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How do galaxies co-evolve with halos ?
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Gravitational Lensing Basics
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WEAK LENSING BASICS

In the absence of shear, the resulting image is a circle 
with modified radius, depending on κ. 

Shear causes an axis ratio different from unity, and the 
orientation of the resulting ellipse depends on the phase 
of the shear 

Usually the effect is small. One need to study shape of 
galaxies statistically.

Two additional linear combinations of ψij are important, and these are the components of the
shear tensor,

γ1(#θ) =
1

2
(ψ11 − ψ22) ≡ γ(#θ) cos

[

2φ(#θ)
]

,

γ2(#θ) = ψ12 = ψ21 ≡ γ(#θ) sin
[

2φ(#θ)
]

.

(57)

With these definitions, the Jacobian matrix can be written

A =

(

1 − κ− γ1 −γ2

−γ2 1 − κ+ γ1

)

= (1 − κ)

(

1 0
0 1

)

− γ

(

cos 2φ sin 2φ
sin 2φ − cos 2φ

)

.

(58)

The meaning of the terms convergence and shear now becomes intuitively clear. Convergence
acting alone causes an isotropic focusing of light rays, leading to an isotropic magnification of a
source. The source is mapped onto an image with the same shape but larger size. Shear introduces
anisotropy (or astigmatism) into the lens mapping; the quantity γ = (γ2

1 + γ2
2)1/2 describes the

magnitude of the shear and φ describes its orientation. As shown in Fig. 13, a circular source of
unit radius becomes, in the presence of both κ and γ, an elliptical image with major and minor
axes

(1 − κ− γ)−1 , (1 − κ+ γ)−1 . (59)

The magnification is

µ = detM =
1

detA
=

1

[(1 − κ)2 − γ2]
. (60)

Note that the Jacobian A is in general a function of position #θ.

Figure 13: Illustration of the effects of convergence and shear on a circular source. Convergence
magnifies the image isotropically, and shear deforms it to an ellipse.

3.3 Gravitational Lensing via Fermat’s Principle

3.3.1 The Time-Delay Function

The lensing properties of model gravitational lenses are especially easy to visualize by application of
Fermat’s principle of geometrical optics (Nityananda 1984, unpublished; Schneider 1985; Blandford
& Narayan 1986; Nityananda & Samuel 1992). From the lens equation (14) and the fact that the
deflection angle is the gradient of the effective lensing potential ψ, we obtain

(#θ − #β) − #∇θψ = 0 . (61)

This equation can be written as a gradient,

#∇θ

[

1

2
(#θ − #β)2 − ψ

]

= 0 . (62)

The physical meaning of the term in square brackets becomes more obvious by considering the
time-delay function,

t(#θ) =
(1 + zd)

c

DdDs

Dds

[

1

2
(#θ − #β)2 − ψ(#θ)

]

= tgeom + tgrav .

(63)
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Convergence Shear

3.2 Effective Lensing Potential

Before proceeding to more complicated galaxy lens models, it is useful to develop the formalism
a little further. Let us define a scalar potential ψ("θ) which is the appropriately scaled, projected
Newtonian potential of the lens,

ψ("θ) =
Dds

DdDs

2

c2

∫

Φ(Dd
"θ, z) dz . (48)

The derivatives of ψ with respect to "θ have convenient properties. The gradient of ψ with respect
to θ is the deflection angle,

"∇θψ = Dd
"∇ξψ =

2

c2

Dds

Ds

∫

"∇⊥Φ dz = "α , (49)

while the Laplacian is proportional to the surface-mass density Σ,

∇2
θψ =

2

c2

DdDds

Ds

∫

∇2
ξΦ dz =

2

c2

DdDds

Ds
· 4πG Σ = 2

Σ("θ)

Σcr
≡ 2κ("θ) , (50)

where Poisson’s equation has been used to relate the Laplacian of Φ to the mass density. The
surface mass density scaled with its critical value Σcr is called the convergence κ("θ). Since ψ
satisfies the two-dimensional Poisson equation ∇2

θψ = 2κ, the effective lensing potential can be
written in terms of κ

ψ("θ) =
1

π

∫

κ("θ′) ln |"θ − "θ′| d2θ′ . (51)

As mentioned earlier, the deflection angle is the gradient of ψ, hence

"α("θ) = "∇ψ =
1

π

∫

κ("θ′)
"θ − "θ′

|"θ − "θ′|2
d2θ′ , (52)

which is equivalent to eq. (10) if we account for the definition of Σcr given in eq. (17).
The local properties of the lens mapping are described by its Jacobian matrix A,

A ≡
∂"β

∂"θ
=

(

δij −
∂αi("θ)

∂θj

)

=

(

δij −
∂2ψ("θ)

∂θi∂θj

)

= M−1 . (53)

As we have indicated, A is nothing but the inverse of the magnification tensor M. The matrix
A is therefore also called the inverse magnification tensor. The local solid-angle distortion due to
the lens is given by the determinant of A. A solid-angle element δβ2 of the source is mapped to
the solid-angle element of the image δθ2, and so the magnification is given by

δθ2

δβ2
= detM =

1

detA
. (54)

This expression is the appropriate generalization of eq. (26) when there is no symmetry.
Equation (53) shows that the matrix of second partial derivatives of the potential ψ (the

Hessian matrix of ψ) describes the deviation of the lens mapping from the identity mapping. For
convenience, we introduce the abbreviation

∂2ψ

∂θi∂θj
≡ ψij . (55)

Since the Laplacian of ψ is twice the convergence, we have

κ =
1

2
(ψ11 + ψ22) =

1

2
tr ψij . (56)
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Galaxy-galaxy lensing

foreground galaxy
position

Background galaxy
shape
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Early work

• Brainerd, Blandford & Smail 1996, 
ApJ, 466, 623 (“BBS”)

• Compute the position angles of 
faint galaxies with respect to the 
line that connects faint and bright 
galaxies.

    If the faint galaxies are systematically 
lensed by the bright galaxies, there will be 
an excess of pairs in which the faint galaxy 
is tangentially aligned and a deficit of pairs 
in which the faint galaxy is radially aligned.

φ

Bright galaxy

faint galaxy
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Early work

BBS 1996, Deep CCD image from 
Palomar 5m; complete to r=26

•439 bright galaxies (20 < r < 23), 511 faint 
galaxies (23 < r < 24)

•KS test rules out a uniform distribution for 
a) at the 99.9% confidence level

•Signal “goes away” for fainter sources 
because of circularization.
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TANGENTIAL SHEAR
Wilson et al. 2001). The proportionality constant !crit encodes
the geometry of the lens-source system,

!!1
crit ¼

4!GDLSDL

c2DS
; ð5Þ

where DL, DS, and DLS are angular diameter distances to lens,
source, and between lens and source.

Due to the subtraction in equation (4), uniform mass sheets
(such as the mean density of the universe "̄ ¼ "m"crit) do not
contribute to #!—it measures the mean excess projected
mass density. The mean excess mass density at radius r from
a galaxy is "̄#gm(r). The mean excess projected density !(R)
is given by the radial integral

h!(R)i ¼
Z

"̄#gm(x; y; z)dz % "̄wgm(R); ð6Þ

where wgm is the projected galaxy-mass correlation function
and R ¼ (x2 þ y2)1=2 is the projected radius. The observable
#! is itself an integral over !(R) and hence wgm:

h#!(R)i ¼ "̄

!
2

R2

Z R

0

R0 dR0 wgm(R
0)! wgm(R)

"
: ð7Þ

If the cross-correlation function can be approximated by a
power law in separation, #gm ¼ (r=r0)

!$ , then wgm can be
written as

wgm(R) ¼ F($; r0)R
1!$ ; ð8Þ

where F($; r0) ¼ r$0$(0:5)$½0:5($ ! 1)(=$(0:5$) (Davis &
Peebles 1983). In that case, the mean lensing signal#! is also a
power law with index $ ! 1 and is simply proportional to "̄wgm,

h#!(R)i ¼
#
$ ! 1

3! $

$
"̄wgm(R): ð9Þ

More generally, the three-dimensional galaxy-mass corre-
lation function can be obtained by inverting #! directly.
Differentiating equation (7), we find

!"̄
dwgm

dR
¼ d#!

dR
þ 2

#!

R
: ð10Þ

The derivative dwgm/dR can be integrated to obtain #gm using an
Abel formula (Saunders, Rowan-Robinson, & Lawrence 1992):

#gm(r) ¼
1

!

Z 1

r

dR
!dwgm=dR

(R2 ! r2)1=2
: ð11Þ

In practice, the data only cover a finite range of scales up to
r ¼ Rmax. The estimated #gm integrating to Rmax is related to
the true #gm by

# estgm(r) ¼ #gm(r)!
1

!

