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Elephants and spherical cows

• As scientists, we have an almost 
natural tendency toward 
“spherical cows”: isolating only 
the relevant aspects of a 
system/phenomenon.

• A more comprehensive 
understanding can sometimes 
arise from a broader 
perspective, considering the 
interaction of aspects that may, 
at first sight, seem unrelated.

Friday, July 12, 13
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• Broadly speaking: cross-correlations require 

to put together different observables.
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Cross-correlations
• Broadly speaking: cross-correlations require 

to put together different observables.

• Trivial danger 1: <good * good>≠good2

• Trivial danger 2: cross-correlation does not 
imply a causal relation between two 
phenomena/observables
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Sometimes the perspective 
can be a bit too broad...
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Abstract  
It is a known fact that like people, some stars are singles, many others tend to couple in binaries, and fewer are in triples 
etc. The distribution of multiplicity in the 4559 brightest nearby stars was matched with that of human adults in house-
hold in six countries, in which this information could be dug and estimated. A strong resemblance between the two 
curves is evident. Monte Carlo simulations suggest that this result is significant at a confidence level higher than 98%. 
Apparently, there should be no connection between the two populations, thus this striking result may supply some clues 
about the way Nature works. It is noted that extended versions of this work were proposed three years ago, and two 
predictions of this absurd model have already been verified. 
 
Keywords: Binaries: general, surveys 

1. Introduction  
Astronomy is the observational study of stars. Sociology 
is the scientific or systematic study of human societies. 
Evidently, there should not be any relation between the 
two fields. Yet, it is known that many stellar systems are 
coupled in binary stars [1] similar to people. Recent ob-
servational data of several thousand brightest nearby 
stars [2] and the following expert research analysis [3] 
supplied a unique opportunity for a comparison between 
the distributions of stellar and human multiples. 
 
 

2. The distribution of stellar multiples 

The multiplicities of stars were collected for a set of 
4559 bright stars with Hipparcos [2]. The observed sam-
ple contained multiplicities up to 7. Taking into account 
the observational biases, it was concluded that the actual 
distribution of stars in 1, 2 … 7 multiples is respectively 
1459, 2179, 517, 202, 101, 44, and 48 [3], which respec-
tively are 32.1, 47.9, 11.4, 4.4, 2.2, 1 and 1% of the total 
sample. Note that there were only 4550 stars in the sim-
ulated data. Table 1 lists these values and the mean 
number of stellar multiples, which is 2.04, as well as data 
up to multiplicity of 5 for American adults, which are 
described below. 

3. The distribution of American adults in 
household 

The stellar multiplicity values were compared with hu-
man data – number of adults in household. The reasons 
for including only adults were discussed in preliminary 
papers [4, 5]. It was argued that the distribution of stellar 
multiples should be matched with adults, and should not 
include children and old people. According to the percep-
tion of these papers, the total population – adults, children 
and elderly - should be compared with stars, planets and 
old stars such as white dwarfs and neutron stars. The dis-
tribution of multiplicity of this stellar population is, how-
ever, not known yet. 
   Data on Earth's total population are not available, so 
single countries were examined. The distribution of mul-
tiple stars was initially compared with the 2009 data of 
USA adult population [6]. For family households the 
numbers of 1, 2 … 5+ members in the age interval of 
18-65 years old in 1000 units are 14900, 43479, 9190, 
2878 and 739. For non-family households the data (up to 
multiples of 7) are unfortunately given for all ages: 
31657, 5363, 821, 338, 99, 30 and 23 thousands. There-
fore, we normalized these data by the ratio of adults 
(18-65 years old) to all population in non-family house-
hold, which is 26712 / 38331 ≈ 0.7, and estimated 22061,  
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Figure 3. The distribution of number of all persons in 
households in the sum (red circles) and mean         
(blue diamonds) of the six countries. The vertical bars pre-
sent  1σ  errors  of   the  means.  The synthetic distributions of 
the sums (green squares) and means (black pluses) for 
adults after the subtraction of children and old people using 
the American coefficients are also shown. See text for fur-
ther details. 

 

6. Discussion 

The results presented in this paper are quite strange, ex-
traordinary and difficult to believe and to understand. 
This work presents a fantastic numeric resemblance be-
tween the distributions of stellar multiples observed in 
the night skies and humans. From extensive numerical 
simulations it was concluded that the similarity between 
number of American adults in household and stars multi-
plicity is significant at a confidence level higher than 
98%. Furthermore, the distribution of stellar multiples is 
also consistent with the synthetic distribution of adults in 
the six countries at a confidence level higher than 99% 
(Appendix).  
   There is still a little chance that the similarity be-
tween human adults and stars is only a coincidence. The 
data used in this work were taken from partial samples. 
The distribution of star multiples was built using obser-
vational data of the 4559 brightest nearby stars and a 
theoretical analysis of the observational biases, which 
may suffer from some uncertainties. The collection of 
data on persons in household suffers from a bias of Eng-
lish speaking countries. In addition, the distribution of 
adults in household in USA and in the sum of the six 
countries was estimated using simplified coefficients 
taken from USA data. All these facts naturally lead to 
some uncertainties. Yet, to date, these samples are the 
best available. 

   The sum of adults in the six countries is strongly in-
fluenced by a single country – USA, whose data consti-
tutes about a half of the total population. Note, however, 
that if all countries are given the same weight, the results 
and significance level are hardly affected as the distribu-
tion of the mean values of the six countries is almost 
identical to the distribution of the sum of all data (Table 
3, last 4 entries, Fig. 3, see also Appendix and Table 4). 
   The distributions of stellar multiples and adults in 
household are not simple Gaussians so they are not 
common. It can neither be argued that there is a general 
Nature rule that states that individuals tend to couple in a 
certain way with a peak at two because it is clear that the 
multiplicity distributions of certain animal species (e.g. 
fish or bees) are clearly different. It seems that the sur-
prising resemblance between the distributions of stellar 
multiples and human adults requires some explanation. 
     The perception that led to this research is similar to 
one interesting interpretation of Quantum Mechanics that 
seems absurd – that the observer influences the experi-
ment. The educated reader may ask: "Why comparing 
the current distribution of humans with that of stars, 
which is older by the time interval, it took light to reach 
Earth?" According to this perception, the results depend 
on the time of the observations. Thus, we expect that 
people with a different distribution, who observe the 
universe in the future with better equipment, would reach 
different conclusions! This is the reason for trying to 
collect data around the same time (Sections 2-4, Tables 
1, 3). 
   Finally, this paper actually presents only a glimpse of 
our ideas, which we admit sounds completely absurd. 
Some similarity between the distributions of American 
children and planets was found as well, although for a 
small sample of planets [4, 5]. Combining this result with 
the significance value of 98% estimated for the resem-
blance between stellar multiples and American adults in 
household (Appendix), the significance level is even 
higher and cannot be regarded as an anecdote. These 
results should be re-examined in the future when larger 
data samples are available, but the picture that arises 
from them [see also 24] is quite strange. It is noted that 
two predictions of the Astro-Sociology model [4, 5] for 
orphan and adopted planets have already been verified 
by observations [25] and simulations [26, 27]. This fact 
adds some support to this unusual perception. It is also 
anticipated that many more predictions of the theory, in 
example for twin planets, will be confirmed within the 
next few years. 
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[Kravtsov, 2005]

Observing the universe through 
an inhomogenous medium 

• Structure forms through 
gravitational collapse...

• ... starting from initial 
conditions consistent 
with CMB.
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• Structure forms through 
gravitational collapse...

• ... starting from initial 
conditions consistent 
with CMB.

• Simulations results are 
consistent with 
observational evidence 
from LSS surveys on 
large scales.

[Springel et al., 2005]

Observing the universe through 
an inhomogenous medium 
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[Tegmark, 2002]

• Dark matter structure provides the scaffolding over 
which most of other structure forms.

• The dark matter power spectrum is mostly sensitive 
to the cosmology and to the physics of structure 
formation (ie gravity).

• Intuitively, on large enough scales overdensities in the 
DM field should be matched by overdensities in the 
other “visible stuff” (galaxies/quasars, Lyman-α, HI,...).

• The “biasing relation” between the tracers and the 
DM field therefore contains astrophysical information 
about the former: how baryons cluster and form 
structure.

• Different tracers allow to probe the DM field on 
different scales.

Observing the universe through 
an inhomogenous medium 
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Theoretical predictions
• Often astrophysical observables can be related to 

the underlying dark matter distribution. 

• Galaxy number density ⇒ Scale and redshift dependent galaxy bias b

• Redshift space distortions ⇒ Scale and redshift dependent RSD bias

• Lyman-α flux ⇒ Nonlinear map of DM density on “large enough scales”

• 21-cm ⇒ Scale and redshift dependent HI bias

• “Whatever” ⇒ Scale and redshift dependent  “Whatever” bias

• Weak lensing directly depends on DM!

• Theoretical predictions of cross-correlations can 
often be reduced to (sometimes complicated) 
integrals over the power spectrum.
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A few details...
• A generic physical quantity O observed in direction     by an 

experiment Y can be written as

where δ“Y” reminds us that different experiments/quantities 
are sensitive to different modes of the DM density field.

n̂i

Oi,Y ⌘
Z 1

0
d�i gO,Y (�i) �Y (�i, n̂i)
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A few details...
• A generic physical quantity O observed in direction     by an 

experiment Y can be written as

where δ“Y” reminds us that different experiments/quantities 
are sensitive to different modes of the DM density field.

• The “g” functions tell us how the observables are coupled to 
the underlying density field.

• The cross-correlation between two observables then is

n̂i

Oi,Y ⌘
Z 1

0
d�i gO,Y (�i) �Y (�i, n̂i)

hOi,Y O0
j,Y 0i =

Z 1

0
d�id�j gO,Y (�i) gO0,Y 0(�j)h�Y (�i, n̂i)�Y 0(�j , n̂j)i
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A few more details...
• To evaluate          we go to Fourier space

where WO are window functions encoding the modes of the 
density field that contribute to the signal.

h�i�ji
h�i�ji =

Z
d3~k1
(2⇡)3

d3~k2
(2⇡)3

ei
~k1·n̂i�i ei

~k2·n̂j�jP (~k1,�i,�j)(2⇡
3)�3D(~k1 + ~k2)WO(~k1,~kO)WO0(~k2,~kO0)
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A few more details...
• To evaluate          we go to Fourier space

where WO are window functions encoding the modes of the 
density field that contribute to the signal.

• Next, use Dirac to kill one k and choose a suitable 
coordinate system in k-space (     along     ) and (if the case 
allows it!) use Limber’s approx

h�i�ji
h�i�ji =

Z
d3~k1
(2⇡)3

d3~k2
(2⇡)3

ei
~k1·n̂i�i ei

~k2·n̂j�jP (~k1,�i,�j)(2⇡
3)�3D(~k1 + ~k2)WO(~k1,~kO)WO0(~k2,~kO0)

kk n̂i

h�i�ji ⇡ �D(�i � �j)

Z
k?dk?
2⇡

J0(k?✓�j)P (k?,�i,�j)WO(~k?,~kO,?)WO0(~k?,~kO0,?)

