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Abell 2218
NASA, A. Fruchter & ERO Team

Largest gravitationally bound 
objects in the Universe

    

1013 – 1015 solar masses (M
⊙
)

0.5 – 3 million parsecs

    

~ 1% galaxies

~ 10% intracluster medium gas

~ 90% dark matter

Clusters of galaxiesClusters of galaxies
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Clusters form through 
merging and accretion 
of smaller objects

Filament-void network:

matter collects in 
filaments, then flows 
toward intersections

Rich clusters lie at the 
intersections

Clusters in cosmological contextClusters in cosmological context
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Optical/Infrared

Galaxies
Intracluster stars

Dark matter via 
gravitational lensing

X-Ray

Thermal hot gas

Radio

Nonthermal particles

Thermal hot gas via
Sunyaev-Zel'dovich effect 

(microwave)

Observing clustersObserving clusters



July 5, 2013 SF13 5

Coma Cluster Radio Halo – 1.4 GHz
Deiss et al. (1997)

Coma C

NGC 4839

1253+275

Radio halos

Round

Unpolarized

Covers most of cluster

Radio relics

Elongated

Polarized

Outskirts only

Radio minihalos

Round

Polarized

Centers of cool-core 
clusters

Mpc-scale diffuse radio emissionMpc-scale diffuse radio emission
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Relics – examplesRelics – examples

1RXS 0603.3+4214 (“Toothbrush”)CIZAJ2242.8+5301 (“Sausage”)

XMM X-ray image  (Ogrean et al. 2013)
1.4 GHz radio contours (van Weeren et al.)

XMM X-ray (blue) + 610 MHz GMRT (red)
 (Ogrean et al. 2012)
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Halos – examplesHalos – examples

Abell 2219 Abell 2744

Feretti et al. (2012)
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Earliest

Coma C source detected by Large et al. (1959), identified as diffuse by Willson 
(1970)

By 1982 only ~ 4 – 5 radio halos known (Hanisch 1982)

Coma, A2255, A2256, A2319; Perseus (minihalo)

Recent searches

NVSS – 13 out of 205 XBACS clusters 
(Giovannini et al. 1999)

WENSS – 18 of 1001 ACO clusters (Kempner 
& Sarazin 2001)

GMRT – 10 of 50 REFLEX+eBCS clusters 
(Venturi et al. 2007, 2008)

Extended GMRT survey: additional 12 clusters 
w/ no new halo detections (Kale et al. 2013)

~42 clusters with halos known to date

Detections of radio halosDetections of radio halos
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Radio power

P
1.4 GHz

 ~ 1023-26 W Hz-1

Spectrum

P

 ∝ –,  = 1.2 – 2

“Normal” and “ultra steep 
spectrum”

Morphology

All show distorted X-ray 
morphology

No “cool-core” clusters 
host full-size radio halos

Common features of radio halosCommon features of radio halos

Venturi (2011)
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Likelihood of hosting a halo

~ 5% of all clusters

~ 35% of clusters with   
 L

X
 > 1045 erg s-1 (M ~ 1015 M

⊙
)

Inference: separate “on” and “off” 
states

BimodalityBimodality

Cassano et al. (2008)
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For clusters hosting radio halos, 
1.4 GHz radio power correlates 
with (Liang et al. 2000; Feretti 
2000)

X-ray luminosity

X-ray temperature

Isophotal size

X-ray luminosity/radio power correlationX-ray luminosity/radio power correlation

Kale et al. (2013)

on

off
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Some halos show 
spatial correlations 
with X-ray surface 
brightness and 
temperature ...

... but not all!

Govoni et al. (2004)

Abell 520

Abell 754

Spatial correlations with X-raysSpatial correlations with X-rays
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Abell 2744 (Orru et al. 2007)

VLA (325 MHz – 1.4 GHz) Chandra X-ray

Radio spectral index and X-ray emissionRadio spectral index and X-ray emission
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Abell 2744 (Orru et al. 2007)

Radio spectral index and X-ray temperatureRadio spectral index and X-ray temperature
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Mergers clearly matter

All radio halos are in 
morphologically distorted 
clusters

Radio power increases with 
amount of distortion

Clusters are brighter and hotter 
in X-rays during mergers, and 
brighter in radio

Mass also matters

Only the most massive clusters 
host halos, and only 1/3 of 
them

Why do clusters have radio halos?Why do clusters have radio halos?

