

Bispectrum of the Sunyaev-Zeldovich Effect

Suman Bhattacharya

Kavli Institute for Cosmological Physics The University of Chicago & High Energy Physics Division

Argonne National Laboratory

with Daisuke Nagai, Laurie Shaw (Yale), Gil Holder (McGill), Tom Crawford (U Chicago) and SPT Team

Cosmology meeting, Santa Fe, July, 2013

CMB Science- Secondary Anisotropies

- Secondary Anisotropies => late universe, small scale phoenomena
- Sunyaev-Zeldovich Effect
 - ----Thermal SZ
 - --- kinetic SZ
- CMB Lensing
- point sources

---radio (AGN), dusty high-z star forming galaxy

---Poisson, clustered

Secondary Anisotropies -- using the CMB as backlight.

Secondary Anisotropies-Sunyaev-Zeldovich Effect

Secondary Anisotropies-Sunyaev-Zeldovich Effect

- 1-2 % CMB photons passing through galaxy clusters get inverse Compton scattered to higher energy
- Surface Brightness is independent of redshift

$$rac{\Delta T_{cmb}}{T_{cmb}} \equiv f_{\nu}(x)y = \left(rac{k_B\sigma_T}{m_cc^2}
ight)\int n_e(l)T_c(l)dl$$

SZ spectrum studies

Pressure Profile: Theoretical Model

Modeling pressure profiles is the key to understand the SZ effect !

- gas reside on dark matter halos in hydrostatic equilibrium
- pressure and gas density are related via a power law
- fraction of gas turns to stars
- fraction of star energy goes back to intra-cluster medium via feedback processes.
- non-thermal pressure due to gas motion: $\frac{P_{nt}}{P_{tot}}(z) = \alpha(z) \left(r/R_{500}\right)^{n_{nt}}$

Bode & Ostriker 06, ..., Shaw, Nagai, Bhattacharya & Lau 2010

Pressure Profile: Theory vs. Observation

- we reproduce Arnaud profile of massive clusters at low-z low-z gas parameters are constrained for massive clusters
- don't have high-z pressure profile observations-> high z parameters unconstrained
- galaxy groups -> not constrained!

+other low-z X ray data:

- Low redshift groups (Sun et al) and cluster (Vikhlinin et al, Pratt et al, Arnaud et al)
- Xray scaling relations:

 > Vikhlinin et al , Sun et al entropy-temperature relation
 > Pratt et al , Sun et al pressure-mass relation
 > Vikhlinin et al , Sun et al gas fraction-mass relation

exploration of ICM parameter space

exploration of ICM parameter space

SZ Power Spectrum

$$C_{\ell} = f(x_{\nu})^2 \int dz \frac{dV}{dz} \int d\ln M \frac{dn(M,z)}{d\ln M} \tilde{y}(M,z,\ell)^2$$

- Cl ~ σ₈ ^8
- Measurement uncertainty of the power spectrum amplitude ~ 20%
- Power spectrum gets about 40% signal from high-z galaxy groups
- Theoretical uncertainty ~ 40-50%

SZ Power Spectrum

$$C_{\ell} = f(x_{\nu})^{2} \int dz \frac{dV}{dz} \int d\ln M \frac{dn(M,z)}{d\ln M} \tilde{y}(M,z,\ell)^{2}$$

$$\int \int dx \frac{dV}{dz} \int d\ln M \frac{dn(M,z)}{d\ln M} \tilde{y}(M,z,\ell)^{2}$$

$$\int \int dx \frac{dV}{d\ln M} \int d\ln M \frac{dn(M,z)}{d\ln M} \tilde{y}(M,z,\ell)^{2}$$

$$\int \int dx \frac{dV}{d\ln M} \tilde{y}(M,z,\ell)^{2}$$

$$\int \int dz \frac{dV}{dz} \int d\ln M \frac{dn(M,z)}{d\ln M} \tilde{y}(M,z,\ell)^{2}$$

$$\int \int dx \frac{dV}{dz} \int d\ln M \frac{dn(M,z)}{d\ln M} \tilde{y}(M,z,\ell)^{2}$$