= �D(�i � �j)

Z
l dl

2⇡�2
i

J0(l✓)P

✓
l

�i
,�i

◆
WO(l, lO)WO0(l, lO0)
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A few final details...
• Finally, put everything together to get the theoretical 

prediction for the cross correlation in configuration space

and in Fourier space

hOi,Y O0
j,Y 0i(✓) '

Z 1

0
d� gO,Y (�) gO0,Y 0(�)

Z
l dl

2⇡�2
J0(l✓)P

✓
l

�
,�

◆
WO(l, lO)WO0(l, lO0)

hOi,Y O0
j,Y 0i(l) '

Z 1

0

d�

�2
gO,Y (�) gO0,Y 0(�)WO(l, lO)WO0(l, lO0)P

✓
l

�
,�

◆
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A few final details...
• Finally, put everything together to get the theoretical 

prediction for the cross correlation in configuration space

and in Fourier space

• The only other ingredient we need are the g’s. These depend 
on the observables. A few examples:

• CMB lensing ⇒

• Weak lensing ⇒

• Galaxy density⇒

hOi,Y O0
j,Y 0i(✓) '
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0
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Figure 1. SPT 150 GHz temperature (left) and Herschel/SPIRE maps (right) used for this analysis. For display purposes only the inner ∼60% of the SPT temperature
map that was used to construct the lensing map is shown. In the right panel (red, green, blue) correspond to (500, 350, 250) µm.
(A color version of this figure is available in the online journal.)

strongly with galaxy catalogs selected in both the optical and
infrared bands, while Sherwin et al. (2012) showed that CMB
lensing was well-correlated with quasars.

Using the CMB, rather than distant galaxies, as the back-
ground source to study gravitational lensing by intervening
structure offers several advantages: the source redshift is the
same for all lines of sight, is extremely well-known, and has
the highest redshift observable with electromagnetic radiation.
The statistical properties of the source are well-characterized,
and CMB maps cover areas ranging from a few hundred square
degrees to the full sky. However, the single redshift for the CMB
does not provide any information about the redshift distribution
of the mass along the line of sight, and noise levels in current
CMB lensing convergence maps are substantially higher than
noise levels in cosmic shear measurements.

As CMB lensing is an integral along the entire line of sight,
the strongest cross-correlations will be with sources that have a
similarly broad extent in redshift space. As demonstrated below,
and as theoretically predicted (Song et al. 2003), the cosmic
infrared background (CIB) fluctuations provide an excellent
match. The CIB at submillimeter (submm) wavelengths is
believed to have a substantial contribution from sources from
redshifts z ∼ 0.5–3 (Lagache et al. 2004; Amblard et al. 2011;
Béthermin et al. 2011; Viero et al. 2013).

In this Letter, we cross-correlate a map of the gravitational
lensing convergence (proportional to the surface density) de-
rived from SPT temperature data at 150 GHz with maps of
the submm-wavelength sky at 500, 350, and 250 µm obtained
with Herschel/SPIRE. By using maps rather than catalogs, as
was done in previous CMB lensing cross-correlations, we study
emission from sources that are individually unresolved. The
SPT and Herschel datasets are described in Sections 2 and 3,
and the results of the cross-correlation are presented in Section 4.
A comparison with a simple theoretical model is presented in
Section 5, and we conclude with a discussion of the results.

2. CMB MAP AND CORRESPONDING MASS MAP

The SPT has been used to image 2500 deg2 to a depth of
!18 µK arcmin at 150 GHz, and two ∼100 deg2 fields (each

subtending 1 hr in right ascension and 10◦ in declination) within
this area to a depth of ∼13 µK arcmin. For this work, we use
observations centered on one of those deeper fields, centered
at (R.A., decl.) = (23h30m, −55d00m), using data from both
the 2008 and 2010 observing seasons; the recent CMB power
spectrum measurements of Story et al. (2012) used only the data
from 2008 for this field.

A CMB map is generated as outlined in Story et al. (2012).
In addition, to avoid apodization effects at the edges of the
field when constructing the lensing map, data from surrounding
fields are used to make a single larger CMB map 17.1 deg
on a side. This map extends well beyond the region covered
by Herschel data. The input CMB map is shown in the
left panel of Figure 1. Adjacent fields are combined using
inverse-variance weights in overlapping regions; there is no
evidence for any discontinuities at the boundaries. Point sources
and massive galaxy clusters are removed using a Wiener-
interpolation algorithm (van Engelen et al. 2012).

Simulated CMB maps are obtained by coadding simulated
signal and noise realizations for each individual SPT field.
The simulated maps are made with known input gravitational
potentials, and simulated signal maps are generated using
timestream-based simulations, as in Story et al. (2012). Noise
realizations are obtained directly from the observations, by
taking randomized combinations of the data which remove all
sky signal, as detailed in van Engelen et al. (2012). A total of
40 simulations were used.

The analysis procedure is applied to both the real and simu-
lated SPT maps. Gravitational convergence maps are generated
as outlined in van Engelen et al. (2012), using the quadratic esti-
mator method (Hu 2001; Hu & Okamoto 2002). This method en-
tails constructing a gradient-filtered map and an inverse-variance
weighted map (i.e., two different filterings of the same CMB
field), multiplying them together, and taking a divergence. The
resulting product can be shown to be an estimator for the map of
the gravitational potential. The effective transfer function due
to the SPT filtering was constructed by cross-correlating the de-
rived lensing potential of the simulated maps with the lensing
potential maps used to generate those simulations. In addition,
the maps have a non-zero mean feature due to the finite size
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Figure 1. SPT 150 GHz temperature (left) and Herschel/SPIRE maps (right) used for this analysis. For display purposes only the inner ∼60% of the SPT temperature
map that was used to construct the lensing map is shown. In the right panel (red, green, blue) correspond to (500, 350, 250) µm.
(A color version of this figure is available in the online journal.)

strongly with galaxy catalogs selected in both the optical and
infrared bands, while Sherwin et al. (2012) showed that CMB
lensing was well-correlated with quasars.

Using the CMB, rather than distant galaxies, as the back-
ground source to study gravitational lensing by intervening
structure offers several advantages: the source redshift is the
same for all lines of sight, is extremely well-known, and has
the highest redshift observable with electromagnetic radiation.
The statistical properties of the source are well-characterized,
and CMB maps cover areas ranging from a few hundred square
degrees to the full sky. However, the single redshift for the CMB
does not provide any information about the redshift distribution
of the mass along the line of sight, and noise levels in current
CMB lensing convergence maps are substantially higher than
noise levels in cosmic shear measurements.

As CMB lensing is an integral along the entire line of sight,
the strongest cross-correlations will be with sources that have a
similarly broad extent in redshift space. As demonstrated below,
and as theoretically predicted (Song et al. 2003), the cosmic
infrared background (CIB) fluctuations provide an excellent
match. The CIB at submillimeter (submm) wavelengths is
believed to have a substantial contribution from sources from
redshifts z ∼ 0.5–3 (Lagache et al. 2004; Amblard et al. 2011;
Béthermin et al. 2011; Viero et al. 2013).

In this Letter, we cross-correlate a map of the gravitational
lensing convergence (proportional to the surface density) de-
rived from SPT temperature data at 150 GHz with maps of
the submm-wavelength sky at 500, 350, and 250 µm obtained
with Herschel/SPIRE. By using maps rather than catalogs, as
was done in previous CMB lensing cross-correlations, we study
emission from sources that are individually unresolved. The
SPT and Herschel datasets are described in Sections 2 and 3,
and the results of the cross-correlation are presented in Section 4.
A comparison with a simple theoretical model is presented in
Section 5, and we conclude with a discussion of the results.

2. CMB MAP AND CORRESPONDING MASS MAP

The SPT has been used to image 2500 deg2 to a depth of
!18 µK arcmin at 150 GHz, and two ∼100 deg2 fields (each

subtending 1 hr in right ascension and 10◦ in declination) within
this area to a depth of ∼13 µK arcmin. For this work, we use
observations centered on one of those deeper fields, centered
at (R.A., decl.) = (23h30m, −55d00m), using data from both
the 2008 and 2010 observing seasons; the recent CMB power
spectrum measurements of Story et al. (2012) used only the data
from 2008 for this field.

A CMB map is generated as outlined in Story et al. (2012).
In addition, to avoid apodization effects at the edges of the
field when constructing the lensing map, data from surrounding
fields are used to make a single larger CMB map 17.1 deg
on a side. This map extends well beyond the region covered
by Herschel data. The input CMB map is shown in the
left panel of Figure 1. Adjacent fields are combined using
inverse-variance weights in overlapping regions; there is no
evidence for any discontinuities at the boundaries. Point sources
and massive galaxy clusters are removed using a Wiener-
interpolation algorithm (van Engelen et al. 2012).

Simulated CMB maps are obtained by coadding simulated
signal and noise realizations for each individual SPT field.
The simulated maps are made with known input gravitational
potentials, and simulated signal maps are generated using
timestream-based simulations, as in Story et al. (2012). Noise
realizations are obtained directly from the observations, by
taking randomized combinations of the data which remove all
sky signal, as detailed in van Engelen et al. (2012). A total of
40 simulations were used.

The analysis procedure is applied to both the real and simu-
lated SPT maps. Gravitational convergence maps are generated
as outlined in van Engelen et al. (2012), using the quadratic esti-
mator method (Hu 2001; Hu & Okamoto 2002). This method en-
tails constructing a gradient-filtered map and an inverse-variance
weighted map (i.e., two different filterings of the same CMB
field), multiplying them together, and taking a divergence. The
resulting product can be shown to be an estimator for the map of
the gravitational potential. The effective transfer function due
to the SPT filtering was constructed by cross-correlating the de-
rived lensing potential of the simulated maps with the lensing
potential maps used to generate those simulations. In addition,
the maps have a non-zero mean feature due to the finite size
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Figure 1. SPT 150 GHz temperature (left) and Herschel/SPIRE maps (right) used for this analysis. For display purposes only the inner ∼60% of the SPT temperature
map that was used to construct the lensing map is shown. In the right panel (red, green, blue) correspond to (500, 350, 250) µm.
(A color version of this figure is available in the online journal.)

strongly with galaxy catalogs selected in both the optical and
infrared bands, while Sherwin et al. (2012) showed that CMB
lensing was well-correlated with quasars.

Using the CMB, rather than distant galaxies, as the back-
ground source to study gravitational lensing by intervening
structure offers several advantages: the source redshift is the
same for all lines of sight, is extremely well-known, and has
the highest redshift observable with electromagnetic radiation.
The statistical properties of the source are well-characterized,
and CMB maps cover areas ranging from a few hundred square
degrees to the full sky. However, the single redshift for the CMB
does not provide any information about the redshift distribution
of the mass along the line of sight, and noise levels in current
CMB lensing convergence maps are substantially higher than
noise levels in cosmic shear measurements.

