δL and φ, where δL is already first order in D.
The real-space correlation function in co-moving Eulerian coordinates is:

ξ(x1 − x2, t) = 〈δ(x1, t)δ(x2, t)〉 . (13)

This can be written in powers of D using the above expansion of the Eulerian over-density. Because the over-density
field is assumed to be a zero-mean Gaussian random field, the odd moments vanish. The correlation function to second
order is then:

ξ(r, t) = ξ(1)(r)D2 + ξ(2)(r)D4 + ...

We define the functions:

ξm
n (r) =

1
2π2

∫ ∞

0
PL(k)jn(kr)km+2dk , (14)

where jn is the spherical Bessel function of order n and PL(k) is the linear power spectrum. Using this definition, the
linear term is:

ξ(1)(r) = ξ0
0(r) , (15)

the spherically symmetric Fourier transform of the linear power spectrum.
ξ(2)(r) is the expectation of a sum of products of four terms expressed with the linear quantities. Since these are

all Gaussian, the only irreducible terms are second order. Thus we only need to calculate expectations of the type
〈a(q1)b(q2)〉. Mathematica was used to express the various derivatives of φ(q) in terms of spherical harmonics, and
to calculate the expectation values between them. We illustrate this process in the following example.

∂φ(q)
∂qz

= −
∫

d3k

(2π)3
ikz

k2
δ̂L(k)eik·q = −i

√
4π

3

∫
d3k

(2π)3
Y 0

1 (θ,ϕ)
k

δ̂L(k)eik·q , (16)

∂2φ(q)
∂q2

z

=
∫

d3k

(2π)3
k2

z

k2
δ̂L(k)eik·q =

√
4π

3

∫
d3k

(2π)3

(
Y 0

0 (θ,ϕ) +
2√
5
Y 0

2 (θ,ϕ)
)

δ̂L(k)eik·q . (17)

〈
∂φ(q1)

∂qz

∂2φ(q2)
∂q2

z

〉
= − 4πi

33/2(2π)6

∫∫
d3k1d3k2e

i(k1·q1+k2·q2) 〈δ̂L(k1)δ̂L(k2)〉
k

,

× Y 0
1 (θ1, ϕ1)

(
Y 0

0 (θ2, ϕ2) +
2√
5
Y 0

2 (θ2, ϕ2)
)

. (18)

〈δ̂L(k1)δ̂L(k2)〉 = (2π)3δD(k1 + k2)PL(k1) . (19)

So we must calculate the integrals
∫

Y m
l (θ, ϕ)Y ∗m′

l′ (θ,ϕ)eik·(q1−q2)dΩk . (20)

We use the plane-wave (Rayleigh) expansion for eik·(q1−q2) to compute these integrals in terms of spherical Bessel
functions, jn(kr), where r = q1 − q2. In general, the integral is zero for m &= m′.

〈
∂φ(q1)

∂qz

∂2φ(q2)
∂q2

z

〉
= − 1

5(2π2)

∫ ∞

0
PL(k) (3j1(kr)P1(µ)− 2j3(kr)P3(µ)) k dk ,

= −3
5
P1(µ)ξ−1

1 (r) +
2
5
P3(µ)ξ−1

3 (r) . (21)

where µ is the cosine of the angle between r̂ and ẑ, and Pl(µ) are the Legendre polynomials. In the expansion of the
over-density, Equation (12), each term is evaluated at q = x, so the expectation values in the correlation function
become functions of the Eulerian distance, r = |x1 − x2|.

3

With this, we can write the Eulerian density in terms of the Lagrangian density to third order in D:

δ(x, t) =
(

δ(q, t) + D
∑
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∂φ(q)
∂qi
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∂qi
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)∣∣∣∣∣
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. (12)

We use Equation (7) to express δ in terms of the linear quantities δL and φ, where δL is already first order in D.
The real-space correlation function in co-moving Eulerian coordinates is:

ξ(x1 − x2, t) = 〈δ(x1, t)δ(x2, t)〉 . (13)

This can be written in powers of D using the above expansion of the Eulerian over-density. Because the over-density
field is assumed to be a zero-mean Gaussian random field, the odd moments vanish. The correlation function to second
order is then:

ξ(r, t) = ξ(1)(r)D2 + ξ(2)(r)D4 + ...