Cassano et al. (2010)

giant halo
minihalo
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Mergers clearly matter

All radio halos are in 
morphologically distorted 
clusters

Radio power increases with 
amount of distortion

Clusters are brighter and hotter 
in X-rays during mergers, and 
brighter in radio

Mass also matters

Only the most massive clusters 
host halos, and only 1/3 of 
them Buote (2001)

Why do clusters have radio halos?Why do clusters have radio halos?
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Primary electrons (Jaffe 1977)

From intracluster medium or radio 
galaxies

Require reacceleration to explain 
diffuse halos of size ~ 1 Mpc

Hadronic secondaries (Dennison 1980)

From interactions of cosmic-ray 
protons with thermal protons:

Do not require reacceleration; 
relativistic protons last (practically) 
forever

Problem: γ-rays not seen by Fermi 
(Jeltema & Profumo 2011)

p+ p → p+ p+{π
±
→ e± + ν

π
0
→ γ

100

10

1

0.1

0.01

0.001
0              1                2                3               4               5

log 
t lo

ss
 (G

yr
)

e– synchrotron lifetime @ 1G

Sarazin (1999)

Production of relativistic electronsProduction of relativistic electrons
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(Re-)acceleration mechanisms(Re-)acceleration mechanisms

First-order Fermi acceleration

Origin:  merger shocks

Problem:  should trace shocks

Problem:  Mach #s too low

Second-order Fermi acceleration

Origin:  merger-induced turbulence

Needs efficient cascade to resonance 
scale – fast magnetosonic waves?

Maybe both operate

Halos:  turbulence

Relics:  shocks

v E

E' > E

 E
E

~
v
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v

E

E' < E

E
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E
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Donnert et al. (2013) – MHD simulation of 
head-on merger shows transition from “off” to 
“on” state and back

Mergers can turn on halosMergers can turn on halos
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Intermission
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What can we learn from radio halo statistics?What can we learn from radio halo statistics?

Magnetic field scaling with cluster mass

Cluster merger rate as a function of redshift

Relative contributions of hadronic and turbulent sources

Cosmological parameters?
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ObservationsObservations

Power-law radio halo 
luminosity function 
(RHLF) sensitive to 
sample completeness

“On” and “off” states

Spectral index ~ 1.2 – 
1.3 at 1.4 GHz, 
possibly steeper at 
lower frequencies

Zandanel et al. (2013)
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Theoretical expectations for the RHLFTheoretical expectations for the RHLF

Purely from observed scalings

Enßlin & Röttgering (2002)

Press-Schechter mass function ×

L
X
-M × P

1.4
-L

X
 × 0.3

Turbulent reacceleration

Cassano et al. (2006, 2012)

PS × B(M) scaling × acceleration 
efficiency ✳ spectral cutoff

Merger tree + Fokker-Planck model of 
turbulence decay

Hadronic secondaries

 Zandanel et al. (2013)

(N-body halos + gas model) ×

B(M) scaling × (turbulent advection, 
streaming) 

Cassano et al. (2006)
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Theoretical expectations for the RHLFTheoretical expectations for the RHLF

Cassano et al. (2012)

“Off” state
(hadronic)

“On” state
(turbulence)

z = 0 – 0.1

      0.1 – 0.2

      0.2 – 0.3

      0.3 – 0.4

      0.4 – 0.5

      0.5 – 0.6

Purely from observed scalings

Enßlin & Röttgering (2002)

Press-Schechter mass function ×

L
X
-M × P

1.4
-L

X
 × 0.3

Turbulent reacceleration

Cassano et al. (2006, 2012)

PS × B(M) scaling × acceleration 
efficiency ✳ spectral cutoff

Merger tree + Fokker-Planck model of 
turbulence decay

Hadronic secondaries

 Zandanel et al. (2013)