Z 1

Rmax

dR
!dwgm=dR

(R2 ! r2)1=2
ð12Þ

where the last term reminds us of the (unknown) contribution
from scales beyond those for which we have measurements.
Provided the integrand falls sufficiently fast with separation,
this term is negligible for scales r smaller than a fraction of
Rmax. Furthermore, since #gm is linear in #!, the covariance
matrix of the latter can be straightforwardly propagated to that
of the former.

2.2. Estimating #!

We estimate the shear by measuring the tangential compo-
nent of the source galaxy ellipticity relative to the lens center,
e+ , also known as the E mode. In general, the shear is related
in a complex way to e+ (Schneider & Seitz 1995), but in the
weak lensing regime the relationship is linear:

eþ ¼ 2$TRþ eintþ ; ð13Þ

where eintþ is the intrinsic ellipticity of the source, $T is the
shear, and R is the ‘‘responsivity’’ (see eq. [20]). The as-
sumption behind weak lensing measurements is that the
source galaxies are randomly oriented in the absence of
lensing, in which case their intrinsic shapes constitute a large
but random source of error on the shear measurement. This
‘‘shape noise’’ is the dominant source of noise for most weak
lensing measurements. We discuss limits on intrinsic corre-
lations between galaxy ellipticities in the Appendix.
The other component of the ellipticity, e; , also known as

the B mode, is measured at 45) with respect to the tangent.
The average B mode should be zero if the induced shear is due
only to gravitational lensing (Kaiser 1995; Luppino & Kaiser
1997). This provides an important test for systematic errors,
such as uncorrected point-spread function (PSF) smearing,
since they generally contribute to both the E and B modes.
In order to estimate #! from the shear, we must know the

angular diameter distances DL, DS, DLS for each lens-source
pair (see eqs. [4] and [5]). In the SDSS, we have spectroscopic
redshifts for all the lens galaxies, so that DL is measured to high
precision (assuming a cosmological model). For the source
galaxies, we have photometric redshift estimates (photo-z),
with typical relative errors of 20%–30% (see x 3.1.5), so there
is comparable uncertainty in the value of !crit for each lens-
source pair.
Given the known redshifts of the lenses, the distribution of

errors in the source galaxy ellipticity, and the distribution of
errors in the photometric redshift for each source, we can write
the likelihood for #! from all lens-source pairs,

L(#!) ¼
YNlens

j¼1

YNsource

i¼1

Z
dz isP(z

i
s)P($

i
T jz

i
s; z

j
L) ; ð14Þ

where $ i
T ¼ e iþ=2R is the shear estimator for the ith source

galaxy, P(z is) is the probability distribution for its redshift (the
product of the Gaussian error distribution returned by the
photo-z estimator and a prior based on the redshift distribution
for the source population; see x 3.1.5), and P($ i

T jz is; z
j
L) is the

probability distribution of the shear given the source and lens
redshifts, which is a function of the desired quantity #!:

P($ i
T jz

i
s; z

j
L)/ exp

%
! 1

2

!
$ i
T !#! ; !!1

crit(z
i
s; z

j
L)

%($ i
T )

"2&
: ð15Þ

In equation (15), 4%2($ i
T ) ¼ %2(e iþ)þ %2

SN: the shear uncer-
tainty is the sum of the measurement variance %2(e iþ) and the
intrinsic variance in the shapes of the source galaxies %2

SN ¼
h(eintþ )2i. The shape noise measured from bright, well-resolved
galaxies is %SN * 0:32, and the typical measurement error
%(e+) ranges from +0.05 for r ¼ 18 to +0.4 for r ¼ 21:5. The
intrinsic shape distribution is not Gaussian as we have as-
sumed in equation (15), but it is symmetric. Monte Carlo
simulations indicate that this approximation does not bias the
measurement of #! within our measurement uncertainties,
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the galaxy-DM connection that recently became available
is weak lensing around galaxies, or galaxy-galaxy (here-
inafter g-g) lensing (Tyson et al. 1984; Brainerd et al. 1996;
Hudson et al. 1998; Fischer et al. 2000; McKay et al. 2001;
Smith et al. 2001; Hoekstra et al. 2003, 2004; Sheldon et al.
2004; Mandelbaum et al. 2005a; Seljak et al. 2005). Gravi-
tational lensing induces tangential shear distortions of back-
ground galaxies around foreground galaxies, allowing di-
rect measurement of the galaxy-DM correlation function
around galaxies. The individual distortions are small (of
order 0.1%), but by averaging over all foreground galax-
ies within a given subsample, we obtain high signal to noise
in the shear as a function of angular separation from the
galaxy. If we know the lens redshifts, the shear signal can be
related to the projected mass density as a function of proper
distance from the galaxy. This allows us to determine the
averaged DM distribution around any given galaxy sample.

In recent years, the progress on the observational side
of g-g lensing has been remarkable. In the latest Sloan
Digital Sky Survey (SDSS) analyses (Sheldon et al. 2004;
Seljak et al. 2005), 20–30σ detections of the signal as a func-
tion of physical separation have been obtained. Similarly
high S/N detections have also been observed as a function
of angular separation with other surveys (Hoekstra et al.
2004), but the ability to use spectroscopic redshifts for lenses
is a major advantage to doing lensing with the SDSS. The
high statistical power has been accompanied by a more care-
ful investigation of systematic errors, such as calibration bi-
ases and intrinsic alignments, which for the SDSS are cur-
rently around 10 per cent and therefore already dominate
the error budget (Mandelbaum et al. 2005a).

In this work, we seek to use g-g weak lensing to ex-
plore the galaxy-DM connection for particular subsamples
of lenses. By comparison with the predicted signal from a
halo model, as done for simulations in Mandelbaum et al.
(2005b), we can extract average central halo masses and
satellite fractions. These calculations are done as a func-
tion of morphology and of environment, in samples se-
lected based on both stellar masses and luminosity. We
expect that the divisions by morphology and by envi-
ronment may be related, due to the relationships be-
tween color and environment, with red galaxies typically
found in overdense regions (Davis & Geller 1976; Dressler
1980; Postman & Geller 1984; Balogh et al. 1998, 1999;
Carlberg et al. 2001; Blanton et al. 2003a; Hogg et al. 2003;
Balogh et al. 2004a,b; Hogg et al. 2004; Croton et al. 2005).
By determining average central halo masses and satellite
fractions as a function of these parameters, we hope to gain
some insight into processes of galaxy formation, and ulti-
mately into the galaxy-DM connection. We note that this
approach has been used before, by Guzik & Seljak (2002)
based on data in McKay et al. (2001), but with a simpler
form of the halo model, with a much smaller sample of lenses
so lower statistical power, and only using the luminosities,
not stellar masses. Due to our larger sample of lenses, our
better-understood calibration, and our inclusions of stellar
masses which are better tracers of stellar and dark mat-
ter content than luminosities, this work constitutes a sig-
nificant improvement over that one. Another recent work,
Hoekstra et al. (2005), used stellar masses for RCS data
derived from B − V colors from CFHT photometry in or-
der to derive halo masses as a function of luminosity, and

star formation efficiencies as a function of morphology, but
used only isolated lenses and thus did not derive satellite
fractions. Furthermore, the lack of spectroscopic redshifts
for lenses in that work, which allow the derivation of stel-
lar masses via spectral indicators and the computation of
the lensing signal as a function of transverse separation in
this work, complicates the analysis. Halo model analysis of
galaxy-galaxy autocorrelations has been done observation-
ally by several groups (van den Bosch et al. 2003; Cooray
2005; Zehavi et al. 2005), and this halo model analysis of
galaxy-DM cross-correlations is, in many ways, complemen-
tary to that approach.

We begin by introducing the g-g lensing formalism and
the halo model that is used to extract information about
central halo masses and satellite fractions in §2. §3 includes
a description of the SDSS data used for this analysis. We
present the lensing signal and the halo model fits in §4, and
interpretation of these results. We conclude in §5 with a
summary of our findings.

Here we note the cosmological model and units used in
this paper. All computations assume a flat ΛCDM universe
with Ωm = 0.3, ΩΛ = 0.7, and σ8 = 0.9. Distances quoted
for transverse lens-source separation are comoving (rather
than physical) h−1kpc, where H0 = 100 h kms−1 Mpc−1.
Likewise, ∆Σ is computed using the expression for Σ−1

c in
comoving coordinates, Eq. 4. In the units used, H0 scales out
of everything, so our results are independent of this quantity.
All confidence intervals in the text and tables are 95 per cent
confidence level (2σ) unless explicitly noted otherwise.