$$\int \int dx \frac{dV}{dz} \int d\ln M \frac{dn(M,z)}{d\ln M} \tilde{y}(M,z,\ell)^{2}$$

$$\int \int dx \frac{dV}{dz} \int d\ln M \frac{dn(M,z)}{d\ln M} \tilde{y}(M,z,\ell)^{2}$$

$$\int \int dx \frac{dV}{dz} \int d\ln M \frac{dn(M,z)}{d\ln M} \tilde{y}(M,z,\ell)^{2}$$

$$\int \int dx \frac{dV}{dz} \int d\ln M \frac{dn(M,z)}{d\ln M} \tilde{y}(M,z,\ell)^{2}$$

$$\int \int dx \frac{dV}{dz} \int du \frac{dV}{dz} \int d\ln M \frac{dn(M,z)}{d\ln M} \tilde{y}(M,z,\ell)^{2}$$

$$\int \int dx \frac{dV}{dz} \int dx \frac{dV}{dz} \int du \frac{dV}{dz} \int du \frac{dV}{dz} \int du \frac{dV}{dz}$$

$$\int \int dx \frac{dV}{dz} \int dx \frac{dV}{dz} \int du \frac{dV}$$

- from high-z galaxy groups
- Theoretical uncertainty ~ 40-50%

SZ Power Spectrum

Bispectrum Primer

• Komatsu & Spergel 2000; Cooray & Hu 1999, 2000; Hu 2001

From Bispectrum to Skewness Spectrum

- skewness is the simplest 3-pt statistics in real space(equivalent to variance in 2-pt space): S₃ ≡
- Skewness is the sum over all possible triangles in harmonic space, then FT to real space.
- in real space, a skewness function is the skewness measured over a certain angular scale (Cooray 2000)
- Problem with real space skewness function is different sources of non-Gaussianity.
- Solution ? define a skewness spectrum in harmonic space (Munshi & Heavens 2008)

 $\equiv \left\langle \left(\frac{\Delta T(\hat{\mathbf{n}})}{T}\right)^3 \right\rangle$

Cooray 2000; Rubino-Martin & Sunyaev 03; Hill & Sherwin 12

Where the SZ skewness spectrum signal comes from?

Astrophysical Uncertainties of the Skewness Spectrum:

Power Spectrum vs. Bispectrum

 $A_{sz} = C_{3000}(\sigma_8) / C_{3000}(0.8)$

- Asz-Bsz relation is extremely robust. Change in gas physics changes it only by 15%. The power spectrum over the same range changes by factor of 4.
- A combination of Asz and Bsz amplitude can break the degeneracy of the thermal and the kinetic SZ amplitude.

Cosmology dependence of SZ Bispectrum

Scaling of the bispectrum amplitude

$$B_{\rm SZ}^{\Lambda} \propto \left(\frac{\sigma_8}{0.8}\right)^{11.4} \left(\frac{\Omega_b}{0.04}\right)^4 \left(\frac{h}{0.71}\right)^2 \left(\frac{w_0}{-1.0}\right)^{-0.95} \times \left(\frac{n_s}{0.96}\right)^{-1.5} \left(\frac{\Omega_m}{0.26}\right)^{-0.46}$$

Cosmic Complementarity->

=> SZ bispectrum contrains $\sigma_8\Omega_b^0.36$ complementary to clusters which constrains $\sigma_8\Omega_m^0.4$

- => mask out the clusters used in the
 SZ mass function:
- => measure bispectrum of the map=> constrain σ_8
- => independent of the cluster constraints
- => joint constraints from bispectrum
 +abundance

The SZ Skewness Spectrum

 define the SZ skewness spectrum as sum over the two smaller sides and expressed as a function of the largest l:

$$\Lambda(\ell) = \sqrt{\sum_{\ell_1 \ell_2} b^2(\ell \ell_1 \ell_2)}.$$

• and signal-to-noise integrated to certain l:

$$\lambda(<\ell) = \sqrt{\sum_{\ell_1}^{\ell} \sum_{\ell_2 \ell_3} \frac{b^2(\ell_1 \ell_2 \ell_3)}{N^2(\ell_1 \ell_2 \ell_3)}}$$

Measurement Prospects From Current Data

- @150 GHz, 1.2', 18 microk-arcmin, 2500 deg²
- total S/N~16
- Bispectrum of point sources (dusty and radio galaxies) are a contamination (or signal to detect!)