(N-body halos + gas model) ×

B(M) scaling × (turbulent advection, 
streaming) 
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Theoretical expectations for the RHLFTheoretical expectations for the RHLF

Zandanel et al. (2013)

Purely from observed scalings

Enßlin & Röttgering (2002)

Press-Schechter mass function ×

L
X
-M × P

1.4
-L

X
 × 0.3

Turbulent reacceleration

Cassano et al. (2006, 2012)

PS × B(M) scaling × acceleration 
efficiency ✳ spectral cutoff

Merger tree + Fokker-Planck model of 
turbulence decay

Hadronic secondaries

 Zandanel et al. (2013)

(N-body halos + gas model) ×

B(M) scaling × (turbulent advection, 
streaming) 
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FLASH 3.3 simulation (Sutter & Ricker 2012)FLASH 3.3 simulation (Sutter & Ricker 2012)

ΛCDM

Ω
m
 = 0.262, Ω

b
 = 0.0437

h = 0.719, σ
8
 = 0.74

DM + preheated hydro

Volume 1024 h–1 Mpc

Particles 6.7×1010 h–1 M
⊙

AMR within 100 regions to 
Δx = 32 h–1 kpc

Jaguar (ORNL), 16K cores, 
450K hours
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Cluster samplesCluster samples

High-resolution (131)

clusters found in the 
100 refined regions

Low-resolution (3900)

clusters outside refined 
regions; assign radio 
power using mean 
scalings from high-
resolution sample
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Modeling radio halo emissionModeling radio halo emission

Allow for dependence of radio power on mass M
vir
 and 

turbulent pressure Γ
vir

Magnetic field dependence on mass

Calibration using observed X-ray/radio correlation and X-
ray luminosity/mass correlation for most massive cluster

Two states assuming fixed radio halo probability of 5%
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Parameter constraintsParameter constraints

〈B〉 limits

Upper: 6.0 μG from Faraday 
rotation measurements

Lower: 0.2 μG from limits on 
hard X-rays 

Limits on scaling exponents

Compare fit to our P
1.4

-M 
relation to observed one

〈B〉 = 2 μG, a = 0, b = 1, c = 0.7
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Parameter constraints from observed P-M relationParameter constraints from observed P-M relation

Large 〈B〉 requires 
steep emissivity 
dependence on M

vir
 and 

Γ
vir

Steep B(M
vir
) essentially 

requires emissivity 
depend only on mass, 
or else high 〈B〉

Max allowed a+c

Dolag et al. (2002)Dolag et al. (2002)



July 5, 2013 SF13 31

Scaling of turbulent energy with massScaling of turbulent energy with mass

Scaling of mean 
turbulence-mass 
relation comparable to 
Vazza et al. (2006) 
result

Large scatter due to 
mergers

slope 1.7

z = 0
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Radio halo luminosity function at z = 0Radio halo luminosity function at z = 0

Solid: 1.4 GHz
Dashed: 150 MHz

(assuming spectral slope -1.2)

Solid: 1.4 GHz
Dashed: 150 MHz

(assuming spectral slope -1.2)

DifferentialDifferential CumulativeCumulative

Missing ~ 12 high-luminosity 
clusters because of limited volume
Missing ~ 12 high-luminosity 
clusters because of limited volume
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Sky mapsSky maps

http://sipapu.astro.illinois.edu/foswiki/bin/view/Main/RadioHaloMapshttp://sipapu.astro.illinois.edu/foswiki/bin/view/Main/RadioHaloMaps

Light cones with 
replicated box using 
simulated observations 
of individual clusters

Pixel size 2'

200 MHz

FITS
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ConclusionsConclusions

Parameters allowed by observed P-M relation

Large 〈B〉 requires steep emissivity dependence on M
vir

 and Γ
vir

Steep B(M
vir

) requires weak turbulence dependence or large 〈B〉

Wide range of RHLFs allowed at present

Need better constraints on P-M relation

Shape of RHLF at low luminosities and frequencies is an important 
discriminator between models

Need better understanding of survey completeness

Next steps for our simulations

Larger/more boxes – RHs are rare!

MHD, physical cosmic ray injection and transport
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