We define the functions:

ξm
n (r) =

1
2π2

∫ ∞

0
PL(k)jn(kr)km+2dk , (14)

where jn is the spherical Bessel function of order n and PL(k) is the linear power spectrum. Using this definition, the
linear term is:

ξ(1)(r) = ξ0
0(r) , (15)

the spherically symmetric Fourier transform of the linear power spectrum.
ξ(2)(r) is the expectation of a sum of products of four terms expressed with the linear quantities. Since these are

all Gaussian, the only irreducible terms are second order. Thus we only need to calculate expectations of the type
〈a(q1)b(q2)〉. Mathematica was used to express the various derivatives of φ(q) in terms of spherical harmonics, and
to calculate the expectation values between them. We illustrate this process in the following example.
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∂qz

= −
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d3k

(2π)3
ikz

k2
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3
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k
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〈
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0 (θ2, ϕ2) +
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)

. (18)

〈δ̂L(k1)δ̂L(k2)〉 = (2π)3δD(k1 + k2)PL(k1) . (19)

So we must calculate the integrals
∫
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l (θ, ϕ)Y ∗m′

l′ (θ,ϕ)eik·(q1−q2)dΩk . (20)

We use the plane-wave (Rayleigh) expansion for eik·(q1−q2) to compute these integrals in terms of spherical Bessel
functions, jn(kr), where r = q1 − q2. In general, the integral is zero for m &= m′.

〈
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∂2φ(q2)
∂q2

z

〉
= − 1

5(2π2)

∫ ∞

0
PL(k) (3j1(kr)P1(µ)− 2j3(kr)P3(µ)) k dk ,

= −3
5
P1(µ)ξ−1

1 (r) +
2
5
P3(µ)ξ−1

3 (r) . (21)

where µ is the cosine of the angle between r̂ and ẑ, and Pl(µ) are the Legendre polynomials. In the expansion of the
over-density, Equation (12), each term is evaluated at q = x, so the expectation values in the correlation function
become functions of the Eulerian distance, r = |x1 − x2|.

Expansion of the density in terms of the growth func8on: 

1LPT: 



New Approach: Perturba8on Theory in 
Configura8on Space 

The invariants can be written in terms of the eigenvalues of dij(q) – λ1, λ2, and λ3.

I1(q) = λ1 + λ2 + λ3

I2(q) = λ1λ2 + λ1λ3 + λ2λ3

I3(q) = λ1λ2λ3

Expression ?? for the Eulerian density is only valid before shell-crossing, where the
mapping from q to x is one-to-one. As is discussed in [?], when there is multi-streaming
– multiple values of q map to the same point x – the Eulerian density at a given point is
a sum over all of the streams at that point.

ρq(q) =
Nstreams(x)∑

i=1

#i(q)

Here, ρq is the full Eulerian density, and #i is a “single-stream” density. However, we
believe that shell-crossing does not contribute greatly at the scales we are concerned with,
and so we assume the “single-stream” density is the full density.

We now have the Eulerian density as a function of Lagrangian coordinate, q, and we
want this density as a function of the Eulerian coordinate, x. We Taylor expand this
function about the point x = q to get an expression for δx(x) that is a power series in D.
It is also necessary to express the function φ(q) as a function of x in a similar way. This
gives us nonlinear terms in the density that we must consider in order to recover the first
non-linear term of the correlation function.

δx(x, t) ≡ δq(q, t) = δq (x + D∇φ(q))

= δq(x, t) + D∇φ(x) ·∇δq(x, t)

+ D2
∑

i,j

∂2φ(x)

∂qi∂qj

∂φ(x)

∂qj

∂δq(x, t)

∂qi

+
1

2
D2

∑

i,j

∂2δq(x, t)

∂qi∂qj

∂φ(x)

∂qi

∂φ(x)

∂qj
+ ...

The real-space correlation function, expressed in co-moving Eulerian coordinates is
then:

ξ(x1 − x2, t) = 〈δx(x1, t)δx(x2, t)〉,

which we expand in powers of D. Because the over-density field is a zero-mean Gaussian,
the odd moments vanish. We write the correlation function as:

ξ(r, t) = ξ(1)(r)D2 + ξ(2)(r)D4 + ...

We define the functions:

ξm
n (r) =

1

2π2

∫
PL(k)jn(kr)km+2dk (2.3)

Using this definition, the linear term is

ξ(1)(r) = ξ0
0(r),

3

The full expression for the non-linear Zeldovich correlation function in Eulerian coor-
dinates is:

ξ(2)(r) = −1

3
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15
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3 (r)ξ1

3(r) +
1

3
ξ−2
0 (r)ξ2

0(r) +
2

3
ξ−2
2 (r)ξ2

2(r) (2.4)

As we expect, the real-space correlation function is isotropic, finite at r = 0, and tends
to zero on large scales. Note that this expression contains products of the functions
ξm
n (r). In the next section, we show that this Fourier transforms exactly to the nonlinear