2 WEAK LENSING FORMALISM AND HALO

MODEL

Galaxy-galaxy weak lensing provides a simple way to probe
the connection between galaxies and matter via their cross-
correlation function

ξg,m(#r) = 〈δg(#x)δ∗m(#x + #r)〉 (1)

where δg and δm are overdensities of galaxies and matter,
respectively. This cross-correlation can be related to the pro-
jected surface density

Σ(R) = ρ

∫

[

1 + ξg,m

(

√

R2 + χ2
)]

dχ (2)

(where r2 = R2+χ2), which is then related to the observable
quantity for lensing,

∆Σ(R) = γt(R)Σc = Σ(< R) − Σ(R), (3)

where the second relation is true only for a matter distri-
bution that is axisymmetric along the line of sight. This
observable quantity can be expressed as the product of two
factors, a tangential shear γt and a geometric factor

Σc =
c2

4πG
DS

DLDLS(1 + zL)2
(4)

where DL and DS are angular diameter distances to the lens
and source, DLS is the angular diameter distance between
the lens and source, and the factor of (1 + zL)−2 arises due
to our use of comoving coordinates. For a given lens redshift,
Σ−1

c rises from zero at zs = zL to an asymptotic value at
zs $ zL; that asymptotic value is an increasing function of
lens redshift.

c© 0000 RAS, MNRAS 000, 000–000

R  

Galaxies are intrinsically elliptical with
　　　

  < e >   - 0.2-0.3
	
 Sensitivity: 	
0.3 / (N)1/2

　             γ ~ 0.007
Lensing induces shape correlations that 
can be measured by averaging over many 
lenses(~ 10000 )  
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individually. Furthermore, the final factor in (19) implies that, for a given
source population, the cluster detection will be more difficult for increasing
lens redshift.

Mean tangential shear on circles. In the case of axi-symmetric mass
distributions, the tangential shear is related to the surface mass density κ(θ)
and the mean surface mass density κ̄(θ) inside the radius θ by γt = κ̄− κ, as
can be easily shown by the relation in Sect. 3.1 of IN. It is remarkable that
a very similar expression holds for general matter distributions. To see this,
we start from Gauss’ theorem, which states that

∫ θ

0
d2ϑ ∇ ·∇ψ = θ

∮
dϕ ∇ψ · n ,

where the integral on the left-hand side extends over the area of a circle of
radius θ (with its center chosen as the origin of the coordinate system), ψ is
an arbitrary scalar function, the integral on the right extends over the circle
with radius θ, and n is the outward directed normal on this circle. Taking ψ
to be the deflection potential and noting that ∇2ψ = 2κ, one obtains

m(θ) ≡ 1

π

∫ θ

0
d2ϑ κ(ϑ) =

θ

2π

∮
dϕ

∂ψ

∂θ
, (20)

where we used that ∇ψ · n = ψ,θ. Differentiating this equation with respect
to θ yields

dm

dθ
=

m

θ
+

θ

2π

∮
dϕ

∂2ψ

∂θ2
. (21)

Consider a point on the θ1-axis; there, ψ,θθ = ψ11 = κ + γ1 = κ − γt. This
last expression is independent on the choice of coordinates and must therefore
hold for all ϕ. Denoting by 〈κ(θ)〉 and 〈γt(θ)〉 the mean surface mass density
and mean tangential shear on the circle of radius θ, (21) becomes

dm

dθ
=

m

θ
+ θ [〈κ(θ)〉 − 〈γt(θ)〉] . (22)

The dimensionless mass m(θ) in the circle is related to the mean surface mass
density inside the circle κ̄(θ) by

m(θ) = θ2 κ̄(θ) = 2

∫ θ

0
dϑ ϑ 〈κ(ϑ)〉 . (23)

Together with dm/dθ = 2θ 〈κ(θ)〉, (22) becomes, after dividing through θ,

〈γt〉 = κ̄− 〈κ〉 , (24)

a relation which very closely matches the result mentioned above for axi-
symmetric mass distributions (Bartelmann 1995). One important immediate
implication of this result is that from a measurement of the tangential shear,
averaged over concentric circles, one can determine the azimuthally-averaged
mass profile of lenses, even if the density is not axi-symmetric.

Weak Gravitational Lensing 9

of the sources. In particular, the expectation value of χ is not simply related
to the reduced shear (Schneider & Seitz 1995). However, in the weak lensing
regime, κ! 1, |γ| ! 1, one finds

γ ≈ g ≈ 〈ε〉 ≈ 〈χ〉
2

. (16)

2.3 Tangential and cross component of shear

Components of the shear. The shear components γ1 and γ2 are defined
relative to a reference Cartesian coordinate frame. Note that the shear is not
a vector (though it is often wrongly called that way in the literature), owing
to its transformation properties under rotations: Whereas the components
of a vector are multiplied by cosϕ and sinϕ when the coordinate frame is
rotated by an angle ϕ, the shear components are multiplied by cos(2ϕ) and
sin(2ϕ), or simply, the complex shear gets multiplied by e−2iϕ. The reason for
this transformation behavior of the shear traces back to its original definition
as the traceless part of the Jacobi matrix A. This transformation behavior is
the same as that of the linear polarization; the shear is therefore a polar. In
analogy with vectors, it is often useful to consider the shear components in
a rotated reference frame, that is, to measure them w.r.t. a different direc-
tion; for example, the arcs in clusters are tangentially aligned, and so their
ellipticity is oriented tangent to the radius vector in the cluster.

O

φ

α = 0◦

εt = 0.3
ε× = 0.0

α = 45◦

εt = 0.0
ε× = 0.3

α = 90◦

εt = −0.3
ε× = 0.0

Fig. 3. Illustration of the tangen-
tial and cross-components of the
shear, for an image with ε1 = 0.3,
ε2 = 0, and three different direc-
tions φ with respect to a reference
point (source: M. Bradac)

If φ specifies a direction, one defines the tangential and cross components
of the shear relative to this direction as

γt = −Re
[
γ e−2iφ

]
, γ× = −Im

[
γ e−2iφ

]
; (17)

For example, in case of a circularly-symmetric matter distribution, the shear
at any point will be oriented tangent to the direction towards the center
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GALAXIES OF DIFFERENT LUMINOSITY

Mandelbaum et al. 2006

Star formation 9
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Figure 2. ∆Σ with best-fit halo model in luminosity bins for early (red hexagons, solid line) and late-type (blue triangles, dashed line)
galaxies. All errors are 1σ.

significantly with the environment. As we show below, the
L∗ high density sample is dominated by satellites. We see
that the tidal stripping of dark matter around satellites in-
side groups and clusters cannot be maximally efficient, since
this would have been seen as a suppression of signal on small
scales.

4.2 Halo model fits

Here we discuss the goodness-of-fit for the halo model fits
before proceeding to discussions of the best-fit parameters.
However, we note that the values of χ2 are not expected
to follow the usual χ2 distribution because of the noisiness
of bootstrap covariance matrices (see Hirata et al. 2004 for

a fuller description of these results). For our fits with 40
degrees of freedom and 200 bootstrap regions, the expected
value of χ2 is 50.4, not 40. It is clear from the figures that
the halo model signal generally is a close match to the data;
for example, for early types, the χ2 for the fits for the seven
stellar mass bins were 37.5, 39.9, 31.5, 36.5, 46.9, 40.5, and
42.0 respectively, with p-values (i.e. the probability to exceed
this value by chance if the model is a realistic description
of the data) of 0.85, 0.79, 0.96, 0.87, 0.58, 0.78, 0.73. The
results may imply that the bootstrap errorbars are slight
overestimates. Results for late types in stellar mass bins,
and the splits by luminosity, were similar.

One concern regarding these fits is that for the highest
stellar mass and luminosity bins the halo model underes-
timates the signal by a significant amount on small scales

c© 0000 RAS, MNRAS 000, 000–000

• Lens: SDSS DR4 spectroscopic 
sample, r<17.77, 4783 square 
degree

• Source: SDSS imaging data, 30 
million galaxies down to 
magnitude r=21.8 

6 Mandelbaum et. al.

Table 2. The luminosity subsamples used in this analysis, includ-
ing mean weighted redshifts and luminosities within each bin, the
total number of galaxies, and the fraction of spirals.