As CMB lensing is an integral along the entire line of sight,
the strongest cross-correlations will be with sources that have a
similarly broad extent in redshift space. As demonstrated below,
and as theoretically predicted (Song et al. 2003), the cosmic
infrared background (CIB) fluctuations provide an excellent
match. The CIB at submillimeter (submm) wavelengths is
believed to have a substantial contribution from sources from
redshifts z ∼ 0.5–3 (Lagache et al. 2004; Amblard et al. 2011;
Béthermin et al. 2011; Viero et al. 2013).

In this Letter, we cross-correlate a map of the gravitational
lensing convergence (proportional to the surface density) de-
rived from SPT temperature data at 150 GHz with maps of
the submm-wavelength sky at 500, 350, and 250 µm obtained
with Herschel/SPIRE. By using maps rather than catalogs, as
was done in previous CMB lensing cross-correlations, we study
emission from sources that are individually unresolved. The
SPT and Herschel datasets are described in Sections 2 and 3,
and the results of the cross-correlation are presented in Section 4.
A comparison with a simple theoretical model is presented in
Section 5, and we conclude with a discussion of the results.

2. CMB MAP AND CORRESPONDING MASS MAP

The SPT has been used to image 2500 deg2 to a depth of
!18 µK arcmin at 150 GHz, and two ∼100 deg2 fields (each

subtending 1 hr in right ascension and 10◦ in declination) within
this area to a depth of ∼13 µK arcmin. For this work, we use
observations centered on one of those deeper fields, centered
at (R.A., decl.) = (23h30m, −55d00m), using data from both
the 2008 and 2010 observing seasons; the recent CMB power
spectrum measurements of Story et al. (2012) used only the data
from 2008 for this field.

A CMB map is generated as outlined in Story et al. (2012).
In addition, to avoid apodization effects at the edges of the
field when constructing the lensing map, data from surrounding
fields are used to make a single larger CMB map 17.1 deg
on a side. This map extends well beyond the region covered
by Herschel data. The input CMB map is shown in the
left panel of Figure 1. Adjacent fields are combined using
inverse-variance weights in overlapping regions; there is no
evidence for any discontinuities at the boundaries. Point sources
and massive galaxy clusters are removed using a Wiener-
interpolation algorithm (van Engelen et al. 2012).

Simulated CMB maps are obtained by coadding simulated
signal and noise realizations for each individual SPT field.
The simulated maps are made with known input gravitational
potentials, and simulated signal maps are generated using
timestream-based simulations, as in Story et al. (2012). Noise
realizations are obtained directly from the observations, by
taking randomized combinations of the data which remove all
sky signal, as detailed in van Engelen et al. (2012). A total of
40 simulations were used.

The analysis procedure is applied to both the real and simu-
lated SPT maps. Gravitational convergence maps are generated
as outlined in van Engelen et al. (2012), using the quadratic esti-
mator method (Hu 2001; Hu & Okamoto 2002). This method en-
tails constructing a gradient-filtered map and an inverse-variance
weighted map (i.e., two different filterings of the same CMB
field), multiplying them together, and taking a divergence. The
resulting product can be shown to be an estimator for the map of
the gravitational potential. The effective transfer function due
to the SPT filtering was constructed by cross-correlating the de-
rived lensing potential of the simulated maps with the lensing
potential maps used to generate those simulations. In addition,
the maps have a non-zero mean feature due to the finite size
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Figure 2. CMB lensing convergence measured with SPT data (grayscale in all panels) and overlaid contours of 500, 350, 250 µm Herschel/SPIRE data (top right,
bottom left, bottom right, respectively). All maps have been filtered to only show scales in the lensing map that are expected to have typical signal to noise of at
least 0.5, which suppresses all features on scales smaller than ∼0.◦5. All maps have been masked by the SPIRE coverage. Red/white (blue/black) indicate increased
(decreased) flux/mass.
(A color version of this figure is available in the online journal.)

of the maps and the method used for interpolation over point
sources (van Engelen et al. 2012). This feature is calculated
from the mean of the simulations and subtracted from the data,
although there is no measurable cross-correlation of this mean
feature with the Herschel maps.

Foreground contamination of the lensing convergence maps
is expected to be small: van Engelen et al. (2012) found that
residual contamination of the lensing convergence map from
point sources and galaxy clusters is expected to be at the level
of a few %. The sign of this effect is expected to be negative
on all scales considered in this work, such that foreground
contamination acts to reduce the observed cross-correlation.

The resulting lensing convergence map is shown as con-
tours in Figure 2. Features can be seen with significances
exceeding 4σ .

3. Herschel/SPIRE MAPS

Submm maps at 500, 350, and 250 µm are created using
observations with the SPIRE instrument (Griffin et al. 2010)
aboard the Herschel Space Observatory (Pilbratt et al. 2010)
obtained under an OT1 program (PI: Carlstrom). Observations
were made in SPIRE fast-scan mode (60 arcsec s−1) and
consisted of two sets of orthogonal scans covering ∼90 deg2.

The observing strategy was chosen to optimize sensitivity to
large-scale signal and provide redundancy for measuring the
auto-frequency power spectrum of background fluctuations.

Maps are made with smap, an iterative mapmaker designed to
optimally separate large-scale noise from signal; the mapmaking
algorithm is described in detail in Levenson et al. (2010) and
updated in Viero et al. (2013). To estimate the transfer function
we use the same map-making process on mock SPIRE data.
For both real and mock data we make maps with 10 iterations;
we have checked that the maps are adequately converged at
this point. Additionally, time-ordered data are divided into two
halves and unique “jack-knife” map-pairs are made. To avoid
having to reproject or regrid the Herschel/SPIRE maps, we
make them using the Lambert azimuthal equal-area projection
(also known as zenithal equal area), with astrometry identical to
that of the SPT map, and with 30′′ pixels.

The maps have rms instrument noise levels (per 30′′ pixel) of
14, 10, and 7 mJy, while the instrument effective point-spread
functions are 36.6, 25.2, and 18.′′1 FWHMs at 500, 350, and
250 µm, respectively. The 30′′ pixelization of the maps reduces
the resolution substantially on small scales, but pixelization
and instrument noise effects are not important on the scales
of interest for this study. The last step, following Viero et al.
(2013) is to convert the maps from native units of Jy beam−1 to
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Figure 3. Cross-spectrum of lensing map and submm maps: left to right show 500, 350, and 250 µm. Overplotted are best-fit constant bias models for two different
redshift distributions for the submm intensity (dI/dz shown in inset in units of MJy sr−1); red (dashed) shows the model of Béthermin et al. (2011), blue shows the
model of Viero et al. (2013). Also shown in the inset, in arbitrary units, is the weighting of the CMB lensing kernel as a function of redshift (black dotted).
(A color version of this figure is available in the online journal.)

Jy sr−1, which is done by dividing them by the effective beam
areas, 3.688, 1.730, and 1.053×10−8 sr. Color corrections from
a flat-spectrum point-source calibration have a negligible effect.
The absolute calibration is accurate to 7%, an uncertainty that
is small compared to our statistical precision.

4. RESULTS AND ANALYSIS

In Figure 2, we present convergence and submm-wavelengths
maps filtered to emphasize modes in the lensing map that have
significant (>0.5) signal-to-noise, allowing a by-eye compari-
son of the structure. Modes with L < 100 (scales larger than
2◦) have been filtered to remove scales where the timestream fil-
tering of the submm-wave maps becomes substantial. The SPT
temperature map has spatially anisotropic noise (Schaffer et al.
2011), which ultimately leads to anisotropic noise in the lensing
map (van Engelen et al. 2012). This leads to a tendency for
modes to be better measured when they have more horizontal
structure than vertical structure.

Due to the imperfect redshift overlap, the lensing map can
have features that are not in the submm maps; in particular,
high-redshift structure (z ! 3) will appear relatively stronger in
the lensing map, while structure below z ∼ 0.5 will be strongly
suppressed in the lensing map as compared to the submm map.
The submm maps are extremely well-correlated with each other,
while the lensing map has several features that are not well-
matched in any of the submm maps. Nonetheless, there are
many features in common between the maps.

To compare these maps quantitatively, we use cross-power
spectra, as in Bleem et al. (2012). Uncertainties are obtained
by cross-correlating each submm map with lensing mass maps
obtained from simulated SPT maps. We use the rms amplitude
in simulated cross-power measurements as the rms uncertainty
and assume a Gaussian error distribution. This process will
slightly underestimate the sample variance contribution to the
uncertainties, ∼20% for the highest signal-to-noise points.
Cross powers are reported in Table 1, and are shown in Figure 3.

The signal-to-noise ratio in the cross correlation is substantial:
at 500, 350, and 250 µm the model with no cross-correlation is
strongly disfavored relative to the best-fit lensing amplitude,
with χ2 differences of 79, 69, and 45, respectively. Lensing
cross-power is positive in every power spectrum bin.

5. THEORETICAL MODEL

As a cross-check on the shape and amplitude of these spectra,
we adopt the simple constant bias model used in Bleem et al.

Table 1
CMB Convergence-SPIRE Cross Power Spectrum

L C500
L C350

L C250
L

(mJy sr−1) (mJy sr−1) (mJy sr−1)

150 38 ± 18 101 ± 29 134 ± 58
250 49 ± 21 65 ± 30 74 ± 45
350 10 ± 11 18 ± 15 26 ± 21
450 19.0 ± 6.2 38 ± 10 52 ± 13
550 8.5 ± 6.4 15 ± 10 8 ± 12
650 13.7 ± 4.6 16.0 ± 7.8 16.9 ± 8.8
750 13.3 ± 4.2 17.5 ± 5.6 14.3 ± 8.5
850 4.9 ± 3.2 3.5 ± 5.4 13.5 ± 7.0
950 6.1 ± 1.9 9.5 ± 3.5 7.7 ± 5.0
1050 6.9 ± 1.9 8.1 ± 3.2 2.1 ± 4.6
1150 1.2 ± 1.5 2.9 ± 2.4 0.7 ± 3.6
1250 5.7 ± 2.2 9.2 ± 3.1 11.6 ± 4.2
1350 2.3 ± 1.5 5.5 ± 2.6 6.1 ± 3.5
1450 4.2 ± 1.8 5.1 ± 3.1 3.8 ± 4.1
1550 2.2 ± 1.6 2.4 ± 2.9 3.1 ± 3.3

(2012), using the nonlinear power spectrum at each redshift:

CκI
L = b

∫
dz

dχ

dz

1
χ2

W κ (χ )W I(χ )PDM

(
k = L

χ
, z

)
, (1)

where W κ (χ ) gives the redshift weighting of the mass map and
W I(χ ) is proportional to the line of sight distribution of the
intensity dI/dχ (Bleem et al. 2012; Song et al. 2003). The
nonlinear power spectrum of the dark matter, PDM, is calculated
using the Code for Anisotropies in the Microwave Background
(Lewis et al. 2000) and Halofit (Smith et al. 2003), assuming the
best-fit WMAP9+SPT cosmological parameters for a flat ΛCDM
cosmology (Story et al. 2012).