Zeldovich power spectrum calculated by Valageas. The normalization we use for the
power spectrum requires that we rewrite the nonlinear Zeldovich power spectrum given
by Valageas:

P (2)(k) = P13(k) + P22(k) (2.5)

= −k2σ2
vPL(k) +

∫ ∫
d3k1d3k2

(2π)3
δD(k− k1 − k2)

(k · k1)2(k · k2)2

2k4
1k

4
2

PL(k1)PL(k2)

σ2
v =

1

6π2

∫
PL(w)dw

3 Non-linear Power Spectrum

We group our expression into two terms, in order to clearly relate it to P13(k) and P22(k):

ξ(2)(r) = ξ(13)(r) + ξ(22)(r),

where ξ(13)(r) is defined as the first term in equation ??, and ξ(22)(r) contains the remain-
ing terms. ξ(13)(r) straightforwardly Fourier transforms to P13(k):

F
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}
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From Valageas:

P13(k) = −k2σ2
vPL(k) = −1

3
ξ−2
0 (0)k2PL(k)

The Fourier transform of ξ(22)(r) contains integrals of three spherical Bessel functions.
In general:
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)
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As we expect, the real-space correlation function is isotropic, finite at r = 0, and tends
to zero on large scales. Note that this expression contains products of the functions
ξm
n (r). In the next section, we show that this Fourier transforms exactly to the nonlinear

Zeldovich power spectrum calculated by Valageas. The normalization we use for the
power spectrum requires that we rewrite the nonlinear Zeldovich power spectrum given
by Valageas:

P (2)(k) = P13(k) + P22(k) (2.5)

= −k2σ2
vPL(k) +

∫ ∫
d3k1d3k2
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3 Non-linear Power Spectrum

We group our expression into two terms, in order to clearly relate it to P13(k) and P22(k):

ξ(2)(r) = ξ(13)(r) + ξ(22)(r),

where ξ(13)(r) is defined as the first term in equation ??, and ξ(22)(r) contains the remain-
ing terms. ξ(13)(r) straightforwardly Fourier transforms to P13(k):
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= − (4π)2
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From Valageas:

P13(k) = −k2σ2
vPL(k) = −1
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The Fourier transform of ξ(22)(r) contains integrals of three spherical Bessel functions.
In general:

F{ξm1
n (r)ξm2

n (r)} =
4π

(2π2)2

∫ ∫
PL(k1)PL(k2)k

m1+2
1 km2+2
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(∫
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3

With this, we can write the Eulerian density in terms of the Lagrangian density to third order in D:

δ(x, t) =
(

δ(q, t) + D
∑

i

∂φ(q)
∂qi

∂δ(q, t)
∂qi

+ D2
∑

i,j

∂2φ(q)
∂qi∂qj

∂φ(q)
∂qj

∂δ(q, t)
∂qi

+
1
2
D2

∑

i,j

∂2δ(q, t)
∂qi∂qj

∂φ(q)
∂qi

∂φ(q)
∂qj

)∣∣∣∣∣
q=x

. (12)

We use Equation (7) to express δ in terms of the linear quantities δL and φ, where δL is already first order in D.
The real-space correlation function in co-moving Eulerian coordinates is:

ξ(x1 − x2, t) = 〈δ(x1, t)δ(x2, t)〉 . (13)

This can be written in powers of D using the above expansion of the Eulerian over-density. Because the over-density
field is assumed to be a zero-mean Gaussian random field, the odd moments vanish. The correlation function to second
order is then:

ξ(r, t) = ξ(1)(r)D2 + ξ(2)(r)D4 + ...

We define the functions:

ξm
n (r) =

1
2π2

∫ ∞

0
PL(k)jn(kr)km+2dk , (14)

where jn is the spherical Bessel function of order n and PL(k) is the linear power spectrum. Using this definition, the
linear term is:

ξ(1)(r) = ξ0
0(r) , (15)

the spherically symmetric Fourier transform of the linear power spectrum.
ξ(2)(r) is the expectation of a sum of products of four terms expressed with the linear quantities. Since these are

all Gaussian, the only irreducible terms are second order. Thus we only need to calculate expectations of the type
〈a(q1)b(q2)〉. Mathematica was used to express the various derivatives of φ(q) in terms of spherical harmonics, and
to calculate the expectation values between them. We illustrate this process in the following example.