Sample Mr Ngal 〈z〉 〈L/L∗〉 fspiral

L1 −17 ≥ Mr > −18 10 047 0.032 0.075 0.80
L2 −18 ≥ Mr > −19 29 730 0.047 0.19 0.69
L3 −19 ≥ Mr > −20 85 766 0.071 0.46 0.53
L4 −20 ≥ Mr > −21 141 976 0.10 1.1 0.35
L5f −21 ≥ Mr > −21.5 60 994 0.14 2.1 0.23
L5b −21.5 ≥ Mr > −22 34 920 0.17 3.2 0.16
L6f −22 ≥ Mr > −22.5 13 067 0.20 4.9 0.08
L6b −22.5 ≥ Mr > −23 2 933 0.22 7.7 0.05

insignificant compared to its variation with galaxy proper-
ties such as luminosity and profile type (parametrized there
using the concentration index).

In order to obtain mass-to-light ratios, solar lumi-
nosities were determined using results from Blanton et al.
(2003b) with M∗ = −20.44 and Msolar = 4.76, yielding
luminosities in h−2L" (L∗ = 1.2h−2 × 1010L"). Relevant
information for luminosity subsamples is shown in Table 2,
including numbers of galaxies, mean weighted redshifts and
luminosities, and spiral fractions. We note that we split
the two brightest bins into half-magnitude bins, because
we would like the opportunity to better constrain the vari-
ation of mass with light in that regime, and because the
central halo mass distribution may become wider at higher
luminosities since some of the galaxies are Brightest Clus-
ter Galaxies (BCGs) of clusters with large halo masses, and
others are field galaxies hosted by smaller halos, giving a
broader halo mass distribution at the high-luminosity end.

Finally, we need a measure of the local galaxy envi-
ronment. Many estimators, including nth nearest neighbor
(3-d or in projection), counts in an aperture (again, 3-d or
in projection), and Voronoi volumes, have been used in the
literature (for example, Ramella et al. 2001; Marinoni et al.
2002; Hogg et al. 2003; Balogh et al. 2004b; Blanton et al.
2005b; Cooper et al. 2005). Here, we choose a very simple
one, spectroscopic galaxy counts in cylinders of radius 1
h−1Mpc and line-of-sight length ∆v = ±1200 km s−1. These
numbers are compared to the number of random points in
the same cylinders, thus taking into account the angular and
radial variations in number density, survey boundaries, and
other issues. While galaxies excluded in the spectroscopic
survey because of fiber collisions are not used for the stel-
lar mass study (since they lack spectra), they are used for
the density estimates in order to avoid underestimating the
environment measure in rich clusters. The galaxies without
spectra due to fiber collisions are given redshifts equal to
those of the nearest neighbor. We note that because the en-
vironment measurement requires a careful knowledge of the
survey completeness as a function of position, only those
galaxies included in the area covered by the LSS DR4 sam-
ple from the NYU Value-Added Galaxy Catalog (VAGC;
Blanton et al. 2005a) were used to obtain environment esti-
mates.

Our estimates were derived using 20 times as many ran-
dom points as real galaxies; we note that for higher redshifts,
these environment estimates can be quite noisy or may fail
entirely, because the radial selection function leads to a low

density of objects. Furthermore, galaxies at the lower red-
shift limit or near survey boundaries may not have envi-
ronment estimates if no random galaxies were found in the
cylinders around them; thus, when splitting the sample at
the median density within each stellar mass or luminosity
bin, only some fraction of the sample was used (ranging from
93 per cent for bins at L <∼ L∗, down to 40 per cent for the
brightest galaxies). Fortunately, the lensing signal itself pro-
vides a reasonable test of the environment estimate, because
we can see whether the signal at 1–2 h−1Mpc scales is con-
sistent with the lens sample primarily being in the field or
in groups and clusters. At fixed luminosity or stellar mass,
the spiral sample (defined by frac deV < 0.5) had a lower
median and mean environment estimate than ellipticals, as
expected from previous studies cited in §1.

Because of the need for spectra to determine stellar
masses, our sample must exclude galaxies for which spec-
tra were not obtained due to fiber collisions. Fibers cannot
be placed closer than 55” (∼ 80 h−1kpc at z ∼ 0.1), so if two
targets are closer than this separation, only one will have a
spectrum. This restriction is alleviated in roughly one third
of the sky by the use of overlapping plates, but nonetheless,
roughly 7 per cent of targets do not have spectra. This loss of
targets is naturally worse in high-density regions, and will
therefore tend to affect the satellite contribution, decreas-
ing it in a scale-dependent way, and therefore changing its
shape. However, as our results will show, we are not highly
sensitive to the shape of the satellite contribution.

3.2 Sources

The source sample is the same as that from
Mandelbaum et al. 2005a (hereinafter M05), who ob-
tained shapes for more than 30 million galaxies in the
SDSS imaging data down to magnitude r = 21.8 (i.e. four
magnitudes fainter than the SDSS spectroscopic limit).
This section briefly describes the M05 pipeline, also known
as Reglens.

The M05 pipeline obtains galaxy images in the r and
i filters from the SDSS “atlas images” (Stoughton et al.
2002). The basic principle of shear measurement using these
images is to fit a Gaussian profile with elliptical isophotes
to the image, and define the components of the ellipticity

(e+, e×) =
1 − (b/a)2

1 + (b/a)2
(cos 2φ, sin 2φ), (8)

where b/a is the axis ratio and φ is the position angle of the
major axis. This is then an estimator for the shear,

(γ+, γ×) =
1

2R
〈(e+, e×)〉, (9)

where R ≈ 0.87 is called the “shear responsivity” and repre-
sents the response of the ellipticity (Eq. 8) to a small shear
(Kaiser et al. 1995; Bernstein & Jarvis 2002). In practice,
a number of corrections need to be applied to obtain the
ellipticity. The most important of these is the correction
for the smearing and circularization of the galactic images
by the PSF; M05 uses the PSF maps obtained from stel-
lar images by the psp pipeline (Lupton et al. 2001), and
corrects for these using the re-Gaussianization technique of
Hirata & Seljak (2003). Re-Gaussianization corrects for the
PSF while taking into account the non-Gaussianity both of

c© 0000 RAS, MNRAS 000, 000–000
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Modeling the data

•One should model  centrals and satellites differently

Li et al. 2009
0.5             1            1.5             2
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Method 1 : group  catalog
• Using galaxy groups to 

represent the halos

• Estimate group 
mass(Abundance matching) 

• Model dark matter 
distribution in each 

group(NFW)

• Predict lensing signal for 
certain galaxy sample
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Group finder
���������!�
��"��������	

�

34���������'�/005Yang, Mo, vdBosch. 2007, 
using SDSS spectroscopic 

sample

1.A self-calibrated FOF 
method.

2.Assign all galaxies to 
groups.

2.Estimate group mass by 
ranking method.
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Modeling g-g lensing signal 

•Assuming central galaxies are the most 
massive ones in each group

•Each satellite is assigned a subhalo mass 

•NFW profile for host halo 

•Truncated NFW profile for subhalo
Li et al. 2009

The model reproduce observed g-g lensing 
signal  with good agreement.
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Method 2 : Conditional luminosity function
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•Φ(L|M) tells the luminosity 
function inside a halo with 
mass M.

•Can be constrained using 
Φ(L),ξgg(r), group catalog.
(Cacciato et al. 2009)

Cacciato et al 2009
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METHOD 2: CONDITION LUMINOSITY 
FUNCTION

P c(M |L)dM =
�c(L|M)n(M)

�c(L)
dM

P s(M |L)dM =
�s(L|M)n(M)

�s(L)
dM

Galaxy Groups in SDSS DR4: II 3

Fig. 2.— The conditional luminosity functions (CLFs) of galaxies in groups of different mass bins. Symbols correspond to the CLFs
obtained using ML as halo mass (estimated according to the ranking of the characteristic group luminosity), with solid and open circles
indicating the contributions from central and satellite galaxies, respectively. The errorbars reflect the 1-σ scatter obtained from 200
bootstrap samples. The solid lines indicate the best-fit parameterizations (equations [2] to [5]). For comparison, we also show, with dashed
lines, the CLFs obtained using MS as halo mass (estimated according to the ranking of the group’s characteristic stellar mass).

use the notation 0.1Mr to indicate the resulting absolute
magnitude in the r-band. Stellar masses, indicated by
M∗, for all galaxies are computed using the relations be-
tween stellar mass-to-light ratio and 0.1(g − r) color of
Bell et al. (2003; see Y07 for details).