The redshift distribution of contributions to the submm
background has been extensively studied in recent years; there
exist substantial disagreements between authors. We adopt two
determinations, presented in Béthermin et al. (2011) and Viero
et al. (2013) that roughly bracket expectations, to predict the
cross-correlation signal. We assume that the submm light traces
the nonlinear dark matter density field at every redshift, with a
single amplitude, the bias b, that we fit to the data. The cross-
correlation will be most sensitive to redshifts z ∼ 0.5–3, with
lower z a poor match to CMB lensing, and higher z not having
substantial submm emission. As seen in the insets of Figure 3,
the 500 µm emission is expected to have broader overlap with
the CMB lensing kernel, and should therefore show a stronger
correlation.
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Table 2
Fits to Constant Bias Model

Wavelength Bias (V13) Bias (B11)

500 µm 1.29 ± 0.16 (12.6) 1.80 ± 0.22 (12.7)
350 µm 1.35 ± 0.17 (9.7) 1.82 ± 0.24 (9.9)
250 µm 1.34 ± 0.23 (11.8) 1.56 ± 0.27 (12.0)

Notes. Cross-spectrum best-fit amplitudes to constant bias model for Viero et al.
(2013, V13) and Béthermin et al. (2011, B11) redshift distributions, χ2 of fit
shown in parentheses. Quoted uncertainties only include statistical uncertainty.

Fits are performed using points between L = 100 and
L = 1600, as done in previous SPT lensing studies. The
best-fit bias parameters for each observing wavelength and
redshift distribution choice are shown in Table 2, with best-
fit bias parameters depending on which redshift distribution
is assumed. For the Béthermin et al. (2011) model we find
b ∼ 1.8 ± 0.3 while the Viero et al. (2013) model for the
CIB intensity gives b ∼ 1.3 ± 0.2. The uncertainties reflect
statistical uncertainties only, and the large difference between
the two models indicates substantial systematic uncertainties.
The difference in bias factors is largely due to the different
integrated mean intensities in the two models; for example, at
500 µm the two models predict mean intensities that differ by
a factor of 1.5, while the derived bias factors differ by a factor
of 1.4. This difference in the mean intensity is larger than the
∼25% uncertainty in the FIRAS measurements (Fixsen et al.
1998); the mean intensity in the Viero et al. (2013) model is
more than 2σ higher than that measured by FIRAS at 500 µm.

This simple constant bias model provides a very good fit,
with χ2 = 12.6 or 12.7 for 14 degrees of freedom at 500 µm,
depending on the assumed redshift distribution of the submm
background, as shown in Table 2. Despite the qualitative
difference in the two redshift distributions apparent in the insets
of Figure 3, good fits are obtained for both models, although a
different normalization is preferred by each. This arises because
most of the power is coming from the nonlinear regime, where
a power-law is a remarkably good fit to the clustering power
spectra (Addison et al. 2012). As the cross-spectrum is a
superposition of similar power-laws from different epochs, the
detailed redshift distribution does not affect the shape of the
cross-spectrum.

The bias factors at infrared and submm wavelengths have been
measured using both source catalogs and auto power spectra of
the diffuse backgrounds, as reviewed recently for the CIB in
Pénin et al. (2012). The inferred bias values depend on the
assumed redshift distribution and intensity of the background,
and the bias value that we measure is the clustering amplitude
relative to the nonlinear matter power spectrum, rather than
either the linear matter power spectrum or a halo model, so a
direct comparison is difficult. Using BLAST data at 500, 350,
and 250 µm (Viero et al. 2009) and intensity estimates from
Lagache et al. (2004), typical bias factors of 2.2 ± 0.2 were
found (Pénin et al. 2012). Amblard et al. (2011) find slightly
higher bias values using a halo model and fitting internally
for the intensity as a function of redshift. The bias values
found here are somewhat lower, but could be explained by
differences in the assumed mean intensities and their redshift
distributions.

Some studies of dusty sources at high redshift have led to
substantially higher bias factors: Brodwin et al. (2008) found
that z ∼ 2 dusty, obscured galaxies selected in the optical/IR

had bias factors b ∼ 3–5, while Hickox et al. (2012) used
sources selected at 870 µm to estimate b ∼ 3.

For comparison with lower redshift galaxy samples, re-
cent results from Sloan Digital Sky Survey III (SDSS-III)
find bias factors of ∼2 for the massive galaxies (halo masses
∼5 × 1013 h−1 M$) being targeted for baryon acoustic oscilla-
tion studies at z ∼ 0.3 (Parejko et al. 2013), while bias estimates
based on the SDSS main galaxy sample (McBride et al. 2011)
find b = 1–1.2 for typical luminosity (L∗). This suggests that
the typical contributors to the submm background could be the
higher redshift precursors to (or at least have the same mean
bias as) galaxies that are intermediate in mass between these
two samples.

In work that is closely related to the current work, Hildebrandt
et al. (2013) cross-correlated gravitational lensing of Lyman-
break galaxies with a catalog of sources detected at 250 µm,
and inferred typical masses of 1.5×1013 M$ for these galaxies.

6. DISCUSSION AND CONCLUSIONS

We have shown that large-scale structure traced by submm
sources is well-correlated with a CMB lensing convergence
map. The cross-correlation is highly significant at 500, 350,
and 250 µm, corresponding to detection significances of 8.9σ ,
8.3σ , and 6.7σ , respectively.

The cross-correlation between the lensing convergence map
and each submm map is well fit by a simple constant bias model,
with bias factors of b = 1.3–1.8, depending on the assumed
redshift distribution for the submm intensity. The lower bias
factors are found for an assumed intensity distribution with
more flux coming from higher redshifts.

There are several ways to extend the utility of the lens-
ing convergence-SPIRE cross-power spectra presented here.
For example, combining them with the cross-power and auto-
power spectra among the three SPIRE bands will probe the
redshift distribution of the contributing sources and the corre-
spondence between submm flux and the underlying dark matter
distribution.

This technique is highly complementary to studies of the
auto- and cross-correlations of submm background maps. While
convergence maps have more noise (at current CMB map noise
levels), concerns about Galactic cirrus or separating shot noise
are greatly reduced, making cross correlation with CMB lensing
an extremely robust probe of clustering with a promising future.

With the release of Planck maps covering a broad range
of CIB wavelengths with well-matched angular resolution, it
will be possible to perform a similar analysis over the entire
2500 deg2 SPT survey area, while the coming Dark Energy
Survey (DES) will also have nearly complete overlap with this
area. DES will have both galaxy catalogs and cosmic shear
maps with some resolution in the line of sight direction. In
combination with the SPT CMB lensing convergence this will
enable three-dimensional mass maps of the universe extending
to z ∼ 1100.

The SPT is supported by the National Science Foundation
through grant ANT-0638937, with partial support provided by
NSF grant PHY-1125897, the Kavli Foundation, and the Gordon
and Betty Moore Foundation. The McGill group acknowledges
funding from the National Sciences and Engineering Research
Council of Canada, Canada Research Chairs program, and
the Canadian Institute for Advanced Research. Work at
Harvard is supported by grant AST-1009012. S. Bhattacharya

5

[Uncertainties are statistical only]

A first example...

[Holder et al., ApJL 2013]
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• Sherwin et al. correlate

• CMB lensing from ACT 
(162 deg2, 21 μK)

• Quasar density from 
SDSS-XDQSO DR8

A second example...

[Sherwin et al., PRD 2012]
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• Sherwin et al. correlate

• CMB lensing from ACT 
(162 deg2, 21 μK)

• Quasar density from 
SDSS-XDQSO DR8

• dN/dz (or “g” function) is 
known precisely for this 
sample.

A second example...

[Sherwin et al., PRD 2012]
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• Sherwin et al. correlate

• CMB lensing from ACT 
(162 deg2, 21 μK)

• Quasar density from 
SDSS-XDQSO DR8

• dN/dz (or “g” function) is 
known precisely for this 
sample.

• Allows accurate 
prediction of the cross-
correlation signal.

A second example...

[Sherwin et al., PRD 2012]
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• Consistency check: 
cross-correlate with a 
CMB lensing map from a 
different part of the sky

A second example...

[Sherwin et al., PRD 2012]
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• The fact that dN/dz is 
well known allows an 
accurate extraction of the 
linear bias

• Assume bias template (blue 
dashed line)

A second example...

[Sherwin et al., PRD 2012]
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• The fact that dN/dz is 
well known allows an 
accurate extraction of the 
linear bias

• Assume bias template (blue 
dashed line)

• Estimate the likelihood of 
b/bfid from the data.

A second example...

[Sherwin et al., PRD 2012]
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• The fact that dN/dz is 
well known allows an 
accurate extraction of the 
linear bias

• Assume bias template (blue 
dashed line)

• Estimate the likelihood of 
b/bfid from the data.

• Use the likelihood to obtain 
the bias measurement and 
confidence region (red)

A second example...

[Sherwin et al., PRD 2012]
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One last example...

[Bleem et al., ApJL 2012]

• Bleem et al. correlate

• CMB lensing from SPT (185 deg2 in 2 
fields, 21 μK)

• Galaxy densities from

• 2 fields from Blanco Cosmology 
Survey

• Spitzer Deep Field
• WISE

• Mock catalogs built on simulations are 
used to estimate the dN/dz for the BCS 
fields (see Lindsey’s talk for all details)
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One last example...

[Bleem et al., ApJL 2012]

• Bleem et al. correlate

• CMB lensing from SPT (185 deg2 in 2 
fields, 21 μK)

• Galaxy densities from

• 2 fields from Blanco Cosmology 
Survey

• Spitzer Deep Field
• WISE

• Mock catalogs built on simulations are 
used to estimate the dN/dz for the BCS 
fields (see Lindsey’s talk for all details)

• Again, this can be turned into a 
measurement of the bias.
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Why is this interesting?

1. Cross-correlations can allow the extraction 
of astrophysical and cosmological information 
from what is normally considered “noise”.

2. Different experiments/data sets are 
characterized by different systematics. 
Cross-correlations can sometimes mitigate 
their impact.
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Outline

• An introductory example: 
Type Ia Supernovae and weak 
lensing

• CMB lensing and the extraction of 
biasing relations:

• CMB lensing and galaxy redshift 
surveys

• CMB lensing and the Lyman-α 
forest.
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Outline

• An introductory example: 
Type Ia Supernovae and weak 
lensing

• CMB lensing and the extraction of 
biasing relations:

• CMB lensing and galaxy redshift 
surveys

• CMB lensing and the Lyman-α 
forest.
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• SNIa are thought to be born 
from white dwarfs - red 
giants binary systems.

A first example: lensing of SNIa
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SN1994D imaged with HST.  
High-Z SN Search Team

• SNIa are thought to be born 
from white dwarfs - red 
giants binary systems.

• Type Ia Supernovae are 
detected through image 
subtraction.

A first example: lensing of SNIa
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• SNIa are thought to be born 
from white dwarfs - red 
giants binary systems.

