Studying dark matter halo structure with galaxy－galaxy lensing

李然（Ran Li）
National Astronomical Observatories of China

Collaborators：
Houjun Mo（UMASS）
Xiaohu Yang（SJU）
Huanyuan Shan（EPFL）
Cacciato Marcello（Hebrew）
Zuhui Fan（PKU）
Frank van den Bosch（YALE）
Wentao Luo（SHAO）
Nan Li（ANL）
Jean－Paul Kneib（EPFL）

LCDM

 Universe

Hierarchical Structure Formation

How do galaxies co－evolve with halos？

Gravitational Lensing Basics

image credit：ESA

Strong and Weak

WEAK LENSING BASICS

$\mathcal{A} \equiv \frac{\partial \vec{\beta}}{\partial \vec{\theta}}=\left(\delta_{i j}-\frac{\partial \alpha_{i}(\vec{\theta})}{\partial \theta_{j}}\right)=\left(\delta_{i j}-\frac{\partial^{2} \psi(\vec{\theta})}{\partial \theta_{i} \partial \theta_{j}}\right)=\mathcal{M}^{-1}$.
$\mathcal{A}=\left(\begin{array}{cc}1-\kappa-\gamma_{1} & -\gamma_{2} \\ -\gamma_{2} & 1-\kappa+\gamma_{1}\end{array}\right)$
$=(1-\kappa)\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)-\gamma\left(\begin{array}{cc}\cos 2 \phi & \sin 2 \phi \\ \sin 2 \phi & -\cos 2 \phi\end{array}\right)$.
$\gamma_{1}(\vec{\theta})=\frac{1}{2}\left(\psi_{11}-\psi_{22}\right) \equiv \gamma(\vec{\theta}) \cos [2 \phi(\vec{\theta})]$,
$\gamma_{2}(\vec{\theta})=\psi_{12}=\psi_{21} \equiv \gamma(\vec{\theta}) \sin [2 \phi(\vec{\theta})]$.
In the absence of shear，the resulting image is a circle with modified radius，depending on K ．

Convergence

Shear causes an axis ratio different from unity，and the orientation of the resulting ellipse depends on the phase of the shear

Usually the effect is small．One need to study shape of galaxies statistically．

Galaxy－galaxy lensing

foreground galaxy
position

Background galaxy
shape

Early work

Bright galaxy

－Brainerd，Blandford \＆Smail I996， ApJ，466， 623 （＂BBS＂）
－Compute the position angles of faint galaxies with respect to the line that connects faint and bright galaxies．

If the faint galaxies are systematically lensed by the bright galaxies，there will be an excess of pairs in which the faint galaxy is tangentially aligned and a deficit of pairs in which the faint galaxy is radially aligned．

Early work

BBS 1996，Deep CCD image from
Palomar 5m；complete to $r=26$
－439 bright galaxies（ $20<r<23$ ）， 5 I I faint galaxies（ $23<r<24$ ）
－KS test rules out a uniform distribution for a）at the 99.9% confidence level
－Signal＂goes away＂for fainter sources because of circularization．

TANGENTIAL SHEAR

$\gamma_{\mathrm{t}}=-\mathcal{R e}\left[\gamma \mathrm{e}^{-2 \mathrm{i} \phi}\right] \quad, \quad \gamma_{\times}=-\mathcal{I} \mathrm{m}\left[\gamma \mathrm{e}^{-2 \mathrm{i} \phi}\right]$

$$
\begin{gathered}
\left\langle\gamma_{\mathrm{t}}\right\rangle=\bar{\kappa}-\langle\kappa\rangle \\
\Delta \Sigma(R)=\gamma_{t}(R) \Sigma_{c}=\bar{\Sigma}(<R)-\Sigma(R) \\
e_{+}=2 \gamma_{T} \mathcal{R}+e_{+}^{\mathrm{int}}
\end{gathered}
$$