∂φ(q)
∂qz

= −
∫

d3k

(2π)3
ikz

k2
δ̂L(k)eik·q = −i

√
4π

3

∫
d3k

(2π)3
Y 0

1 (θ,ϕ)
k

δ̂L(k)eik·q , (16)
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∂q2

z

=
∫

d3k

(2π)3
k2

z

k2
δ̂L(k)eik·q =

√
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3

∫
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(2π)3
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0 (θ,ϕ) +
2√
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2 (θ,ϕ)
)

δ̂L(k)eik·q . (17)

〈
∂φ(q1)

∂qz

∂2φ(q2)
∂q2

z

〉
= − 4πi

33/2(2π)6

∫∫
d3k1d3k2e

i(k1·q1+k2·q2) 〈δ̂L(k1)δ̂L(k2)〉
k

,

× Y 0
1 (θ1, ϕ1)

(
Y 0

0 (θ2, ϕ2) +
2√
5
Y 0

2 (θ2, ϕ2)
)

. (18)

〈δ̂L(k1)δ̂L(k2)〉 = (2π)3δD(k1 + k2)PL(k1) . (19)

So we must calculate the integrals
∫

Y m
l (θ, ϕ)Y ∗m′

l′ (θ,ϕ)eik·(q1−q2)dΩk . (20)

We use the plane-wave (Rayleigh) expansion for eik·(q1−q2) to compute these integrals in terms of spherical Bessel
functions, jn(kr), where r = q1 − q2. In general, the integral is zero for m &= m′.
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3 (r) . (21)

where µ is the cosine of the angle between r̂ and ẑ, and Pl(µ) are the Legendre polynomials. In the expansion of the
over-density, Equation (12), each term is evaluated at q = x, so the expectation values in the correlation function
become functions of the Eulerian distance, r = |x1 − x2|.
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With this, we can write the Eulerian density in terms of the Lagrangian density to third order in D:
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We use Equation (7) to express δ in terms of the linear quantities δL and φ, where δL is already first order in D.
The real-space correlation function in co-moving Eulerian coordinates is:

ξ(x1 − x2, t) = 〈δ(x1, t)δ(x2, t)〉 . (13)

This can be written in powers of D using the above expansion of the Eulerian over-density. Because the over-density
field is assumed to be a zero-mean Gaussian random field, the odd moments vanish. The correlation function to second
order is then:

ξ(r, t) = ξ(1)(r)D2 + ξ(2)(r)D4 + ...

We define the functions:

ξm
n (r) =

1
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0
PL(k)jn(kr)km+2dk , (14)

where jn is the spherical Bessel function of order n and PL(k) is the linear power spectrum. Using this definition, the
linear term is:

ξ(1)(r) = ξ0
0(r) , (15)

the spherically symmetric Fourier transform of the linear power spectrum.
ξ(2)(r) is the expectation of a sum of products of four terms expressed with the linear quantities. Since these are

all Gaussian, the only irreducible terms are second order. Thus we only need to calculate expectations of the type
〈a(q1)b(q2)〉. Mathematica was used to express the various derivatives of φ(q) in terms of spherical harmonics, and
to calculate the expectation values between them. We illustrate this process in the following example.
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)

. (18)

〈δ̂L(k1)δ̂L(k2)〉 = (2π)3δD(k1 + k2)PL(k1) . (19)

So we must calculate the integrals
∫

Y m
l (θ, ϕ)Y ∗m′

l′ (θ,ϕ)eik·(q1−q2)dΩk . (20)

We use the plane-wave (Rayleigh) expansion for eik·(q1−q2) to compute these integrals in terms of spherical Bessel
functions, jn(kr), where r = q1 − q2. In general, the integral is zero for m &= m′.
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where µ is the cosine of the angle between r̂ and ẑ, and Pl(µ) are the Legendre polynomials. In the expansion of the
over-density, Equation (12), each term is evaluated at q = x, so the expectation values in the correlation function
become functions of the Eulerian distance, r = |x1 − x2|.
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Figure 1: The linear (blue) and the nonlinear (green) correlation functions from the Zel’dovich approx-
imation at z = 0. The effect of the nonlinear term is to dampen the peak and to shift its position to lower
radius.

4.2 Redshift Space Distortions

In galaxy redshift surveys, the coordinate along the line-of-sight is the redshift, which gives
us the velocity of the galaxy along that direction. This quantity is related to the distance
through the expansion of space as well as the particle’s peculiar motion. The random motion of
galaxies within a cluster causes galaxies at the same distance from us to have slightly different
redshifts. The resulting anisotropy is called redshift-space distortion, and its effect is well
understood to first order [6, 11]. The linear power spectrum in redshift space is described by
Kaiser (1986), and results in an increase in the power along directions close to the line-of-
sight [8]. Correspondingly, the peak in the linear correlation function is sharpened along the
line-of-sight direction in redshift space [21]. Various attempts have been made to include the
effects of redshift-space distortions in the nonlinear power spectrum [9, 20]. However, these
calculations are extremely complicated, as the relationship between Fourier space and redshift
space is not straightforward.