• Type Ia Supernovae are 
detected through image 
subtraction.

• The have self-similar light 
curves, that makes them 
standardizable candles.

A first example: lensing of SNIa
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• SNIa are thought to be born 
from white dwarfs - red 
giants binary systems.

• Type Ia Supernovae are 
detected through image 
subtraction.

• The have self-similar light 
curves, that makes them 
standardizable candles.

• They allow to build a 
Hubble diagram and to 
probe the expansion history 
of the universe.

[Suzuki et al., ApJ 2011]

A first example: lensing of SNIa
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• Weak lensing alters the luminosity 
of SNIa’s: the scatter of μ is sensitive 
to an intrinsic component δμi and 
to a lensing contribution δμcos

A first example: lensing of SNIa

µ = µ0 + �µi + �µcos
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• Weak lensing alters the luminosity 
of SNIa’s: the scatter of μ is sensitive 
to an intrinsic component δμi and 
to a lensing contribution δμcos

• The pdf for δμcos depends on Ωm 
and σ8 and can be calculated [Valageas 
1999,2000, Munshi and Jain 2000, Wang et al. 2002, Holz and 

Linder 2004, Das and Ostriker 2006].

A first example: lensing of SNIa

µ = µ0 + �µi + �µcos
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• Weak lensing alters the luminosity 
of SNIa’s: the scatter of μ is sensitive 
to an intrinsic component δμi and 
to a lensing contribution δμcos

• The pdf for δμcos depends on Ωm 
and σ8 and can be calculated [Valageas 
1999,2000, Munshi and Jain 2000, Wang et al. 2002, Holz and 

Linder 2004, Das and Ostriker 2006].

• If properly calibrated on 
simulations, the knowledge of the 
pdf for δμcos can be used to extract 
the Ωm and σ8 dependence (for 
free!)

A first example: lensing of SNIa

µ = µ0 + �µi + �µcos

[Dodelson, AV, 2005]

[Dodelson and Vallinotto, 2005]
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1. We can only observe the universe through an 
inhomogeneous medium.

2. Whether something can be considered 
“information” or “noise” is mostly a matter of 
taste (or focus).

3. If we are clever and “lucky” we can turn this to 
our advantage, extracting information from the 
“noise”.

A few things we’ve 
learned...
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Outline

• An introductory example: 
Type Ia Supernovae and weak 
lensing

• CMB lensing and the extraction of 
biasing relations:

• CMB lensing and galaxy redshift 
surveys

• CMB lensing and the Lyman-α 
forest.
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The key role of CMB lensing
• In general, weak lensing depends to the density of matter between the 

observer and the source.

• CMB lensing probes the distribution of matter all the way to the last 
scattering surface.
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The key role of CMB lensing
• CMB lensing depends primarily on CMB physics: it is a relatively clean probe, 

especially compared to other probes of the density field.

• Optimal quadratic estimators allow the reconstruction of the CMB lensing 
convergence field [Hu and Okamoto (2000), Hirata and Seljak (2003)].

Original vs reconstructed deflection field  [Hirata and Seljak, 2003]
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CMB lensing is here!
• CMB lensing has been detected by ACT, SPT 

and Planck.

• Planck released noise dominated maps of the 
deflection potential.

• In the next few years SPTPol and ACTPol will 
provide detailed maps over fraction of sky.

Planck Collaboration: Gravitational lensing by large-scale structures with Planck

improve on this first full-sky map of the CMB lensing poten-
tial. As is illustrated in the simulated reconstruction of Fig. 4,
there will be clear visual correlations between this map and fu-
ture measurements.

In Fig. 10 we plot the power spectra of our individual 100,
143, and 217 GHz reconstructions as well as the minimum-
variance reconstruction. The agreement of all four spectra is
striking. Overall, our power spectrum measurement is reason-
ably consistent with the ⇤CDM prediction, given our measure-
ment error bars. Dividing the L 2 [1, 2048] multipole range into
bins of �L = 64 and binning uniformly in [L(L + 1)]2C��L , we
obtain a reduced �2 for the di↵erence between our power spec-
trum estimate and the model of 40.7 with 32 degrees of freedom.
The associated probability to exceed is 14%. On a detailed level,
there are some discrepancies between the shape and amplitude
of our power spectrum and the fiducial model however. Our like-
lihood is based on the multipole range 40  L  400, which
captures 90% of the available signal-to-noise for an amplitude
constraint on C��L . This range was chosen as the region of our
spectrum least likely to be contaminated by systematic e↵ects
(primarily uncertainties in the mean-field corrections at low-L,
and uncertainties in the Gaussian and point-source bias correc-
tions at high-L). Estimating an average amplitude for the fiducial
lensing power spectrum for a single bin over this multipole range
using Eq. (25) we find an amplitude of Â40!400 = 0.94 ± 0.04
relative to the fiducial model (which has A = 1). The power in
this region is consistent with the fiducial model, although 1.5�
low (the corresponding probability-to-exceed for the �2 of this
di↵erence is 15%). The low- and high-L extent of our likelihood
were deliberately chosen to have enough expected lensing signal
to enable a 10� detection of lensing on either side, bookending
our likelihood with two additional consistency tests. On the low-
L side, we have a good agreement with the expected power. As
will be discussed in Sect. 7.4, our measurement at L < 10 fails
some consistency tests at a level comparable to the expected sig-
nal. The L < 10 modes, which we suspect are somewhat con-
taminated by errors in the mean-field subtraction, are neverthe-
less consistent with the fiducial expectation, as can be seen in
Fig. 10; we measure Â1!10 = 0.44±0.54. Extending to the lower
limit of our likelihood, with a single bin from 10  L  40 we
measure Â10!40 = 1.02 ± 0.12. On the high-L side of our fidu-
cial likelihood, there is tension however. Extending from the fi-
nal likelihood multipole at L = 400 to the maximum multipole
of our reconstruction, we find Â400!2048 = 0.68 ± 0.13, which
is in tension with A = 1 at a level of just over 2.4�. The rel-
atively low power in our reconstruction is driven by a dip rel-
ative to the ⇤CDM model spectrum between 500 < L < 750,
as can be seen in Fig. 10. We show this feature more clearly
in the residual plot of Fig. 11. This deficit of power is in turn
driven by the 143 GHz data. For an estimate of the power spec-
trum using only 143 GHz, we measure Â143

400!2048 = 0.37 ± 0.18.
The 217 GHz reconstruction is more consistent with the model,
having Â217

400!2048 = 0.82 ± 0.17. These two measurements are
in tension; we have Â217�143

400!2048 = 0.45 ± 0.18, which is a 2.5�
discrepancy. The error bar on this di↵erence accounts for the ex-
pected correlation between the two channels due to the fact that
they see the same CMB sky. A larger set of consistency tests
will be presented in Sect. 7. We note for now that the bins from
40 < L < 400 used in our likelihood pass all consistency tests,
and show better agreement between 143 and 217 GHz. Although
L < 40 and L > 400 are not included in our nominal likelihood,
when discussing the use of the lensing likelihood for cosmo-
logical parameter constraints in the following section we will

�WF(n̂)

Galactic North

�WF(n̂)

Galactic South

Fig. 8. Wiener-filtered lensing potential estimate
�WF

LM ⌘ C��L (�̄LM � �̄MF
LM ) for our MV reconstruction, in Galactic

coordinates using orthographic projection. The reconstruction
is bandpass filtered to L 2 [10, 2048]. The Planck lens recon-
struction has S/N  1 for individual modes on all scales, so
this map is noise dominated. Comparison between simulations
of reconstructed and input � in Fig. 4 show the expected level
of visible correlation between our reconstruction and the true
lensing potential.

Galactic South - 143 GHz Galactic South - 217 GHz

Fig. 9. Wiener-filtered lensing potential estimates, as in Fig. 8,
for the individual 143 and 217 GHz maps.
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L

Fig. 11. Replotting of Fig. 10, removing 100 GHz for easier
comparison of 143 and 217 GHz. Also plotted are the SPT band-
powers from van Engelen et al. (2012), and the ACT bandpow-
ers from Das et al. (2013). All three experiments are very consis-
tent. The lower panel shows the di↵erence between the measured
bandpowers and the fiducial best-fit ⇤CDM model.

– in Planck Collaboration XVI (2013) to derive parameter con-
straints for the six-parameter ⇤CDM model and well-motivated
extensions. Lensing also a↵ects the power spectrum, or 2-point
function, of the CMB anisotropies, and this e↵ect is accounted
for routinely in all Planck results. On the angular scales rele-
vant for Planck, the main e↵ect is a smoothing of the acoustic
peaks and this is detected at around 10� in the Planck tempera-
ture power spectrum (Planck Collaboration XVI 2013). The in-
formation about C��L that is contained in the lensed temperature
power spectrum for multipoles ` <⇠ 3000 is limited to the ampli-
tude of a single eigenmode (Smith et al. 2006). In extensions of
⇤CDM with a single additional late-time parameter, lensing of
the power spectrum itself can therefore break the geometric de-
generacy (Stompor & Efstathiou 1999; Sherwin et al. 2011; van
Engelen et al. 2012; Planck Collaboration XVI 2013). As dis-
cussed in Appendix D and Schmittfull et al. (2013), cosmic vari-
ance of the lenses produces weak correlations between the CMB
2-point function and our estimates of C��L , but they are small
enough that ignoring the correlations in combining the two like-
lihoods should produce only sub-percent underestimates of the
errors in physical cosmological parameters.

In the following, we illustrate the additional constraining
power of our C��L measurements in ⇤CDM models and one-
parameter extensions, highlighting those results from Planck
Collaboration XVI (2013) where the lensing likelihood is influ-
ential.

6.1.1. Six-parameter ⇤CDM model

In the six-parameter ⇤CDM model, the matter densities, Hubble
constant and spectral index of the primordial curvature perturba-
tions are tightly constrained by the Planck temperature power
spectrum alone. However, in the absence of lensing the am-
plitude As of the primordial power spectrum and the reioniza-
tion optical depth ⌧ are degenerate, with only the combination
Ase�2⌧, which directly controls the amplitude of the anisotropy
power spectrum on intermediate and small scales being well de-
termined. This degeneracy is broken by large-angle polarization
since the power from scattering at reionization depends on the
combination As⌧2. In this first release of Planck data, we use
the WMAP nine-year polarization maps (Bennett et al. 2012) in
combination with Planck temperature data. With this data com-
bination, C��L is rather tightly constrained in the ⇤CDM model
(see Fig. 12) and the direct measurements reported here provide
a non-trivial consistency test of the model.