Galaxies are intrinsically elliptical with

$$
\begin{array}{cl}
\langle\mathrm{e}\rangle & -0.2-0.3 \\
\text { Sensitivity: } & \mathbf{0 . 3} / \mathbf{(N)})^{\mathbf{1 / 2}}
\end{array}
$$

$$
\gamma \sim 0.007
$$

Lensing induces shape correlations that can be measured by averaging over many lenses（ ~ 10000 ）

GALAXIES OF DIFFERENT LUMINOSITY

－Lens：SDSS DR4 spectroscopic sample，r＜17．77， 4783 square degree

Sample	M_{r}	$N_{\text {gal }}$	$\langle z\rangle$	$\left\langle L / L_{*}\right\rangle$	$f_{\text {spiral }}$
L1	$-17 \geq M_{r}>-18$	10047	0.032	0.075	0.80
L2	$-18 \geq M_{r}>-19$	29730	0.047	0.19	0.69
L3	$-19 \geq M_{r}>-20$	85766	0.071	0.46	0.53
L4	$-20 \geq M_{r}>-21$	141976	0.10	1.1	0.35
L5f	$-21 \geq M_{r}>-21.5$	60994	0.14	2.1	0.23
L5b	$-21.5 \geq M_{r}>-22$	34920	0.17	3.2	0.16
L6f	$-22 \geq M_{r}>-22.5$	13067	0.20	4.9	0.08
L6b	$-22.5 \geq M_{r}>-23$	2933	0.22	7.7	0.05

 million galaxies down to magnitude $r=21.8$

Modeling the data

－One should model centrals and satellites differently

Method I：group catalog

－Using galaxy groups to represent the halos
－Estimate group mass（Abundance matching）

> Model dark matter distribution in each group(NFW)

－Predict lensing signal for certain galaxy sample

Group finder

Yang，Mo，vdBosch．2007， using SDSS spectroscopic sample

I．A self－calibrated FOF method．

2．Assign all galaxies to groups．

2．Estimate group mass by ranking method．

Catalogue	shy contedshint	galaxies	groups	groups $(\mathrm{N}=1)$	groups $(\mathrm{N}=2)$	groups $(\mathrm{N}=3)$	groups $(\mathrm{N}\rangle 3)$
Sample I	4514	$0.01-0.20$	362366	205992	26676	1952	4511
Sample II	4514	$0.01-0.20$	36947	301237	271420	19868	4619
Sample III	4514	$0.01-0.20$	408119	300049	250492	35537	7848

Modeling g－g lensing signal

Li et al． 2009

－Assuming central galaxies are the most massive ones in each group
－Each satellite is assigned a subhalo mass
－NFW profile for host halo
－Truncated NFW profile for subhalo

The model reproduce observed g－g lensing signal with good agreement．

Method 2 ：Conditional luminosity function

－Can be constrained using $\Phi(\mathrm{L}), \zeta_{\mathrm{ss}}(\mathrm{r})$ ，group catalog． （Cacciato et al．2009）

$$
\Phi(L \mid M)=\Phi_{\mathrm{c}}(L \mid M)+\Phi_{\mathrm{s}}(L \mid M)
$$ mass M．

Cacciato et al 2009
$\bullet \Phi(\mathrm{L} \mid \mathrm{M})$ tells the luminosity function inside a halo with

METHOD 2：CONDITION LUMINOSITY FUNCTION

$$
\begin{aligned}
P^{c}(M \mid L) d M & =\frac{\Phi^{c}(L \mid M) n(M)}{\Phi^{c}(L)} d M \\
P^{s}(M \mid L) d M & =\frac{\Phi^{s}(L \mid M) n(M)}{\Phi^{s}(L)} d M
\end{aligned}
$$