Comoving Eulerian space (x) and redshift space (s) are related through the line-of-sight
velocities of particles. In the Zel’dovich approximation, the transformation is quite simple:

s(x) = x− f(D(t)!∇φ(q) · n̂)n̂

In this equation, n̂ is the line-of-sight direction. The parameter f is the logarithmic derivative
of the growth function, and is roughly equal to Ω0.6

m , where Ωm is the matter density parameter.
With this, we can write a transformation from Lagrangian space to redshift space, and proceed as
outlined in section 4.1 to find the nonlinear overdensity in redshift space. The resulting nonlinear
term of the correlation function is similarly made up of products of ξm

n (r), but depends also on

4

The Effect of the Nonlinear Term on the Acous8c Peak 

At z=0, the peak is damped by about 10% and shi-ed to lower r by about 1% 

Linear 

Nonlinear 



Comparison to Fourier Space 
The full expression for the non-linear Zeldovich correlation function in Eulerian coor-

dinates is:
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As we expect, the real-space correlation function is isotropic, finite at r = 0, and tends
to zero on large scales. Note that this expression contains products of the functions
ξm
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s = x− uz(x)ẑ

ξ(r, t) = 〈δx(x)δx(x + r)〉

(
1 +

2f

3
+

f 2

5

)
ξ0
0(r) −

(
4f

3
+

4f 2

7

)
P2(x)ξ0

2(r) +
8f 2

35
P4(x)ξ0

4(r)

1

3

to:

ξ(1)(s) =
(

1 +
2f

3
+

f2

5

)
ξ0
0(s)−

(
4f

3
+

4f2

7

)
P2(µ)ξ0

2(s)

+
8f2

35
P4(µ)ξ0

4(s) , (16)

where Pl(µ) is the Legendre polynomial of order l.
The first nonlinear term is made up of products of the

functions ξm
n (s), as in real space, and also depends on

f and the angle µ. We have condensed the terms for
convenience, and give the full expression in Appendix
(Blah).

ξ(2)(s) =
∑

cm1m2
n1n2

(f, µ)ξm1
n1

(s)ξm2
n2

(s) (17)

3. COMPARISON TO NUMERICAL RESULTS

In our previous paper, in order to verify our real-space
result for the nonlinear correlation function, we Fourier
transformed the expression and compared it with the pre-
viously calculated Fourier-space result. We then devel-
oped a numerical simulation of the Zel’dovich approxi-
mation whose results agreed with the analytical expres-
sion. We developed the numerical method in order to
test future results, where analytical comparisons are not
available to us, such as the redshift-space result presented
in this paper. Because we have no analytical expression
with which to compare our redshift-space result, we rely
solely on these numerical simulations to verify the result.

We use CAMB to generate the initial power spectrum,
with the cosmological parameters ΩΛ = 0.71, Ωm = 0.29,
Ωb = 0.045, h = 0.7, and σ8(z = 0) = 0.89 (reference).
Each simulation is a 1.5 Gpc/h box with 10243 particles,
and the density is computed using a cloud-in-cell scheme
on a 2563 grid. The particles are displaced from the
initial grid to their redshift-space positions at some time.
We calculate the density on the grid and this is used
to compute the 2-dimensional correlation function. The
average of the correlation functions over 1000 simulations
at each time allows us to see the behavior of the nonlinear
term over time.

As in real-space, we expect the nonlinear term from
the simulations to agree with the analytical expression
at high redshift, although the result will be noisy due
to the small value of the nonlinear contribution at early
times. We expect a growing deviation from the analyti-
cal result with decreasing redshift coming from the next
higher order term, proportional to D6.

Figure 1 shows the predicted linear redshift-space cor-
relation function, Equation (16). The x-axis is the trans-
verse direction, and the y-axis is the line-of-sight direc-
tion. (explain coordinate system). We compare this to
Figure 2, which shows the redshift-space correlation func-
tions at four redshifts in the simulations: z = 10, 5, 1,
and 0. The correlation functions have been normalized
by D2 for comparison to Figure 1. Note that the correla-
tion function is well described by linear theory and high
redshift (z = 10), but at lower redshifts the acoustic ring
becomes washed out due to nonlinearity. By z = 0, the
amplitude of the ring along the line of sight differs from
the linear prediction by about (blah)%.