The eight C��L bandpowers used in the lensing likelihood are
compared to the expected spectrum in Fig. 12 (upper-left panel).
For the latter, we have used parameter values determined from
the main Planck likelihood in combination with WMAP polar-
ization (hereafter denoted WP) and small-scale power spectrum
measurements (hereafter highL) from ACT (Das et al. 2013) and
SPT (Reichardt et al. 2012)†. In this plot, we have renormalized
the measurements and their error bars (rather than the theory) us-
ing the best-fit model with a variant of the procedure described
in Sect. 5.3. Since the lensed temperature power spectrum in the
best-fit model is very close to that in the fiducial model used
to normalise the power spectrum estimates throughout this pa-
per, the power spectrum renormalisation factor (1 + �TT

L )2 of
Eq. (44) is less than 0.5% in magnitude. The predicted C��L in
the best-fit model di↵ers from the fiducial model by less than
2.5% for L < 1000. The best-fit model is a good fit to the mea-
surements, with �2 = 10.9 and the corresponding probability
to exceed equal to 21%. Significantly, we see that the ⇤CDM
model, calibrated with the CMB fluctuations imprinted around
z = 1100, correctly predicts the evolution of structure and geom-
etry at much lower redshifts. The 68% uncertainty in the ⇤CDM
prediction of C��L is shown by the dashed lines in the upper-left
panel of Fig. 12. We can assess consistency with the direct mea-
surements, properly accounting for this uncertainty, by introduc-
ing an additional parameter A��L that scales the theory C��L in the
lensing likelihood. (Note that we choose not to alter the lensing
e↵ect in CTT

` .) As reported in Planck Collaboration XVI (2013),
we find

A��L = 0.99 ± 0.05 (68%; Planck+lensing+WP+highL),

in excellent agreement with A��L = 1.
An alternative route to breaking the As-⌧ degeneracy is pos-

sible for the first time with Planck. Since C��L is directly propor-
tional to As, the lensing power spectrum measurements and the
smoothing e↵ect of lensing in CTT

` (which at leading order varies
as A2

s e�2⌧) can separately constrain As and ⌧ without large-angle
polarization data. The variation of C��L with ⌧ in ⇤CDM models

† As discussed in detail in Planck Collaboration XVI (2013), the pri-
mary role of the ACT and SPT data in these parameter fits is to constrain
more accurately the contribution of extragalactic foregrounds which
must be carefully modelled to interpret the Planck power spectra on
small scales. For ⇤CDM, the foreground parameters are su�ciently de-
coupled from the cosmological parameters that the inclusion of the ACT
and SPT data has very little e↵ect on the cosmological constraints.

16

[Planck, 2013]

[Planck, 2013]
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The key idea

• CMB lensing measures directly the 
fluctuations of the density field integrated 
all the way to the LSS, hence

• cross-correlating any other biased tracer of 
the density field with CMB lensing allows 
the extraction of the biasing relation.
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Outline

• An introductory example: 
Type Ia Supernovae and weak 
lensing

• CMB lensing and the extraction of 
biasing relations:

• CMB lensing and galaxy redshift 
surveys

• CMB lensing and the Lyman-α 
forest.
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Shear multiplicative bias
• Consider a galaxy survey 

aiming at measuring weak 
lensing through cosmic 
shear (like CFHT, DES, 
EUCLID and LSST)

• A critical issue for such 
surveys is the correction of 
the distortions of the point 
spread function.

[Hoekstra et al., 2002]
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Shear multiplicative bias
• Consider a galaxy survey 

aiming at measuring weak 
lensing through cosmic 
shear (like CFHT, DES, 
EUCLID and LSST)

• A critical issue for such 
surveys is the correction of 
the distortions of the point 
spread function.

• Many different pipelines 
exist to correct for psf 
distortions.

4 K. Holhjem et al.: Weak lensing analysis of Abell 1351 and Abell 1995

Fig. 2. Ellipticities of the stars in the field of Abell 1351 (top) and Abell 1995 (bottom) before and after corrections for PSF anisotropies. The stars
initially had systematic ellipticities up to ∼7−9% in one direction. The PSF corrections reduced these effects to typically <1.5%.

with eobs
α , the post-seeing shear polarisability tensor Psh

αβ, and the
centroid of the object.

Because stars are foreground objects (gβ = 0) and intrinsi-
cally circular (es

α = 0), applying Eq. (1) to stellar objects pro-
vides a measure of the total PSF anisotropy, pβ. This was calcu-
lated from bright stars selected from the final object catalogue
(Sect. 2.2.4). The PSF corrections were then calculated for all
individual objects and corrections applied respectively.

The ellipticities of the stars were fitted to a sixth-order Taylor
series expansion. When comparing mass and B-mode maps
(Sect. 4) for fits of different orders, there was little change with
the order of fit. Over the whole field, 410 and 530 stars were used

in the fitting process for Abell 1351 and Abell 1995 respectively.
Figure 2 shows the ellipticities of the stars before and after PSF
corrections.

The pre-seeing shear polarisability tensor, Pγαβ, is defined in
KSB+ to be

Pγαβ = Psh
αβ − Psm

αµ (Psm$)−1
µδ Psh$

δβ , (2)

where the asterisk denotes Psh
αβ and Psm

αβ applied to stellar objects.
From Eq. (1) we see that the reduced shear, g = γ/(1 − κ), is
given by

gβ = (Pγ)−1
αβ

[
eobs
α − Psm

αβ pβ
]
. (3)

[Hohljem et al., 2009]

[Hoekstra et al., 2002]
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Shear multiplicative bias

• Psf correction algorithm are known to 
introduce biases in the measured 
ellipticities.

• The shear multiplicative bias m is 
particularly insidious systematic because 
it is totally degenerate with σ8.

STEP: weak lensing analysis of simulated data 1331

Figure 2. Examples of two analyses of PSF 3 simulations using KSB+ (HH
implementation, upper panel) and BJ02 (MJ implementation, lower panel)
comparing the measured shear γ 1 and input shear γ true

1 . The best-fitting to
equation (11) is shown dashed, and the optimal result (where γ 1 = γ true

1 )
is shown dot–dashed. Both analyses have additive errors that are consistent
with shot noise (fitted y-offset parameter c) and low 1 per cent calibration
errors (fitted slope parameter m). The weighting scheme used in the BJ02
analysis introduces a non-linear response to increasing input shear (fitted
quadratic parameter q), reducing the shear recovery accuracy for increasing
shear. The accuracy of the KSB+ analysis responds linearly to increasing
input shear and so these results were refit with a linear relationship, i.e.
q = 0.

range of sheared images, the best-fitting parameters to

γ1 − γ true
1 = q

(
γ true

1

)2 + mγ true
1 + c1, (11)

where γ true
1 is the external shear applied to each image. Fig. 2 shows

fits to two example analyses of PSF 3 simulations using KSB+ (HH
implementation) and BJ02 (MJ implementation). In the absence of
calibration bias, we would expect m = 0. We would also expect
c1 = 0 in the absence of PSF systematics and shot noise, and q =
0 for a linear response of the method to shear. In the case where

the fitted parameter q is consistent with zero, we refit with a linear
relationship, as demonstrated by the KSB+ example in Fig. 2.

For all simulations the external applied shear γ true
2 = 0 and we

therefore also measure for each PSF type c2 = 〈γ 2〉, averaged over
the range of sheared images. In the absence of PSF systematics and
shot noise, we would expect to find c2 = 0. From this analysis, we
found the values of m and q to be fairly stable to changes in PSF type
and we therefore define a measure of calibration bias to be 〈m〉 and
a measure of non-linearity to be 〈q〉 where the average is taken over
the six different PSF sets. We find the value of 〈ci〉 averaged over the
six different PSF sets to be consistent with shot noise at the 0.1 per
cent level for all authors, with the highest residuals seen with PSF
model 1 (coma) and PSF model 2 (jitter). We therefore define σ c as
a measure of our ability to correct for all types of PSF distortions,
where σ 2

c is the variance of c1 and c2 as measured from the six
different PSF models. As the underlying galaxy distributions are the
same for each PSF this measure removes most of the contribution
from shot noise, although the galaxy selection criteria will result in
slightly different noise properties in the different PSF data sets. σ c

therefore provides a good estimate of the level of PSF residuals in
the whole STEP analysis. A more complicated set of PSF distortions
will be analysed in Massey et al. (in preparation) to address the issue
of PSF-dependent bias more rigorously.

Fig. 3 shows the measures of PSF residuals σ c and calibration bias
〈m〉 for each author, where the author key is listed in Table 2. For the
non-linear cases where q $= 0, denoted with a circle, the best-fitting
〈q〉 parameter is shown with respect to the right-hand scale. Results
in the shaded region suffer from less than 7 per cent calibration bias.
All methods which have been used in a cosmological parameter
cosmic shear analysis lie within this region. With regard to PSF
contamination, these results show that PSF residuals are better than
1 per cent in all cases and are typically better than 0.1 per cent.
Note that for clarity the results plotted in Fig. 3 are also tabulated
in Table 5.

Figure 3. Measures of calibration bias 〈m〉, PSF residuals σ c and non-
linearity 〈q〉 for each author (key in Table 2), as described in the text. For
the non-linear cases where 〈q〉 $= 0 (points enclosed within a large circle),
〈q〉 is shown with respect to the right-hand scale. In short, the lower the
value of σ c, the more successful the PSF correction is at removing all types
of PSF distortion. The lower the absolute value of 〈m〉, the lower the level
of calibration bias. The higher the q value the poorer the response of the
method to stronger shear. Note that for weak shear γ < 0.01, the impact of
this quadratic term is negligible. Results in the shaded region suffer from
less than 7 per cent calibration bias. These results are tabulated in Table 5.
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Shear multiplicative bias

• Psf correction algorithm are known to 
introduce biases in the measured 
ellipticities.

• The shear multiplicative bias m is 
particularly insidious systematic because 
it is totally degenerate with σ8.

• Lack of knowledge/constraint on it can 
severely degrade the constraining power 
of shear surveys.

Systematic errors in future weak-lensing surveys 109
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Figure 4. Degradation in marginalized errors in !M, σ 8 and w = constant, as well as w0 and wa, as a function of our prior knowledge of the shear
multiplicative factors. We give equal prior to multiplicative factors in all redshift bins, and show results for the DES, SNAP and LSST. For example, existence
of the multiplicative error of 0.01( f sky/ f sky,fid)−1/2 (or 1 per cent in shear for the fiducial sky coverages) in each redshift bin leads to 50 per cent increase in
error bars on !M, σ 8 and w for the DES and SNAP, and about a 100 per cent degradation for LSST.

which adds that amount of noise to the convergence power spectra.
The coefficient ρ is always 1 for i = j, and its (fixed) value for
i "= j controls how much additive error leaks into the cross-power
spectra. We weigh the fiducial value of bi by the inverse square of
the average galaxy size in the ith redshift bin (or, by the square of
the angular diameter distance to the ith bin).9

Fig. 5 shows the degradations in the equation-of-state w as a
function of the fiducial bi at redshift z = 0.75 where, very roughly,
most galaxies are found (recall, the other bi are equal to this value
modulo order-unity weighting by the square of the angular diameter
distance to their corresponding redshift). The solid line in the figure
shows results for our fiducial SNAP survey, assuming no contribution
to the cross-power spectra (i.e. ρ = δ i j ). The coefficients bi need
to be controlled to ∼2 × 10−5, corresponding to shear variance
of %(% + 1)Pκ

add,i j (%)/(2π) ∼ 10−4 on scales of ∼10 arcmin (% ∼
1000) where most constraining power of weak lensing resides. The
observed degradation in cosmological parameters is clearly due to
the increased sample variance that the additional power puts on to
the measurement of the PS. When ρ = 1, this sample variance is

9 For bi = 0, the Fisher derivatives with respect to bi are zero and no infor-
mation about these parameters can formally be extracted.

confined to a single mode of the shear covariance matrix, so that
the maximum damage is limited and we observe the self-calibration
plateau in Fig. 5.10

We have tried varying a number of other details.