In this study we separate galaxies into red and blue
subsamples according to their bi-normal distribution in
the 0.1(g − r) color (Baldry et al. 2004; Blanton et
al. 2005a; Li et al. 2006). Fig. 1 shows the color-
magnitude distribution of the galaxies in our Sample II
(dots) together with the two peak values of the bi-normal
distribution in each absolute magnitude bin (open cir-
cles) (Cheng Li; private communication). The galaxies
are separated into red and blue subsamples using the
solid line, which is the best fit to the average of the two
peak values in each absolute magnitude bin:

0.1(g − r) = 1.022− 0.0651x− 0.00311x2 , (1)

where x = 0.1Mr − 5 logh + 23.0.

For each group in our catalogue we have two estimates
of its dark matter halo mass Mh: (1) ML, which is based
on the ranking of the characteristic group luminosity
L19.5 , and (2) MS, which is based on the ranking of the
characteristic group stellar mass Mstellar, respectively5.
As shown in Y07, these two halo masses agree reason-
ably well with each other, with a scatter that decreases
from ∼ 0.1 dex at the low-mass end to ∼ 0.05 dex at the
massive end. Detailed tests using mock galaxy redshift
surveys have demonstrated that the group masses thus
estimated can recover the true halo masses with a 1-σ
deviation of ∼ 0.3 dex, and are more reliable than those
based on the velocity dispersion of group members (Y05c;
Weinmann et al. 2006; Berlind et al. 2006; Y07). Note
also that survey edge effects have been taken into account

5 L19.5 and Mstellar are, respectively, the total luminosity and
total stellar mass of all group members with 0.1Mr − 5 log h ≤
−19.5.

Yang, Mo, van den Bosch  2008
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GALAXY-MATTER 
CORRELATION

• 1.  CENTRAL GALAXY-
HALO

• 2 . SATELLITE GALAXY-
HALO  

• 3.CENTRAL GALAXY- 
NEIGHBORING HALO 

• 4.SATELLITE GALAXY- 
NEIGHBORING HALO 
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݊Ё ũ (k|M) ᰃ⫼䋼䞣 M ᔦϔ࣪ⱘᱫᰩᆚᑺ䕂ᒧⱘٙゟবᤶᔶᓣ
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P (M |L)ũ (k|M) M .
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Condition luminosity function

Satellite density profile

Cacciato et al 2009

Produced observed g-g lensing signal again.

12 Cacciato et al.

Figure 6. The excess surface density ∆Σ as a function of the comoving transverse separation R is plotted for different bins in luminosity
of the lens galaxy (see Table 4). The solid line represents the total signal as predicted by the model, data points and error bars come from
Seljak et al. (2005), see text. The different contributions to the signal are also plotted. The dotted line represents the 1-halo central term
which obviously dominates at the smallest scales in all cases. Note that this term dominates on larger and larger scales when brighter
galaxies are considered, reflecting the idea that brighter galaxies live on average in more massive haloes. The dashed line represents
the 1-halo satellite term which is dominant only for faint galaxies and only on intermediate scales (0.1-1 h−1Mpc). The 2-halo central
is plotted with a long dashed line and it becomes relevant on large scales (R > 1h−1Mpc). Note that the strong truncation of this
term at small scales is due to our implementation of halo exclusion (see Appendix). The 2-halo satellite term (dotted-dashed line) never
dominates but it can contribute up to 20% of the total signal.

indicates that, although the 2-halo terms never dominate
the total signal, they can contribute as much as 50 percent
at large radii (R ! 1h−1 Mpc). We thus conclude that the
2-halo terms cannot simply be ignored.

4.4 Comparison with the WMAP1 Cosmology

As shown in §3.2, the WMAP3 and WMAP1 cosmologies
both allow a good fit to the clustering data, luminosity func-
tion and galaxy group results. However, the corresponding
CLFs predict mass-to-light ratios that are significantly dif-
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Figure 3. The 68% and 95% CLs of the joint two-dimensional,
marginalized posterior distribution for our Fiducial model, ob-
tained from the simultaneous analysis of the abundance, cluster-
ing and lensing of galaxies in the SDSS. The green contours show
the corresponding CLs for the WMAP7 analysis of the CMB (Ko-
matsu et al. 2011), and are shown for comparison.

variations. The constraints on galaxy bias, as characterized
via the CLF, are discussed in §5.3.

As discussed above, our Fiducial model consists of 16
free parameters; the two primary cosmological parameters
of interest, Ωm and σ8, for which we use uniform, non-
informative priors, the secondary cosmological parameters
ns, h and Ωb h

2, for which we use priors from WMAP7 (in-
cluding their covariance), the 9 CLF parameters that de-
scribe the halo occupation statistics, also with uniform, non-
informative priors, and finally the 2 nuisance parameters, ψ
and η, for which we adopt Gaussian priors as described in
§3.6. With a grand total of 182 constraints (32 data points
for the LF, six bins of 13 data points each for the projected

correlation function‡‡ and six bins of 12 ESD data points),
this implies 182− 16+ 5 = 171 degrees of freedom, which is
the number we have used to compute the reduced χ2 values
listed in the final column of Table 3.

Figs. 1 and 2 compare the predictions of the Fiducial

model (shaded regions, indicating the 95% confidence levels)
to the data used to constrain the model (solid dots with error
bars, indicating the 68 % confidence levels). Fig. 1 shows
that the model accurately fits the r-band galaxy luminosity
function. Although most data points agree with the model
predictions at the 1σ level, the data reveals a few small
‘wiggles’ at the faint end that are not reproduced by the
model, and which contribute dominantly to χ2

LF, the value
of which is listed in Table 3.

‡‡ Although the galaxy-galaxy clustering data points have co-
variance, we have verified that the covariance matrix for each lu-
minosity bin has rank equal to 13, and therefore does not reduce
the number of constraints.

The left-hand side of Fig. 2 shows the projected correla-
tion functions, wp(rp), for six different magnitude bins. We
caution that, because of the covariance in the data, which
is accounted for in the modeling (see §4), the quality of the
fit cannot be judged by eye. However, it is evident from
the χ2 values of the best-fit Fiducial model (see Table 3),
that the total χ2 is clearly dominated by χ2

Wp. In particular,
χ2
Wp > 2χ2

ESD, even though the projected correlation func-
tions only have 78/72 " 1.08 times as many data points.
It turns out χ2

Wp is dominated by the contribution from
the data in the [−20,−21] magnitude bin. Interestingly, this
bin covers the volume that encloses the Sloan Great Wall
(SGW), a huge supercluster at z ∼ 0.08 and the largest co-
herent structure detected in the SDSS (Gott et al. 2005). As
discussed in Zehavi et al. (2011), pruning the data sample
so as to exclude the SGW region results in a significantly
reduced clustering strength for galaxies in the [−20,−21]
magnitude range (i.e., the correlation length is reduced from
r0 = 5.46±0.15 to 4.82±0.23). We return to this issue, and
its potential impact on our cosmological constraints, in §6.4
when we discuss the potential impact of sample variance.

Finally, the right-hand side of Fig. 2 shows the excess
surface densities, ∆Σ(R), again for six different magnitude
bins as indicated. The model nicely reproduces the overall
trends in the data, with only a few data points that fall
outside the 95% confidence region of the model. Overall, we
conclude that our Fiducial model is consistent with the
data at a satisfactory level. In particular, the most impor-
tant features in the data are nicely reproduced by the model
and find a natural explanation within the framework of the
halo model. For example, the fact that brighter galaxies re-
veal stronger clustering and higher excess surface densities
is consistent with the common notion that brighter galaxies
reside in more massive haloes. The lensing signal is directly
sensitive to this aspect because it probes the matter distri-
bution around galaxies, whereas the clustering signal is af-
fected by it only indirectly due to the fact that more massive
haloes are more strongly clustered than less massive ones
(e.g., Mo & White 1996). Also, the relatively weak devia-
tions of wp(rp) and ∆Σ(R) from pure power-laws typically
reflect transitions from scales where the signal is dominated
by different components of the power spectra. Examples are
the 1-halo to 2-halo transition (e.g., Zehavi et al. 2004) and
the 1-halo central to 1-halo satellite transition for the excess
surface densities (e.g., Cacciato et al. 2009).

5.1 Cosmological Parameters

Fig. 3 shows the constraints on our two primary cosmolog-
ical parameters of interest; Ωm and σ8. The blue contours
show the 68% and 95% CLs of the joint two-dimensional,
marginalized posterior distribution obtained from our si-
multaneous analysis of the abundance, clustering and lens-
ing of galaxies in the SDSS. The green contours show the
corresponding CLs for the WMAP7 analysis of the CMB
(Komatsu et al. 2011), and are shown for comparison. Note
that our results are in excellent agreement with those from
WMAP7, strengthening the case for a true concordance cos-
mology. In particular, our analysis yields Ωm = 0.278+0.023

−0.026

and σ8 = 0.763+0.064
−0.049 (both 95% CL), while the WMAP7

analysis has Ωm = 0.264+0.064
−0.049 and σ8 = 0.801+0.059

−0.058 (both
95% CL). Note also that the degeneracy between Ωm and

c© 2008 RAS, MNRAS 000, 1–21
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Can we constrain 
subhalo properties?