Yang，Mo，van den Bosch 2008

GALAXY－MATTER

 CORRELATION
－I．CENTRAL GALAXY－ HALO
－2．SATELLITE GALAXY－ HALO
－3．CENTRAL GALAXY－ NEIGHBORING HALO
－4．SATELLITE GALAXY－ NEIGHBORING HALO

$$
P_{\mathrm{g}, \mathrm{dm}}^{2 h h \mathrm{x}}(k \mid L)=P_{\operatorname{lin}}(k) \mathcal{I}_{\mathrm{x}}(L) \mathcal{I}_{M}
$$

$$
\begin{equation*}
\mathcal{I}_{\mathrm{c}}(L)=\int_{0}^{\infty} \frac{\Phi_{\mathrm{c}}(L \mid M)}{\Phi_{\mathrm{c}}(L)} b(M) n(M) \mathrm{d} M \tag{2.57}
\end{equation*}
$$

$$
\begin{equation*}
\mathcal{I}_{\mathrm{s}}(L)=\int_{0}^{\infty} \frac{\Phi_{\mathrm{s}}(L \mid M)}{\Phi_{\mathrm{s}}(L)} \tilde{u}_{\mathrm{s}}(k \mid M) b(M) n(M) \mathrm{d} M \tag{2.58}
\end{equation*}
$$

$$
\begin{equation*}
\mathcal{I}_{M}=\frac{1}{\rho} \int_{0}^{\infty} \tilde{u}_{\mathrm{dm}}(k \mid M) b(M) n(M) \mathrm{d} M \tag{2.59}
\end{equation*}
$$

Halo mass function

Condition luminosity function
Satellite density profile
Halo bias
Halo density profile

$$
\begin{aligned}
\Delta \Sigma(R \mid L) & =f_{\rho} \int P^{c}(M \mid L) \Delta \Sigma^{c}(R \mid M) d M \\
& +f_{f} \int P^{s}(M \mid L) \Delta \Sigma^{s}(R \mid M) d M
\end{aligned}
$$

Produced observed g－g lensing signal again．

Constrain Cosmology Parameters

Constrain Cosmology

Can we constrain subhalo properties？

Using group catalog
Stack satellites with host halo of similar mass，and at similar halo－centric distance．

Subhalo mass function

van den Bosch et al． 2005

Satellite mass

estimation

Stellar mass of all satellites in halo with mass larger than $10^{14} h^{-1} M_{\odot}$

Subhalo mass distribution according to subhalo mass function from simulation． （van den Bosch，Tormen，Giocoli 2005）

Errorbar：expected uncertainties of SDSS（Red）and LSST（Blue）survey

Prediction for subhalo lensing

 signal
Test with Data：CFHT／ Stripe82

－CFHT／Stripe 82
－ 170 deg＾2
－ 10 source／arcmin
－seeing 0.6 ＂
－Shear catalog by KSB90 method

Lensing signal around groups

Satellite lensing： CFHT／Stripe82

Lensing around satellites in groups with mass $>10^{\wedge} 13$ solar mass

Li et al．2013（in preparation）

Forecast LSST vs SDSS

－Both survey can constrain host halo mass and concentration in narrow range
－LSST can put tight constraints on subhalo mass

HIGHER ORDER：FLEXION

Bacon et al．

$$
\begin{aligned}
\mathcal{F} & =|\mathcal{F}| \mathrm{e}^{\mathrm{i} \phi}=\frac{1}{2} \partial \partial^{*} \partial \psi=\partial \kappa=\partial^{*} \gamma \\
\mathcal{G} & =|\mathcal{G}| \mathrm{e}^{3 \mathrm{i} \phi}=\frac{1}{2} \partial \partial \partial \psi=\partial \gamma
\end{aligned}
$$

Figure 1．Weak lensing distortions with increasing spin values．Here an unlensed Gaussian galaxy with radius 1 arcsec has been distorted with 10 per cent convergence／shear，and $0.28 \operatorname{arcsec}^{-1}$ flexion．Convergence is a spin－0 quantity，first flexion is spin－1，shear is spin－2 and second flexion is spin－3．

CONSTRAIN M／L WITH SHEAR $+F L E X I O N$

Constrains on M／L for field galaxies，assuming LSST like survey．

Conclusion

－Galaxy－galaxy is a promising tool to study dark matter halo structure．
－One can link theory and observation using group catalog and CLF．
－Next generation lensing survey will be able to constrain substructure
－Higher order：galaxy－galaxy Flexion
－Apply the methods to future observation data．

Thank You