(i) Using different values of the coefficient ρ for i "= j in the range
0 ! ρ < 1;

(ii) changing the fiducial value of the exponent α from 0 to +3
or −3;

(iii) adding a 10 per cent prior to the bi (rather than no prior);
(iv) using the redshift-independent fiducial values of the coeffi-

cients bi and
(v) considering the degradation in the other cosmological

parameters.

Interestingly, we find that the overall requirements are very
weakly dependent on any of the above variations, and the

10 One could in principle also have a worst-case limit with additive errors
whose functional form makes them strongly degenerate with the effect of
varying the cosmological parameters, where the accuracy in cosmological
constraints degrades as soon as the additive power becomes comparable to
the measurement uncertainties in the PS (and not the PS itself, as above).
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STEP: weak lensing analysis of simulated data 1331

Figure 2. Examples of two analyses of PSF 3 simulations using KSB+ (HH
implementation, upper panel) and BJ02 (MJ implementation, lower panel)
comparing the measured shear γ 1 and input shear γ true

1 . The best-fitting to
equation (11) is shown dashed, and the optimal result (where γ 1 = γ true

1 )
is shown dot–dashed. Both analyses have additive errors that are consistent
with shot noise (fitted y-offset parameter c) and low 1 per cent calibration
errors (fitted slope parameter m). The weighting scheme used in the BJ02
analysis introduces a non-linear response to increasing input shear (fitted
quadratic parameter q), reducing the shear recovery accuracy for increasing
shear. The accuracy of the KSB+ analysis responds linearly to increasing
input shear and so these results were refit with a linear relationship, i.e.
q = 0.

range of sheared images, the best-fitting parameters to

γ1 − γ true
1 = q

(
γ true

1

)2 + mγ true
1 + c1, (11)

where γ true
1 is the external shear applied to each image. Fig. 2 shows

fits to two example analyses of PSF 3 simulations using KSB+ (HH
implementation) and BJ02 (MJ implementation). In the absence of
calibration bias, we would expect m = 0. We would also expect
c1 = 0 in the absence of PSF systematics and shot noise, and q =
0 for a linear response of the method to shear. In the case where

the fitted parameter q is consistent with zero, we refit with a linear
relationship, as demonstrated by the KSB+ example in Fig. 2.

For all simulations the external applied shear γ true
2 = 0 and we

therefore also measure for each PSF type c2 = 〈γ 2〉, averaged over
the range of sheared images. In the absence of PSF systematics and
shot noise, we would expect to find c2 = 0. From this analysis, we
found the values of m and q to be fairly stable to changes in PSF type
and we therefore define a measure of calibration bias to be 〈m〉 and
a measure of non-linearity to be 〈q〉 where the average is taken over
the six different PSF sets. We find the value of 〈ci〉 averaged over the
six different PSF sets to be consistent with shot noise at the 0.1 per
cent level for all authors, with the highest residuals seen with PSF
model 1 (coma) and PSF model 2 (jitter). We therefore define σ c as
a measure of our ability to correct for all types of PSF distortions,
where σ 2

c is the variance of c1 and c2 as measured from the six
different PSF models. As the underlying galaxy distributions are the
same for each PSF this measure removes most of the contribution
from shot noise, although the galaxy selection criteria will result in
slightly different noise properties in the different PSF data sets. σ c

therefore provides a good estimate of the level of PSF residuals in
the whole STEP analysis. A more complicated set of PSF distortions
will be analysed in Massey et al. (in preparation) to address the issue
of PSF-dependent bias more rigorously.

Fig. 3 shows the measures of PSF residuals σ c and calibration bias
〈m〉 for each author, where the author key is listed in Table 2. For the
non-linear cases where q $= 0, denoted with a circle, the best-fitting
〈q〉 parameter is shown with respect to the right-hand scale. Results
in the shaded region suffer from less than 7 per cent calibration bias.
All methods which have been used in a cosmological parameter
cosmic shear analysis lie within this region. With regard to PSF
contamination, these results show that PSF residuals are better than
1 per cent in all cases and are typically better than 0.1 per cent.
Note that for clarity the results plotted in Fig. 3 are also tabulated
in Table 5.

Figure 3. Measures of calibration bias 〈m〉, PSF residuals σ c and non-
linearity 〈q〉 for each author (key in Table 2), as described in the text. For
the non-linear cases where 〈q〉 $= 0 (points enclosed within a large circle),
〈q〉 is shown with respect to the right-hand scale. In short, the lower the
value of σ c, the more successful the PSF correction is at removing all types
of PSF distortion. The lower the absolute value of 〈m〉, the lower the level
of calibration bias. The higher the q value the poorer the response of the
method to stronger shear. Note that for weak shear γ < 0.01, the impact of
this quadratic term is negligible. Results in the shaded region suffer from
less than 7 per cent calibration bias. These results are tabulated in Table 5.
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Shear multiplicative bias

STEP: weak lensing analysis of simulated data 1331

Figure 2. Examples of two analyses of PSF 3 simulations using KSB+ (HH
implementation, upper panel) and BJ02 (MJ implementation, lower panel)
comparing the measured shear γ 1 and input shear γ true

1 . The best-fitting to
equation (11) is shown dashed, and the optimal result (where γ 1 = γ true

1 )
is shown dot–dashed. Both analyses have additive errors that are consistent
with shot noise (fitted y-offset parameter c) and low 1 per cent calibration
errors (fitted slope parameter m). The weighting scheme used in the BJ02
analysis introduces a non-linear response to increasing input shear (fitted
quadratic parameter q), reducing the shear recovery accuracy for increasing
shear. The accuracy of the KSB+ analysis responds linearly to increasing
input shear and so these results were refit with a linear relationship, i.e.
q = 0.

range of sheared images, the best-fitting parameters to

γ1 − γ true
1 = q

(
γ true

1

)2 + mγ true
1 + c1, (11)

where γ true
1 is the external shear applied to each image. Fig. 2 shows

fits to two example analyses of PSF 3 simulations using KSB+ (HH
implementation) and BJ02 (MJ implementation). In the absence of
calibration bias, we would expect m = 0. We would also expect
c1 = 0 in the absence of PSF systematics and shot noise, and q =
0 for a linear response of the method to shear. In the case where

the fitted parameter q is consistent with zero, we refit with a linear
relationship, as demonstrated by the KSB+ example in Fig. 2.

For all simulations the external applied shear γ true
2 = 0 and we

therefore also measure for each PSF type c2 = 〈γ 2〉, averaged over
the range of sheared images. In the absence of PSF systematics and
shot noise, we would expect to find c2 = 0. From this analysis, we
found the values of m and q to be fairly stable to changes in PSF type
and we therefore define a measure of calibration bias to be 〈m〉 and
a measure of non-linearity to be 〈q〉 where the average is taken over
the six different PSF sets. We find the value of 〈ci〉 averaged over the
six different PSF sets to be consistent with shot noise at the 0.1 per
cent level for all authors, with the highest residuals seen with PSF
model 1 (coma) and PSF model 2 (jitter). We therefore define σ c as
a measure of our ability to correct for all types of PSF distortions,
where σ 2

c is the variance of c1 and c2 as measured from the six
different PSF models. As the underlying galaxy distributions are the
same for each PSF this measure removes most of the contribution
from shot noise, although the galaxy selection criteria will result in
slightly different noise properties in the different PSF data sets. σ c

therefore provides a good estimate of the level of PSF residuals in
the whole STEP analysis. A more complicated set of PSF distortions
will be analysed in Massey et al. (in preparation) to address the issue
of PSF-dependent bias more rigorously.

Fig. 3 shows the measures of PSF residuals σ c and calibration bias
〈m〉 for each author, where the author key is listed in Table 2. For the
non-linear cases where q $= 0, denoted with a circle, the best-fitting
〈q〉 parameter is shown with respect to the right-hand scale. Results
in the shaded region suffer from less than 7 per cent calibration bias.
All methods which have been used in a cosmological parameter
cosmic shear analysis lie within this region. With regard to PSF
contamination, these results show that PSF residuals are better than
1 per cent in all cases and are typically better than 0.1 per cent.
Note that for clarity the results plotted in Fig. 3 are also tabulated
in Table 5.

Figure 3. Measures of calibration bias 〈m〉, PSF residuals σ c and non-
linearity 〈q〉 for each author (key in Table 2), as described in the text. For
the non-linear cases where 〈q〉 $= 0 (points enclosed within a large circle),
〈q〉 is shown with respect to the right-hand scale. In short, the lower the
value of σ c, the more successful the PSF correction is at removing all types
of PSF distortion. The lower the absolute value of 〈m〉, the lower the level
of calibration bias. The higher the q value the poorer the response of the
method to stronger shear. Note that for weak shear γ < 0.01, the impact of
this quadratic term is negligible. Results in the shaded region suffer from
less than 7 per cent calibration bias. These results are tabulated in Table 5.
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[Huterer et al., 2005]

• Psf correction algorithm are known to 
introduce biases in the measured 
ellipticities.

• The shear multiplicative bias m is 
particularly insidious systematic because 
it is totally degenerate with σ8.

• Lack of knowledge/constraint on it can 
severely degrade the constraining power 
of shear surveys.
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A first solution
• Since we observe the universe through an inhomogeneous 

medium, lensing acts on all the galaxy observables (ie also 
on sizes and luminosities).
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• Since we observe the universe through an inhomogeneous 

medium, lensing acts on all the galaxy observables (ie also 
on sizes and luminosities).

• Multiplicative bias acts only on the shear/convergence.
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A first solution
• Since we observe the universe through an inhomogeneous 

medium, lensing acts on all the galaxy observables (ie also 
on sizes and luminosities).

• Multiplicative bias acts only on the shear/convergence.

• Considering sizes and luminosity information together with 
shear/convergence allows to constrain m and break the σ8 
degeneracy.
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Can we do better?
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Yes we can:
recall the key idea...

• CMB lensing measures directly the 
fluctuations of the density field integrated 
all the way to the LSS, hence

• cross-correlating any other biased tracer of 
the density field with CMB lensing allows 
the extraction of the biasing relation.
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Solution 2: use CMB lensing
• Proof of principle: just consider a single redshift 

slice, with               and same characteristics as in 
the luminosity/size case

• Solid curve: projection for DES + SPTlike
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[Vallinotto, ApJ 2012] [Vallinotto et al., PRD 2010]
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More details 
and more degeneracies...