Using group catalog

Stack satellites with
host halo of similar 
mass, and at similar 

halo-centric distance.
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Figure 2. In left panel, we plot the lensing signal around satellite at different position in a halo with mass of 1014h−1M". The satellite
mass is set to zero. And different lines represent different projected halo-centric distance. In the right panel, the different lines represent
lensing signal around satellite of different mass within a host halo of 1014h−1M".

write uncertainty of tangential shear measurement, σγ , as:

2Rσγ =
√

σ2
SN + σ2

e/
√

Npair , (15)

where Npair is the number of lens-source pairs. σSN ≈ 0.3 is
the intrinsic shape dispersion for one component of the ellip-
ticity and the σe ≈ 0.4 ∼ 0.05(depending on the luminosity)
is the measurement noise for one component of the elliptic-
ity(Sheldon et al. 2009). We adopt the value: σSN = 0.3 and
σe = 0.2 for analysis below. We fix zl = 0.15 which is the
mean redshift of galaxies in GCY07 and zl = 1.0, a char-
acteristic redshift for deep observation. Since the lens are
distributed in very low redshift, the source galaxy redshift
distribution affect lensing signal weakly(King & Schneider
2001). Fixing the lens and source redshift zl , zs, one can
get:

σ∆Σ(R) = σγ(R)× Σcrit(zl, zs) . (16)

Thus, the lensing measurement noise only depends on Npair,
which is determined by number of lens galaxies and the num-
ber density of source galaxies. We use GCY07 to estimate
lens galaxy number. For example, the number of galaxies in
groups with mass in range [1014, 5× 1014]h−1M", and with
halo-centric distance in range [0.5, 0.6] h−1Mpc is about
1200.

We consider two level of noise in this work with dif-
ferent source galaxy number density. The first level(LEV1)
is to mimic the lensing measurement noise of the current
generation galaxy survey, such as SDSS. In this case, we
set the background source density to 1.2/arcmin2 (Mandel-
baum et al. 2005). The second level of noise is to mimic
the detectability of next generation all sky survey such as
LSST. Since these survey will not have spectroscopic infor-
mation, the precise spectroscopic group catalog cannot be

constructed. Luckily, these survey will overlap with SDSS
data field. So we will keep using the number of lens derived
from GCY07 to estimate the number of source galaxies, and
boost the background source density to 60 per arcmin2.

Since GCY07 bases on SDSS Data Relase 4 (DR4;
Adelman-McCarthy et al. 2006) , the field of which is only
half as large as the 7th data release of SDSS(Abazajian et al.
2009). We double the lens number counted in GCY07.

In Fig3, we compare the lensing measurement noise with
the expected signal around satellites. We calculate the av-
erage lensing signal around galaxies with host halo mass in
range [1014, 5×1014]h−1M" and [1013, 5×1013]h−1M" with
halo-centric distance in range [0.1, 0.2] and [0.5, 0.6] h−1Mpc
and plot our two level noise estimation over the signal. One
can find that both SDSS like survey and LSST like survey
can constrain the lensing signal from host halo well. But for
the inner part where subhalo dominates, SDSS like surveys
give a large error bar, while LSST like surveys can still mea-
sure the signal. One can find that, the S/N doesn’t drop for
smaller groups. This is because number of smaller groups
are much larger than that of massive ones and mean sub-
halo mass doesn’t drop significantly in smaller groups(see
Fig.1).

5 MODEL INFERENCE WITH THE MONTE
CARLO MARKOV CHAIN METHOD

5.1 Monte Carlo Markov Chain fitting

On known the observation θ, the possibility that the model
parameters π is true is described by the likelihood function
L(π|θ) and prior probability distribution P (π) of these pa-
rameters. Bayesian theorem tells us that such a possibility

c© 0000 RAS, MNRAS 000, 000–000
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Subhalo mass function
The Mass Function and Average Mass-Loss Rate of Dark Matter Subhaloes 5

Figure 3. Left-hand panel: The solid histogram indicates the average, evolved SHMF for a parent halo with M0 = 1015h−1M", obtained
from 2000 merger trees with τ0 = 0.13 Gyr and ζ = 0.36. With these parameters the resulting SHMF best matches those of Gao et
al. (2004) and De Lucia et al. (2004), shown as dashed and dot-dashed lines, respectively. Note that the model reveals a high-mass cut-off.
The dotted histogram indicates the unevolved SHMF (i.e., without subhalo mass loss) and is shown for comparison. Right-hand panel:

Same as left-hand panel, except that here we plot the mass fraction of dark matter subhaloes. Note that dfs/dln(m) of the evolved
subhaloes is very flat, indicating that low mass subhaloes contain a significant fraction of the total subhalo mass.

τ = τ (z) = τ0

(

∆vir(z)

∆vir(0)

)−1/2 (

H(z)

H0

)−1

(3)

with τ0 a free parameter that expresses the characteristic
time scale for subhalo mass loss at z = 0.

3.2 Evolution of the population of subhaloes

Although the subhalo mass loss rate in a static parent halo
is a meaningful concept from a physical point of view, in
reality parent haloes themselves evolve due to merging and
accretion. In order to take this into account we utilize the
discrete time stepping of our merger trees. At the beginning
of each time step the parent halo is assumed to increase its
mass through (instantaneous) mergers (Ṁ > 0, ṁ = 0),
while during the period in between two merger events we
set Ṁ = 0 and evolve m(t) according to eq. (2). The exact
procedure is illustrated graphically in Fig 2: At t = t1 halo
1 (with three subhaloes) and halo 2 (with two subhaloes)
merge. Since M1 > M2, halo 1 is considered the new parent
halo, with halo 2 as a subhalo. In addition, the subhaloes
of M1 are preserved, and are considered subhaloes of the
new, merged halo. The two subhaloes of 2, however, are no
longer considered (i.e., we do not follow the evolution of
sub-subhaloes). From time t1 to t2, which is when the next
merging or accretion event occurs, the subhaloes evolve ac-
cording to our mass loss rate, i.e., eq. (2) with t = t2 − t1,
mi = m(t1), and τ = τ (t1). This procedure, hereafter re-
ferred to as the ‘Monte-Carlo method’, yields, at each red-
shift, the evolved SHMF. In addition, we also register for
each subhalo the time of merging, tm, as well as its mass at
that time, m(tm). The abundance of these progenitor haloes

as function of their mass, m(tm), is hereafter referred to as
the unevolved SHMF.

In order to calibrate our model, we tune the free pa-
rameters ζ and τ0 such that the SHMF of parent haloes
with M0 = 1015h−1 M" matches the subhalo mass func-
tions of Gao et al. (2004) and De Lucia et al. (2004). Al-
though these two SHMFs, obtained from independent nu-
merical simulations, are very similar, the agreement is not
perfect. Including the results of Tormen et al. (2004) we
estimate the accuracy of the absolute normalization to be
about 20 percent, and caution the reader that the absolute
normalization of our results is therefore uncertain by a simi-
lar amount. Nevertheless, our relative normalizations, which
are the main topic of interest here, should not be effected
by this. A more robust absolute normalization will have to
await a larger sample of high-resolution simulations, and a
more detailed investigation of numerical resolution effects.

The dotted histogram in the left-hand panel of Fig. 3
plots the average unevolved SHMF obtained from 2000
merger trees for a parent halo of M0 = 1015h−1 M", and
is shown for comparison with the evolved SHMF (solid his-
togram). The latter is obtained from the same 2000 merger
trees using the method described above with τ0 = 0.13 Gyr
and ζ = 0.36. These are the parameters for which we ob-
tain the best-fit to the subhalo mass functions of Gao et
al. (2004) and De Lucia et al. (2004), shown as dashed and
dot-dashed curves, respectively. The agreement with these
SHMFs obtained from numerical simulations is very satis-
factory, except for a high-mass cut-off in our model, which
is not accounted for in the simple power-law fits to the pub-
lished SHMFs of Gao et al. (2004) and De Lucia et al. (2004).
Detailed tests have shown that the location of this high-

c© 2000 RAS, MNRAS 000, 1–14
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Test with Data: CFHT/
Stripe82

• CFHT/Stripe 82 

• 170 deg^2

• 10 source/arcmin

• seeing 0.6”

• Shear catalog by KSB90 
method

4 Li et al.

Figure 1. The figure shows measured ∆Σ(R) around satellite
galaxies in groups with mass in [1013, 5 × 1014]h−1M" range. In
the left panels, the black solid lines show prediction of fiducial
predictions and dashed lines show predictions considering center-
offset. In the right panels, we show the best-fits of Eq.(11). Error
bars show 1σ uncertainties. In the upper panels, the rp range of
satellite galaxies is [0.1, 0.3]h−1Mpc, while in the lower panels, the
range is [0.3, 0.5]h−1Mpc. For easier view, the data points are
rebinned.

