Constraints on Principal Components of the Dark Energy Equation of State

Eduardo J. Ruiz University of Michigan Phys. Rev. D86 (2012) 103004 In collaboration with: D. Shafer, D. Huterer, A. Conley

Santa Fe Cosmology Workshop July 5, 2013

Outline

- Overview of Principal Components of w(z)
 - What are they?
 - Why use them?
 - How to apply them
- Datasets
- Parameters and Associated Priors
- Resulting Constraints
- Figures of Merit

Principal Components (PCs)

- A More General Basis
 - Model independent form for w(z)
 - Lets the data dictate the form
- Bin w(z) into equal size bins in a
- Compute Fisher Matrix and Diagonalize
- Resulting eigenvectors $e_i(z)$ are the PCs

Huterer and Starkman (2003)

Principal Components (PCs)

Use a linear combination of the eigenvectors

•
$$w_j = w(z_j) = -1 + \sum_{i=1}^N \alpha_i e_i(z_j)$$

For w_j in the bin j, $z_j - \Delta z_j/2 < z < z_j + \Delta z_j/2$, the energy density of dark energy is

$$\rho_X(z) = \rho_X(z=0) \left(\frac{1+z}{1+z_j - \Delta z_j/2}\right)^{3(1+w_j)} \times \prod_{i=1}^{j-1} \left(\frac{1+z_i + \Delta z_i/2}{1+z_i - \Delta z_i/2}\right)^{3(1+w_i)} H^2(z) = H_0^2 \left[(1 - \Omega_M) \rho_X(z) / \rho_X(0) + \Omega_M (1+z)^3 \right]$$

Huterer and Starkman (2003)

Principal Components (PCs)

- For this project, w(z)
 is piecewise constant
 divided into 36 bins
 of Δa = 0.025 starting
 at a = 0.1
 - Fiducial value: $w_i = -1$
 - Used first 10 PCs for analysis

Albrecht et. al. (2009) (FoMSWG)

Data - Supernova and more

472 data points

- Magnitudes, color, stretch, redshift, etc., as well as associated statistical errors
- Associated off-diagonal systematics covariance matrix
 - Calibration, Milky Way Dust, Malmquist bias, Non-Ia contamination, etc.
- Also include constraints from BAO and CMB
- Compared constraints between diagonal statistical errors only and statistical + offdiagonal systematics

Conley et. al. (2011)

Parameters and Priors

- $\{\Omega_M, \alpha_1, \alpha_2, \dots, \alpha_{10}, \mathcal{M}, \alpha_s, \beta_C \}$
 - $\circ\,$ Marginalize over ${\mathcal M}$ analytically
- Find constraints on remaining 13 parameters using Markov Chain Monte Carlo (MCMC)
- Limit MCMC to reasonable region
 - Helps with convergence
- Take prior $-2 \le w \le 0$
 - Based on predictions of some scalar field quintessence models

$$\Delta \alpha_i = \frac{2}{N_{z,PC}} \sum_{j=1}^{N_{z,PC}} \left| e_i(z_j) \right|$$

Mortonson, Huterer, and Hu (2010)

Results

- Black contours: Constraints using statistical (diagonal) covariance between supernovae
- Red contours: Constraints using full covariance, which includes systematic (off-diagonal) covariance

Results

Ratio between contour st. dev. and prior rms

Figure of Merit

 Encapsulates the constraining power of cosmological data

Fom
$$M_n^{(PC)} \equiv \left(\frac{\det C_n}{\det C_n^{prior}}\right)^{-\frac{1}{2}} \sim \frac{1}{V_{95,n}}$$

• C_n is the $n \times n$ covariance submatrix of n PCs
• $\det C_n^{prior} = \prod_{i=1}^n \left(\frac{\Delta \alpha_i}{\sqrt{12}}\right)^2$

Mortonson, Huterer, and Hu (2010)

Figure of Merit

- Increase with number of PCs
- Levels off with more
 PCs added
- Ratio levels off even faster

Conclusion

- Studied Effects of Systematics on Dark Energy Equation of State PCs
- Found that the first few PCs are constrained well within the prior
- Systematics weaken constraints, reduce FoM by a significant amount