Figure 3 shows the predicted nonlinear contribution to
the correlation function from the Zel’dovich approxima-
tion, Equation (17). This shows clearly that the effect

!" #" $" %" &"" &!" &#" &$"

!"

#"

$"

%"

&""

&!"

&#"

&$"

'
(
)*+(,-./

!
)*
+
(
,
-.
/

)

)

!0

!!

!&

"

&

!

0

Fig. 1.— The linear correlation function in redshift space.
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Fig. 2.— Correlation functions, averaged over 1000 Zel’dovich
simulations, at z = 10 (top left), z = 5 (top right), z = 1 (bottom
left), and z = 0 (bottom right).

of the nonlinear term is to dampen the BAO ring in the
full correlation function at later times.

Figure 4 shows the correlation functions from the sim-
ulations, with the linear term subtracted out, and scaled
by D4. We compare these to Figure 3. Note that the
contribution at higher redshift is noisier because we have
amplified a very small signal.

We can also look at line-of-sight, transverse, and diag-
onal cuts to more easily compare the numerical results
to the analytical expression: Figure 5.

4. CONCLUSION

We have shown that our configuration-space approach
to perturbation theory can be extended to redshift space
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Future Work 

1 Calculation of second order density in configura-
tion space using 2LPT

The 2LPT equations are:

!x = !q −D1∇qφ
(1) + D2∇qφ

(2)

D2(τ) ≈ −3

7
D2

1(τ)

∇2
qφ

(1)(!q) = δL(!q) = I1(!q)

∇2
qφ

(2)(!q) =
∑

i>j

φ(1)
,ii φ(1)

,jj − (φ(1)
,ij )2 = I2(!q)

Where I1 and I2 are invariants of the dij tensor used in the Zel’dovich approximation.

dij(!q) =
∂2φ(1)(!q)

∂qi∂qj

I1(!q) = Tr(dij)

I2(!q) = Tr(Minors(dij))

The density to second order in the Zel’dovich approximation can be written in terms of
the invariants:

δ(!x) = D1I1(!x) + D2
1

(
I1(!x)2 − I2(!x) +∇φ(1)(!x) ·∇I1(!x)

)

We define the tensor d′
ij(!q) to include the φ(2) contribution in 2LPT, and calculate the

first invariant of this tensor:

d′
ij(!q) = dij(!q) +

3

7
D1

∂2φ(2)(!q)

∂qi∂qj

I ′
1(!q) = I1(!q) +

3

7
D1Tr

(
∂2φ(2)(!q)

∂qi∂qj

)
= I1(!q) +

3

7
D1I2(!q)

In 2LPT, the density to second order is:

δ(!x)′ = D1

(
I1(!x) +

3

7
D1I2(!x)

)
+ D2

1

(
I1(!x)2 − I2(!x) +∇φ(1)(!x) ·∇I1(!x)

)

= D1I1(!x) + D2
1

(
I1(!x)2 − 4

7
I2(!x) +∇φ(1)(!x) ·∇I1(!x)

)

2 Fourier transform of the D2 term

We Fourier transform each term in δ(2) = (I1(!x)2 − 4
7I2(!x) +∇φ(1)(!x) ·∇I1(!x)):

F [I1(!x)2] =
1

(2π)3

∫
δL(!k1)δL(!k − !k1)d

3k1

1

Higher orders in Lagrangian Perturba8on Theory (2LPT, etc) give 
the correct higher order behavior in the density 

• Extension to redshi- space 
• Comparison to full N‐body simula8ons (Indra) 

2LPT: 

Fourier transform of I2 involves transforming terms like dij(!x)dmn(!x):

F [dij(!x)dmn(!x)] =
1

(2π)3

∫
δL(!k1)

k1ik1j

k2
1

δL(!k − !k1)
(km − k1m)(kn − k1n)

|!k − !k1|2
d3k1

We take !k to be along the ẑ direction, and define x = k̂ · k̂1. We also have to symmetrize
over (i, j) ↔ (m, n). Finally, we get:

F [I2(!x)] =
1

(2π)3

∫
δL(!k1)δL(!k − !k1)

k2(1− x2)

2|!k − !k1|2
d3k1

Transforming ∇φ(1)(!x) ·∇I1(!x) involves terms like the following:

F
[
∂φ(!x)

∂qi

∂δL(!x)

∂qi

]
=

1

(2π)3

∫
δL(!k1)

k1i

k2
1

δL(!k − !k1)(ki − k1i)d
3k1

After symmetrizing, the Fourier transform of ∇φ(1)(!x) ·∇I1(!x) is:

F
[
∇φ(1)(!x) ·∇I1(!x)
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1

(2π)3
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(
1

k2
1

+
1

|!k − !k1|2

)
d3k1

All together the term transforms to:
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7|!k − !k1|2
+

kk1x− k2
1

2

(
1

k2
1

+
1

|!k − !k1|2
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d3k1

If we rewrite this to be in terms of !k1 and !k2 where !k = !k1 + !k2, we get:
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1
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3k2

3 Correlation Function

The ξ(22) term in 2LPT is:

ξ(22)(!r) = 〈δ(2)(!x)δ(2)(!x + !r)〉

=
1219
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ξ0
0(r)

2 +
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3
ξ−2
0 (r)ξ2
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124
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ξ−1
1 (r)ξ1

1(r) +
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ξ0
2(r)

2+

2

3
ξ−2
2 (r)ξ2

2(r)−
16
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ξ−1
3 (r)ξ1

3(r) +
64

1715
ξ0
4(r)

2

We compare this to ξ(22) from the Zel’dovich approximation:
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2+

2

3
ξ−2
2 (r)ξ2

2(r)−
4

5
ξ−1
3 (r)ξ1

3(r) +
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We take !k to be along the ẑ direction, and define x = k̂ · k̂1. We also have to symmetrize
over (i, j) ↔ (m, n). Finally, we get:

F [I2(!x)] =
1

(2π)3

∫
δL(!k1)δL(!k − !k1)

k2(1− x2)

2|!k − !k1|2
d3k1

Transforming ∇φ(1)(!x) ·∇I1(!x) involves terms like the following:

F
[
∂φ(!x)

∂qi

∂δL(!x)

∂qi

]
=

1

(2π)3

∫
δL(!k1)

k1i

k2
1

δL(!k − !k1)(ki − k1i)d
3k1

After symmetrizing, the Fourier transform of ∇φ(1)(!x) ·∇I1(!x) is:

F
[
∇φ(1)(!x) ·∇I1(!x)

]
=

1

(2π)3

∫
δL(!k1)δL(!k − !k1)

kk1x− k2
1

2

(
1

k2
1

+
1

|!k − !k1|2

)
d3k1

All together the term transforms to:

1

(2π)3

∫
δL(!k1)δL(!k − !k1)

(
1− 2k2(1− x2)

7|!k − !k1|2
+

kk1x− k2
1

2

(
1

k2
1

+
1

|!k − !k1|2

))
d3k1

If we rewrite this to be in terms of !k1 and !k2 where !k = !k1 + !k2, we get:

1

(2π)3

∫ ∫
δD(!k − !k1 − !k2)δL(!k1)δL(!k2)

(
5

7
+

2

7

(!k1 · !k2)2

k2
1k

2
2

+
!k1 · !k2

2

(
1

k2
1

+
1

k2
2

))
d3k1d

3k2

3 Correlation Function

The ξ(22) term in 2LPT is:

ξ(22)(!r) = 〈δ(2)(!x)δ(2)(!x + !r)〉

=
1219

735
ξ0
0(r)

2 +
1

3
ξ−2
0 (r)ξ2

0(r)−
124

35
ξ−1
1 (r)ξ1

1(r) +
1342

1029
ξ0
2(r)

2+

2

3
ξ−2
2 (r)ξ2

2(r)−
16

35
ξ−1
3 (r)ξ1

3(r) +
64

1715
ξ0
4(r)

2

We compare this to ξ(22) from the Zel’dovich approximation:

ξ(22)(!r) =
19

15
ξ0
0(r)

2 +
1

3
ξ−2
0 (r)ξ2

0(r)−
16

5
ξ−1
1 (r)ξ1

1(r) +
34

21
ξ0
2(r)

2+

2

3
ξ−2
2 (r)ξ2

2(r)−
4

5
ξ−1
3 (r)ξ1

3(r) +
4

35
ξ0
4(r)

2

2

– 8 –

The recursion relations in equations (10) may be used to compute the power spectrum
at any order in perturbation theory. Substituting equation (5) into equation (3), we have

P (k, τ) δD(#k + #k′) = 〈δ(#k, τ) δ(#k′, τ)〉

= a2(τ)〈δ1(#k) δ1(#k
′)〉 + a4(τ)

[

〈δ1(#k) δ3(#k
′)〉 + 〈δ2(#k) δ2(#k

′)〉

+〈δ3(#k) δ1(#k
′)〉

]

+ O(δ6
1) . (12)

Equation (12) explicitly shows all the terms contributing to the power spectrum at fourth
order in the initial density field δ1 (or second order in the initial spectrum), as the nth order

field δn(#k) involves n powers of δ1(#k). With the definition

〈δm(#k) δn−m(#k′)〉 ≡ Pm,n−m(k) δD(#k + #k′) (13)

the power spectrum up to second order (i.e., fourth order in δ1) is given by equation (12) as