Figure 2. The figure shows measured ∆Σ(R) around central
galaxies in groups with mass in [1013, 5× 1014]h−1M" range. The
fit to NFW profile is shown with solid line. Error bars show 1σ
uncertainties.

of log(Msub/h−1M") = 11.64 ± 0.75, which agrees with
our model prediction(〈logMsub,theory/h−1M"〉 = 11.30).
Due to the data quality, however, the constraint is not
tight. The assumption that lensing signals all come from
stellar mass can only be rejected at 1σ level. For param-
eter ρ0,sub and rs,sub, the constraint is poor, mainly due
the large uncertainties at inner region. The results for

Figure 3. The figure shows 68% and 95% confidence contours
for parameter M , rp and Msub. The last plot of each row shows
marginalized parameter possibility distribution. The rp range of
satellite galaxies is [0.1, 0.3]h−1Mpc.

Figure 4. Similar to Fig. 3, but shows 68% and 95% confidence
contours for parameter Msub, ρ0,sub and rs,sub.

[0.3, 0.5] rp bin is similar. We list the best-fit value for
M, rp and Msub in table 1. In the last column of the ta-
ble, we also list the mean subhalo mass of our theoretical
model.

5. SUMMARY

For the first time, we measure directly the lensing sig-
nals around satellite galaxies. We use the group cata-
log constructed with SDSS spectroscopic survey to se-
lect satellite galaxies and extract tangential shear with
source catalog extracted from CFHT/Stripe82 survey.
The lensing effect is measured for satellites in groups
with mass of [1013, 5 × 1014]h−1M". Though the er-
ror bars at small scale are large, the observation agrees
well with theoretical predictions. By fitting the data
points with truncated NFW profile, we obtain the sub-
halo mass of log(Msub/h−1M") = 11.64± 0.75 for satel-
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Figure 1. The figure shows measured ∆Σ(R) around satellite
galaxies in groups with mass in [1013, 5 × 1014]h−1M" range. In
the left panels, the black solid lines show prediction of fiducial
predictions and dashed lines show predictions considering center-
offset. In the right panels, we show the best-fits of Eq.(11). Error
bars show 1σ uncertainties. In the upper panels, the rp range of
satellite galaxies is [0.1, 0.3]h−1Mpc, while in the lower panels, the
range is [0.3, 0.5]h−1Mpc. For easier view, the data points are
rebinned.

Figure 2. The figure shows measured ∆Σ(R) around central
galaxies in groups with mass in [1013, 5× 1014]h−1M" range. The
fit to NFW profile is shown with solid line. Error bars show 1σ
uncertainties.

of log(Msub/h−1M") = 11.64 ± 0.75, which agrees with
our model prediction(〈logMsub,theory/h−1M"〉 = 11.30).
Due to the data quality, however, the constraint is not
tight. The assumption that lensing signals all come from
stellar mass can only be rejected at 1σ level. For param-
eter ρ0,sub and rs,sub, the constraint is poor, mainly due
the large uncertainties at inner region. The results for

Figure 3. The figure shows 68% and 95% confidence contours
for parameter M , rp and Msub. The last plot of each row shows
marginalized parameter possibility distribution. The rp range of
satellite galaxies is [0.1, 0.3]h−1Mpc.
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[0.3, 0.5] rp bin is similar. We list the best-fit value for
M, rp and Msub in table 1. In the last column of the ta-
ble, we also list the mean subhalo mass of our theoretical
model.

5. SUMMARY

For the first time, we measure directly the lensing sig-
nals around satellite galaxies. We use the group cata-
log constructed with SDSS spectroscopic survey to se-
lect satellite galaxies and extract tangential shear with
source catalog extracted from CFHT/Stripe82 survey.
The lensing effect is measured for satellites in groups
with mass of [1013, 5 × 1014]h−1M". Though the er-
ror bars at small scale are large, the observation agrees
well with theoretical predictions. By fitting the data
points with truncated NFW profile, we obtain the sub-
halo mass of log(Msub/h−1M") = 11.64± 0.75 for satel-

4 Li et al.

Figure 1. The figure shows measured ∆Σ(R) around satellite
galaxies in groups with mass in [1013, 5 × 1014]h−1M" range. In
the left panels, the black solid lines show prediction of fiducial
predictions and dashed lines show predictions considering center-
offset. In the right panels, we show the best-fits of Eq.(11). Error
bars show 1σ uncertainties. In the upper panels, the rp range of
satellite galaxies is [0.1, 0.3]h−1Mpc, while in the lower panels, the
range is [0.3, 0.5]h−1Mpc. For easier view, the data points are
rebinned.

Figure 2. The figure shows measured ∆Σ(R) around central
galaxies in groups with mass in [1013, 5× 1014]h−1M" range. The
fit to NFW profile is shown with solid line. Error bars show 1σ
uncertainties.

of log(Msub/h−1M") = 11.64 ± 0.75, which agrees with
our model prediction(〈logMsub,theory/h−1M"〉 = 11.30).
Due to the data quality, however, the constraint is not
tight. The assumption that lensing signals all come from
stellar mass can only be rejected at 1σ level. For param-
eter ρ0,sub and rs,sub, the constraint is poor, mainly due
the large uncertainties at inner region. The results for

Figure 3. The figure shows 68% and 95% confidence contours
for parameter M , rp and Msub. The last plot of each row shows
marginalized parameter possibility distribution. The rp range of
satellite galaxies is [0.1, 0.3]h−1Mpc.

Figure 4. Similar to Fig. 3, but shows 68% and 95% confidence
contours for parameter Msub, ρ0,sub and rs,sub.

[0.3, 0.5] rp bin is similar. We list the best-fit value for
M, rp and Msub in table 1. In the last column of the ta-
ble, we also list the mean subhalo mass of our theoretical
model.

5. SUMMARY

For the first time, we measure directly the lensing sig-
nals around satellite galaxies. We use the group cata-
log constructed with SDSS spectroscopic survey to se-
lect satellite galaxies and extract tangential shear with
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Forecast LSST vs SDSS

• Both survey can 
constrain host halo mass 
and concentration in 
narrow range

• LSST can put tight 
constraints on subhalo 
mass

12 Ran Li et. al

Figure 7. A close comparison between the posterior distributions shown in Figs.5 and 6. The solid histograms are the marginalized
distribution of M , c, Msub and rs,sub for LEV2, while the dashed histograms for LEV1 case.

(2007). The mock catalog is constructed by running group
finder on mock galaxy redshift survey (MGRS) built by pop-
ulating dark matter halos with galaxies according to the
conditional luminosity function(CLF; van den Bosch et al.
2007). The CLF, derived from SDSS galaxy data, describes
the luminosity distribution for galaxies in haloes with a given
mass. As the result, the luminosity function and cluster-
ing properties of MGRS accurately match with the obser-
vational results from SDSS survey. The MGRS also takes
into account of real observational conditions by mimicking
the sky coverage and completeness trend of the SDSS survey

(see Yang et al. (2007) for the detail). For such a mock group
catalog, we not only know the group to which a galaxy is
assigned, but also know the dark matter halo to which the
galaxy truly belongs. Thus, it is particular suitable for ex-
ploring the contamination effects from fake group members.

From the SDSS mock group catalog, we select satellites
in groups with assigned host mass from the group finder in
the range of [1014, 2 × 1014]h−1M" and with the projected
halo-centric distance of [0.5, 0.6]h−1Mpc . We use the model
described in Section 3 to generate ‘observed’ lensing signals.
To isolate the errors due to fake group members, we fix the

c© 0000 RAS, MNRAS 000, 000–000
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HIGHER ORDER: FLEXION

416 D. J. Bacon et al.

The complex formalism provides a neat way to generalize the

analysis of distortions to higher orders. Taking the third derivative

of the lensing potential, we have the unique combinations

F = |F |eiφ =
1

2
∂∂∗∂ψ = ∂κ = ∂∗γ ,

G = |G|e3iφ =
1

2
∂∂∂ψ = ∂γ , (13)

where the first flexion, F , is a spin-1 field and the new second

flexion, G, is seen to be a spin-3 field. Here φ represents the position

angle determining the direction of the vector or spin-3 component.