What can we learn from bispectrum+ power spectrum combined

- Adding bispectrum to the power spectrum data improves the constraints on the thermal SZ amplitude by factor of 2.
- kinetic SZ amplitude can be detected at 2 sigma level

$9 - 31 - 10^{-3}$ $9 - 31 - 10^{-3}$ $9 - 31 - 10^{-3}$ 0.0 - 0.0 Table 5: Parame	ℓ ℓ 0.1 0.2 $0.3\alpha_0eter constraints (1 (2)\sigma lim$	10^4 10^4	0.3 0.2 0.1 10 ³ 0.2 0.2 0 ysis 0	of the power spectrum r	10^4 0.1 α_0 0.2 mea-	0.3
surements $\overline{\text{CCAT (1 Khr, 2000 deg}^2)}$				$\frac{1}{100 \text{ Khr}, 20,000 \text{ deg}^2}$		
survey	α_0	$\epsilon_f(10^{-6})$	α_0		$\epsilon_f(10^{-6})$	=
fix cosmo, medsz, fg	0.15 - 0.23(0.13 - 0.29)	1.35 - 4.45(0.36 - 5.8)	0.1	18-0.25(0.15-0.29)	0.34 - 1.17(0 - 1.58)	\mathbf{D}
w7, medsz, fg	$0.07 - 0.25 \ (0.015 - 0.29)$	$0.86 - 3.8 \ (0.2 - 5.65)$	0.1	17 - 0.27(0.12 - 0.29)	0.24 - 1.41(0 - 2.12)	
w7, fg	$0.073 - 0.25 \ (0 - 0.29)$	1.6 - 6.2(0.32 - 8.6)	0.3	14-0.27(0.07 - 0.29)	0.4- $2.9(0 - 4.56)$	
w7, nofg	0.075 - 0.25(0.02 - 0.29)	$0.67-4.0\ (0.11-6.2)$	0.1	$13 - 0.25 \ (0.067 - 0.29)$	0.45 - 2.5(0.07 - 3.61)	_

Constraints on the sum of the neutrino mass

adding bispectrum ->improves neutrino mass constraints by factor of 3 compared to WMAP alone -> and by about 50% compared to WMAP +BAO+H0 -> Future: adding bispectrum can constrain neutrino mass with 0.06-0.1 eV accuracy.

SPT Bispectrum Measurements

(c) 220 GHz 1d bispectrum, with best-fit model overplotted

Crawford et al, SPT team

=> SPT 3 frequency channels- 95, 150, 220 GHz
=> cover 800 sq. deg
=> detect SZ bispectrum to > 10 σ

Also ,Wilson et al,ACT measure skewness ~5 σ Planck measurements of SZ bispectrum

Current SPT measurements: thermal SZ and σ_8

=> bispectrum measures σ_8 =0.79 +/- 0.031

=> combine the bispectrum and power spectrum measurements to individually measure tSZ and kSZ amplitude

=> tSZ amplitude 2.96 μk² +/- 0.642 (nominal) +/- 0.768 (extreme)

=> improves the tSZ amplitude by factor ~2 compared to the power spectrum only case (uncertainty~1.05 μ k^2)

Current SPT measurements: kinetic SZ

start to see the peak (Aksz > 0 prior case)

Science Cases:

- SZ bispectrum is a new (and powerful) technique to measure the thermal SZ amplitude
- More robust than power spectrum-> signal comes from massive clusters, theoretical uncertainty less compared to power spectrum, kSZ bispectrum is approximately 0, point sources bispectrum is comparable
- A combination of bispectrum+power spectrum measurement can improve the measurement of thermal and kinetic SZ amplitude individually.
- A measurement of the kSZ amplitude can provide useful insight to the reionization epoch.