P (k, τ) = a2(τ)P11(k) + a4(τ)[P22(k) + 2P13(k)]

= a2(τ)P11(k) + a4(τ)P2(k) , (14)

where the net second order contribution P2(k) is defined as

P2(k) = P22(k) + 2P13(k) . (15)

To determine P2(k) we need to evaluate the 4-point correlations of the linear density

field δ1(#k ). For a gaussian random field, all cumulants (irreducible correlation functions)
of δ1(#k ) vanish aside from the 2-point cumulant, which is given by equation (3) for

m = n−m = 1. All odd moments of δ1(#k ) vanish. Even moments are given by symmetrized
products of the 2-point cumulants. Thus the 4-point correlation function of δ1(#k) is

〈δ1(#k1) δ1(#k2) δ1(#k3) δ1(#k4)〉 = P (k1)P (k3)δD(#k1 + #k2)δD(#k3 + #k4)

+P (k1)P (k2)δD(#k1 + #k3)δD(#k2 + #k4) + P (k1)P (k2)δD(#k1 + #k4)δD(#k2 + #k3) . (16)

With the results and techniques described above, we can proceed to obtain the second
order contribution to the power spectrum. The two terms contributing at second order
simplify to the following 3-dimensional integrals in wavevector space:

P22(k) = 2
∫

d3q P11(q) P11(|#k − #q|)
[

F (s)
2 (#q,#k − #q)

]2
, (17)

with F (s)
2 given by equation (11a), and

2P13(k) = 6P11(k)
∫

d3q P11(q) F (s)
3 (#q,−#q,#k ) . (18)



Conclusion 

•  Our approach to perturba8on theory in configura8on 
space works 
–  Reproduces known Fourier‐space result for Zel’dovich 
Approxima8on 

–  Agrees with numerical simula8ons 
–  See arXiv:1202.1306v2 for more details 

•  We can extend this calcula8on to redshi- space 
–  Numerical valida8on of analy8cal result 

•  In future, we will extend to higher orders in Lagrangian 
Perturba8on Theory to reproduce correct higher‐order 
behavior 
–  Compare to full N‐body simula8ons 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References 

both the angle between r = s1 − s2 and n̂, and on the parameter f . I have done much of the
work to calculate this term in Mathematica, but I have yet to test the expression numerically
with simulations.

5 Future Work

This work is meant to provide a starting point in developing a more robust model of the nonlinear
correlation function in redshift space. The Zel’dovich approximation has limited validity at low
redshift, where nonlinear growth has the largest effect. It will be necessary to compare the
real-space result from the Zel’dovich approximation to N-body simulations to assess its validity.
Our approach can be extended to higher order approximations such as 2nd order Lagrangian
perturbation theory (2LPT) without much difficulty. In Fourier space, the nonlinear power
spectrum has been calculated using the full fluid equations [7]. This is analytically much more
complicated than the result using the Zel’dovich approximation, but it is similarly made up
of convolutions in Fourier space. We have shown that these convolutions become products of
the functions ξm

n in real space in the Zel’dovich approximation, so it is conceivable that the
nonlinear correlation function using the fluid equations can be written as the sum of products
of some class of functions of the linear quantities.
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Redshi-‐Space Distor8ons 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et al. (2002), 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2dFGRS: β=0.49±0.09 • Redshi- measured from Doppler shi-, 

used to calculate distance 
• Galaxies are not at rest in comoving 
frame 

• Linear in‐fall (large scales) 
• FlaLening of redshi-‐space 
correla8ons 

• Thermal mo8on (small scales) 
• ‘Fingers of God’ 



Nonlinear Structure Forma8on 

δ(x, t) =
∞∑

n=1

D(t)nδ(n)(x)

x(q, t) = q−D(t)"∇φ(q)

δx(x, t) = D(t)δL(q)

∇2φ(q) = δL(q)

1

δ̂(k, t) =
∞∑

n=1

D(t)nδ̂(n)(k)

x(q, t) = q−D(t)"∇φ(q)

δx(x, t) = D(t)δL(q)

∇2φ(q) = δL(q)

D(a) =
5Ωm

2

H(a)

H0

∫ a

0

da′

(a′H(a′)/H0)3

1

Configura)on Space: 

Fourier Space: 

Perturba8on theory is used to understand the effects of nonlinearity on quasi‐linear 
scales (Vishniac, 1983). 

Volker Springel, Max‐Planck‐Ins8tute for Astrophysics 

z=6  z=2 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