BAO IN LYα-QUASAR CROSS-CORRELATIONS Ross O'Connell, Carnegie Mellon University

Based on work in progress with Shirley Ho, Xiaoying Xu, KG Lee, Jean-Marc LeGoff, and Jordi Miralda

With thanks to Anze Slosar, Nao Suzuki, Andreu Font-Ribera, David Kirkby, Jim Rich, Nicolas Busca, Patrick McDonald, Stephen Bailey, Isabelle Paris, Patrick Petitjean, Donald Schneider, Nikhil Padmanabhan, and the BOSS Lyα and Quasar working groups!

Tuesday, July 16, 13

WHY CROSS-CORRELATIONS?

- Each tracer has its own systematics, but they're probably not correlated with one another.
- Density of the forest allows us to make a BAO measurement with quasars, easier than doing quasar autocorrelation.
- Techniques should be easily applicable to (your favorite density field) x (your favorite point source)!

OVERVIEW

- Introduction to BAO
- Data sources
- A new estimator
- Covariance matrix
- Anisotropic fitting
- Systematic uncertainty

Taken from D. Eisenstein, https://www.cfa.harvard.edu/~deisenst/acousticpeak/acoustic_physics.html

Imagine a spherically symmetric overdensity

Taken from D. Eisenstein, https://www.cfa.harvard.edu/~deisenst/acousticpeak/acoustic_physics.html

Plasma and photons are strongly coupled

Taken from D. Eisenstein, https://www.cfa.harvard.edu/~deisenst/acousticpeak/acoustic_physics.html

Plasma and photons expand at $c_s \approx 0.57c$.

Taken from D. Eisenstein, https://www.cfa.harvard.edu/~deisenst/acousticpeak/acoustic_physics.html

After recombination, the photons are free to go

Taken from D. Eisenstein, https://www.cfa.harvard.edu/~deisenst/acousticpeak/acoustic_physics.html

And the baryons stop

Taken from D. Eisenstein, https://www.cfa.harvard.edu/~deisenst/acousticpeak/acoustic_physics.html

Gravity causes DM and gas to trace each other

Taken from D. Eisenstein, https://www.cfa.harvard.edu/~deisenst/acousticpeak/acoustic_physics.html

At late times, both distributions have a peak at ~150 Mpc

WHAT WE DO WITH BAO

- Position of the BAO peak is determined by simple physics – "standard ruler"
- Measurement constrains H(z)and $D_A(z)$.
- Feature is sharp a *relatively* easy measurement.

BOSS DRIO

- 102,684 quasars from DR10 (Paris et al.), 3,187 z<2.15 quasars from DR7 (Schneider et al.)
- 29,039,754 Lyα pixels
 (1080-1185Å)
- Simple measure of information density: $F(z) \propto N_{QSO}(z) \frac{W_{tot}(z)}{R^2(z)}$

FROM SPECTRA TO FOREST

- Identify absorption features in quasar spectra.
- To map out absorption, need to predict unabsorbed spectrum.
- We use PCA fits from Lee et al.

CORRECTING THE FOREST (1)

- Stack pixels at observed wavelength: foreground effect
- In addition to cross-correlating KG's original version of the forest, generate a second data set with $\langle \delta_F \rangle (z) = 0$

CORRECTING THE FOREST (2)

- Stack spectra at emitted wavelengths, bin by quasar magnitude – luminosity dependent fitting errors
- Third corrected data set: fix this, set $\langle \delta_F \rangle(z) = 0$

DD-DR ESTIMATOR

• Naive estimator:

 $\xi_{\rm DD} = \sum_{\rm QSOs} \frac{\sum W_i \delta_{F,i}}{\sum W_i}$

• New Term:

$$\xi_{\rm DR} = \sum_{\rm Random QSOs} \frac{\sum W_i \delta_{F,i}}{\sum W_i}$$

Improved Estimator

 $\xi_{\rm DD-DR} = \xi_{\rm DD} - \xi_{\rm DR}$

GENERATING "RANDOM" QUASARS

- Goal is to mimic density of quasar survey (not uniform)
- Our method: reassign observed redshifts and observed angular coordinates
- Result is small, probably nonzero

COVARIANCE MATRIX

- One approach: Bootstrap, regions are 72 discs of radius 10° (~600 Mpc/h at z=2)
- For each bootstrap realization, draw until $\sum w_i$ in range r=28-40 Mpc/h matches the DD crosscorrelation

COVARIANCE MATRIX

- Alternative approach: use different realizations of the DR correlator.
- Pros: Can generate many different sets of random QSOs, compute correlator reliably to large distances (e.g. 200 Mpc/h)
- Cons: Covariance matrix will be missing contribution from QSO autocorrelation

COVARIANCE MATRIX

Comparison of Covariance Matrices (0-0)

MONOPOLE AND QUADRUPOLE

ANISOTROPIC FITTING

Basic ansatz for cross-correlations:

$$P_{\rm cross} = \sqrt{P_{\rm Ly\alpha}P_{\rm QSO}}$$

- Basic approach from Xu et al. '12: Linear theory + Kaiser effect + non-linear broadening
- Deviations from Planck cosmology parametrized by

$$r_{\parallel} = \alpha (1+\epsilon)^2 r_{\parallel,\text{obs}}, r_{\perp} = \frac{\alpha}{1+\epsilon} r_{\perp,\text{obs}}$$

• Account for systematics using polynomials $A_{\ell}(r) = \frac{a_{\ell,0}}{r^2} + \frac{a_{\ell,1}}{r} + a_{\ell,2}$

$\alpha - \epsilon$ FITTING: FOUR FORESTS

No Corrections

 $\left< \delta_F \right> (z) = 0$

Mean Transmission Correction

ω

r

Luminosity dependent corrections, and $\langle \delta_F \rangle (z) = 0$

AVERAGED LIKELIHOOD SURFACE

- How do we interpret these likelihood surfaces?
- Our guess: systematic uncertainty associated with continuum fitting.
- Average together likelihood surfaces to get a result that incorporates this uncertainty.
 Sys ~ 0.5 x Stat

 $\alpha_{\perp} = (D_A/r_s)/(D_A/r_s)_{\rm fid}$