Expanding the flexions in terms of the gradients of the shear field,

we find

F = (∂1γ1 + ∂2γ2) + i(∂1γ2 − ∂2γ1)

G = (∂1γ1 − ∂2γ2) + i(∂1γ2 + ∂2γ1). (14)

These two independent fields specify the weak ‘arciness’ of the

lensed image.

The complex representation allows us to find a consistency rela-

tion between the two flexion fields

∂∗∂G = ∂∂F , (15)

which can be used as a check on measurements of F and G.

We are also able to obtain a direct description of the third-order

lensing tensor Dijk. Defining F = F1 + iF2 and G = G1 + iG2 we

can then re-express Dijk as the sum of two terms Di jk = Fi jk +Gi jk ,

where the first (spin-1) term is

Fi j1 = −
1

2

(

3F1 F2

F2 F1

)

Fi j2 = −
1

2

(

F2 F1

F1 3F2

)

(16)

and the second (spin-3) term is

Gi j1 = −
1

2

(

G1 G2

G2 −G1

)

Gi j2 = −
1

2

(

G2 −G1

−G1 −G2

)

.

(17)

In order to obtain a visual understanding of the flexion quantities,

we have used these forms for the Dijk matrix in terms of F and G

in order to calculate how a Gaussian image is transformed by the

various operations of weak lensing, according to equation (6). The

results are shown in Fig. 1, which displays the lensing operations

in order of their spin properties. The Gaussian galaxy is given a

radius (standard deviation) of 1 arcsec; while the convergence and

shear imposed on the galaxy are realistic (10 per cent in each case),

the flexion is deliberately chosen to be extraordinarily large for

visualization purposes (0.28 arcsec−1, cf. 0.04 arcsec−1 intrinsic

rms flexion on galaxies). We immediately see the shapes induced

by flexion: the first flexion leads to a (vectorial, spin-1) skewness,

while the second flexion leads to a threefold (spin-3) shape.

While the first flexion probes the local density via the gradi-

ent of the shear field, the spin-3 second flexion probes the non-

local part of the gradient of the shear field. For example, consider

a Schwarzschild lens: the first flexion is by definition zero every-

where except at the origin, as the gradient of the convergence is

zero everywhere except at the origin. However, there is certainly

‘arciness’ generated by such a lens; this is described by the sec-

ond flexion. We provide explicit expressions for the first and second

flexion generated by simple mass distributions in Sections 3 and 4.

Figure 1. Weak lensing distortions with increasing spin values. Here an

unlensed Gaussian galaxy with radius 1 arcsec has been distorted with

10 per cent convergence/shear, and 0.28 arcsec−1 flexion. Convergence is a

spin-0 quantity, first flexion is spin-1, shear is spin-2 and second flexion is

spin-3.

The series of lensing distortions can clearly be continued to

arbitrary order by taking permutations of additional spin-raising

and lowering derivatives. For instance, the next order of distor-

tion can be decomposed into three fields; a spin-4 field, ∂∂∂∂ψ ,

a spin-2 field, ∂∗∂∂∂ψ , and a spin-0 field, ∂∗∂∗∂∂ψ . The nth or-

der term can be decomposed into Int(1 + n/2) independent spin

fields with spins s = n, n − 2, n − 4, . . . , 0 if n is even or . . . 1

if odd. Consistency relations similar to those for F and G can be

found for all the higher spin fields, which can also be used to es-

timate the convergence field via Kaiser–Squires-like relations (see

Section 5).

However, in this paper we restrict ourselves to exploring the pos-

sibilities given by the first and second flexion. We now proceed to

consider how to measure flexion.

2.3 Shapelet measurement

Since the flexion is in terms of derivatives of the shear field, we

therefore require a means of measuring these derivatives, γ i,j.

We have found (Goldberg & Bacon 2005) that we can measure the

shear derivatives using the shapelet formalism of Refregier (2003b)

and Bernstein & Jarvis (2002), as applied to lensing by Refregier &

Bacon (2003).

We decompose galaxy images into shapelet coefficients, corre-

sponding to pre-factors for reduced Hermite polynomials:

f (θ) =
∑

n,m

fnm Bnm(θ) (18)

where

Bnm(θ; β) = β−1φn

(

β−1θ1

)

φm

(

β−1θ2

)

. (19)

Here β is a scalefactor chosen for the galaxy, and φn are reduced

Hermite polynomials.

Since these functions are eigenfunctions for the quantum har-

monic oscillator, we can define ladder operators as in quantum

mechanics

â1 |φn m〉 =
√

n |φn−1 m〉

â
†
1 |φn m〉 =

√
n + 1 |φn+1 m〉 (20)
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CONSTRAIN M/L WITH SHEAR
+FLEXION

Mass to light ratio of galaxies and gravitational lensing 9

Fig. 5 comparison of input mass to light ratio and measured mass to light ratio using weak
lensing signals. X axes is logarithmic stellar mass, y axes is logarithmic halo mass. Black curve
shows the input mass to light ratio of the galaxy catalogue which is described in section 3, the
errorbars stand for 1� uncertainties of stellar mass (errorbars along x axes) and halo mass
(errorbars along y axes) in each picked sub-sample, which are picked within the given stellar
mass bin. Red zone shows the best-fit M200 parameter with 1� uncertainties by combining
simulated shear signals and simulated flexions signals with Rowe’s noise model. Green zone
is similar to red zone, except the noise model of flexions is intrinsic shape noise model.

of measured results and input is shown in Fig. 5. The number of galaxies with the stellar
mass between 1010h�1M� and 1011h�1M� is much larger than that at smaller stellar mass
end according to the stellar mass distribution in SDSS R7, so the constraint on mass-to-light
ratio of the galaxies in this stellar mass range is much better than that in the lower stellar
mass range. The advantage of flexions with lower limit noise model becomes considerable at the
smaller stellar mass end.

To sum up, Weak lensing is a powerful tool to constrain the mass to light ratio. Flexions help
us to improve the constraint significantly if we assume the total noise of flexions is dominated
by intrinsic shape noise as shear. However, if we apply rowe’s noise model of flexions, the
improvement is not notable. We can expect the future facility and new methods can reduce the
noise of flexions to an acceptable level, and flexions will be helpful, especially when the number
of galaxy sample is small.

Discussion and conclusions are preparing.

8 Nan Li et.al. and

Fig. 4 Comparison of input model and simulated signals of shear, F flexion and G flexion with
di↵erent noise models respectively. Top panels show the results of the galaxies with stellar
mass from 109h�1M� to 5⇥ 109h�1M�, bottom panels show the results of the galaxies with
stellar mass from from 1011h�1M� to 5⇥ 1011h�1M�. Left panels show the results of shear,
F flexion and G flexion with intrinsic noise model, right panels show the results of F flexion
and G flexion with Rowe’s noise model. In each panels, x axes is the projected separation
from source galaxy to the center of lens galaxy, which is in units of arcsec. Y axes is shear, F
flexion and G flexion, and the units of flexions is arcsec�1. Solid curves with di↵erent colors
show the input models, which are shear (red), F flexion (green) and G flexion (blue). Points
with errorbars show the simulated signals with 1� uncertainties, which are shear (red), F
flexion (green) and G flexion (blue).

It is studied that the results of joint fit of shear and flexions with the two noise models. The
results show that the improvement is significant that we apply the intrinsic noise model, which
is the lower limit of the noise of flexions, on the flexions (green contours in the right panel in
Fig. 3). This improvement is because of the intrinsic noise of flexions is about one-tenth of that
of shear. The improvement is ⇠ 5% for the case of flexions with the upper limit noise model
(Rowe’s noise model). The di↵erence between the degeneracy directions of shear and flexions
is the main reason for this improvement (see the left panel in Fig. 3). The upper limit noise
model of flexions is even larger than that of shear. Involving flexions can not constrain mass
more tightly. Flexions are sensitive to small scale mass distribution, e.g. density slope, so they
improve the constraint along concentration parameter direction.

Repeating our methods in di↵erent stellar mass bins, we can obtain the measured relation
between the halo mass and stellar mass of our simulated galaxy catalogue. The comparison

Nan Li, Ran Li and Xingzhong Er 2013

Constrains on M/L for field galaxies, assuming 
LSST like survey.
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Conclusion

• Galaxy-galaxy is a promising tool to study 
dark matter halo structure.

• One can link theory and observation using group 
catalog and CLF.

• Next generation lensing survey will be able to 
constrain substructure 

• Higher order: galaxy-galaxy Flexion

• Apply the methods to future observation data.
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Thank You
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