• Consider the case of DES (or LSST).

• Include information about galaxy density.

• Include redshift dependent linear galaxy 
bias (important for probing gravity through 
structure growth).

• Linear galaxy bias, shear multiplicative bias 
and σ8 are all completely degenerate.

• Can we break all these degeneracies?

�g(k, z) ⌘ b(z)�(k, z)
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Fisher calculation
• Observables:

• CMB lensing convergence (from SPT-SZ or ACTPol-like)

• Weak lensing convergence (from DES)

• Galaxy density (from DES-SV or DES)

• All auto and cross-spectra between the observables can be 
put in the generic form

CAB(l) =

Z 1

0
d�

gA(�) gB(�)

�2
P�

✓
l

�
,�

◆

g(�) ⌘
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2c2
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More improvements...
• Sources’ redshift distribution dN/dz from DES mocks 

(determines the noise for galaxy density and cosmic shear 
measurements).

• CMB lensing reconstruction noise curves for SPT-SZ and 
for a future 5 uK-arcmin experiment (CMB-X),

• multiple redshift slices, covering DES’ dN/dz: 
0-0.5-0.8-1-1.3

• Examine constraining power of xcorrelation for

• breaking degeneracy between multiplicative and galaxy 
bias and σ8.

• Improvement (?) on the cosmological parameters 
constraints.
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• Cross-correlation of DES-SV and SPT-SZ

• In this case we have only galaxy densities 
over 150 sq. deg. (DES-SV)

• SPT-SZ provides CMB lensing 
reconstruction over 2500 sq. deg.

Results

2

Parameter DES + SPT-SZ DES + SPT-SZ

No Planck prior Planck Prior

b
0

1.05e-01 3.37e-02

b
1

7.92e-02 4.02e-02

b
2

7.16e-02 5.07e-02

b
3

7.55e-02 4.78e-02

TABLE I: Fractional errors on the galaxy linear biases fore-
casted at L

max

= 3000 for DES SV and SPT-SZ.

the pixelization in Fourier space, so that

obs

lm = lm + N
lm, (1)

̄obs

i,lm = (1 +mi) ̄i,lm + ̄N
i,lm, (2)

�obsi,lm = �i,lm + �Ni,lm, (3)

where mi represents the shear multiplicative bias and the
superscript “N” denotes the noise contributions. Assum-
ing that weak lensing and galaxy density are measured
in n redshift bins, for each set of {l,m} there are 2n+ 1
observables {obs

lm , ̄obs

1,lm, ..., ̄obs

n,lm, �obs
1,lm, ..., �obsn,lm}.

General treatment of correlators. Using Limber’s ap-
proximation, it is straightforward to show that all auto
and cross spectra between two of the above physical ob-
servables (denoted by A and B) take the generic form

CAB(l) =

Z 1

0

d�
gA(�) gB(�)

�2

P�

✓
l

�
,�

◆
, (4)

where � denotes the comoving distance and P�(k,�) the
matter power spectrum. The g functions encode how
each observable is tied to the underlying density field
and contributes to the correlation signal. The window
function for the CMB lensing, weak lensing convergence
and galaxy density fields (denoted by respectively by g,
ḡ,i and g�,j) are given by

g(�) ⌘ 3⌦mH2
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2c2
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), (8)

where �
CMB

denotes the comoving distance to the last
scattering surface and ⇧(�;�i,�i+1

) is a top hat window
function for the i-th redshift bin stretching from �i to
�i+1

. Furthermore, D(�) denotes the comoving angular
diameter distance, bj represents the galaxy bias in the
j-th redshift bin and ⌘(�) ⌘ dNg(�)/d⌦ is the galaxy
number density per unit of solid angle observed by the
survey at comoving distance �.

Next, consider the auto and cross-spectra of the noise
terms. Because the physical observables are measured

FIG. 1: Fractional error forecasted for the linear bias mea-
sured in each of the four redshift bins z = 0�0.5�0.8�1�1.3
as a function of the maximum multipole L

max

included in the
analysis. The solid curves show results for DES + SPT-SZ
lensing. The dashed curves show the e↵ect of including also
a Planck prior on the cosmological parameters.

with di↵erent techniques or by di↵erent experiments alto-
gether, it is reasonable to assume the noise cross-spectra
to be uncorrelated with respect to one another,

hN
lm ̄N

i,lmi = h̄N
i,lm �Nj,lmi = h�Nj,lm N

lmi = 0 8i, j. (9)

The noise auto spectra depend on the characteristics of
the respective experiments. For the observables mea-
sured by DES, they are given by

CN
̄īj

(l) = �ijh�2

int

i/⌘̄i, (10)

CN
�i�j (l) = �ij/⌘̄i, (11)

where h�2

int

i1/2 is the rms intrinsic shear.
To quantify the impact of including cross-correlation

information and of overlapping the experiments’ foot-
prints, we use the Fisher information matrix

F↵� =
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2
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⇥
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�1C,�C
�1

⇤
, (12)

where C (C,↵) represent the (derivative with respect to a
generic parameter ↵ of the) observables’ covariance ma-
trix. If including cross-correlation information allows to
constrain the biases, it is then important to quantify the
impact of this on the measurement of the cosmological
parameters. The parameters of interest for the analy-
sis are thus the multiplicative and galaxy biases {mi, bi}
for each redshift bin and the cosmological parameters
{⌦m,⌦b, h, w0

, N
e↵

, ns, As,�8

}. The forecasts presented
next are obtained making the following assumptions:

• DES: the distribution of sources dNg(�)/d⌦ is mea-
sured directly from DES mock catalogs covering
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analysis. The solid curves show results for DES + SPT-SZ
lensing. The dashed curves show the e↵ect of including also
a Planck prior on the cosmological parameters.

with di↵erent techniques or by di↵erent experiments alto-
gether, it is reasonable to assume the noise cross-spectra
to be uncorrelated with respect to one another,

hN
lm ̄N

i,lmi = h̄N
i,lm �Nj,lmi = h�Nj,lm N

lmi = 0 8i, j. (9)

The noise auto spectra depend on the characteristics of
the respective experiments. For the observables mea-
sured by DES, they are given by

CN
̄īj

(l) = �ijh�2

int

i/⌘̄i, (10)

CN
�i�j (l) = �ij/⌘̄i, (11)

where h�2

int

i1/2 is the rms intrinsic shear.
To quantify the impact of including cross-correlation

information and of overlapping the experiments’ foot-
prints, we use the Fisher information matrix

F↵� =
1

2
Tr

⇥
C,↵C

�1C,�C
�1

⇤
, (12)

where C (C,↵) represent the (derivative with respect to a
generic parameter ↵ of the) observables’ covariance ma-
trix. If including cross-correlation information allows to
constrain the biases, it is then important to quantify the
impact of this on the measurement of the cosmological
parameters. The parameters of interest for the analy-
sis are thus the multiplicative and galaxy biases {mi, bi}
for each redshift bin and the cosmological parameters
{⌦m,⌦b, h, w0

, N
e↵

, ns, As,�8

}. The forecasts presented
next are obtained making the following assumptions:

• DES: the distribution of sources dNg(�)/d⌦ is mea-
sured directly from DES mock catalogs covering

[Vallinotto, arXiv:1304.3474, submitted to PRL] 
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• Cross-correlation of DES and 
CMB-X

• DES footprint: 5k sq. deg. 
CMB-X footprint 4k sq. deg.

Results (2)

[Vallinotto, arXiv:1304.3474, submitted to PRL] 

3

DES D+CL D+CL D+CL D+CL

Only No ovlp Full ovlp No ovlp Full ovlp

Plnk Prior Plnk Prior

�
8

2.08e-01 7.77e-02 2.59e-02 2.74e-02 1.92e-02

⌦m 4.04e-02 3.81e-02 3.16e-02 3.05e-03 2.97e-03

⌦b 1.38e-01 1.22e-01 1.05e-01 4.53e-03 4.51e-03

N
e↵

2.09e-01 1.98e-01 1.76e-01 9.22e-02 7.96e-02

w 4.47e-02 4.12e-02 3.38e-02 3.03e-02 2.23e-02

ns 2.31e-02 1.63e-02 1.02e-02 2.40e-03 2.36e-03

As 8.51e-02 5.61e-02 4.29e-02 1.91e-02 1.81e-02

h 6.63e-02 4.53e-02 1.59e-02 1.43e-02 1.13e-02

m
0

1.70e-01 3.51e-02 1.96e-02 2.20e-02 1.93e-02

m
1

1.69e-01 2.81e-02 8.78e-03 1.32e-02 8.48e-03

m
2

1.68e-01 2.71e-02 8.19e-03 1.28e-02 7.99e-03

m
3

1.68e-01 2.64e-02 7.48e-03 1.22e-02 7.30e-03

b
0

1.67e-01 1.73e-02 1.15e-02 7.16e-03 6.67e-03

b
1

1.67e-01 1.72e-02 1.28e-02 9.84e-03 9.25e-03

b
2

1.67e-01 1.81e-02 1.30e-02 1.14e-02 1.08e-02

b
3

1.67e-01 1.76e-02 1.38e-02 1.14e-02 1.06e-02

TABLE II: Fractional errors on each of the parameters (all
the other ones having been marginalized over) estimated at
L

max

= 3000 for the full DES (D) and CMB-X lensing (CL)
surveys.

220 sq. deg. with i  24 magnitude cut. We as-
sume the conservative value h�2

int

i1/2 = 0.35 and
four redshift bins: 0� 0.5� 0.8� 1� 1.3.

• CMB lensing: we use the noise curves CN
 calcu-

lated for SPT-SZ (CMB-X) assuming CMB maps
with noise level of 18 (5) µK-arcmin.

• The fiducial cosmology assumed is a flat ⇤CDM
cosmology consistent with Planck [19]. The con-
straints presented for a given parameter are ob-
tained by marginalizing over all the other ones.

Forecasts for DES-SV and SPT-SZ. For DES-SV we
assume a footprint of 150 sq. deg. over which only galaxy
densities (no cosmic shear) are measured at full depth,
consistent with the survey’s present status. For SPT we
assume a 2500 sq. deg. footprint completely overlapping
DES’ and CMB lensing measured according to the tele-
scope’s current noise curve. The fractional errors fore-
casted for the linear galaxy bias measured in the four red-
shift bins are summarized in Tab. I and shown in Fig. 1
as a function of the maximum multipole L

max

included in
the analysis. Since �

8

and bi are completely degenerate,
a forecast for the constraints on bi cannot be obtained for
DES data alone. The solid curves show the constraints
obtained for DES-SV + SPT lensing. The dashed curves
show the e↵ect of including also a Planck prior on the
cosmological parameters. These results show that when
analyzed together, the existing data from DES-SV and

SPT-SZ can lead to a measurement of the linear galaxy
bias of the order of ⇠ 8% in the last three redshift bins.
The inclusion of a Planck prior leads to projected errors
of the order of ⇠ 5%.

Forecasts for DES full survey and CMB-X. In this case
for DES we assume the full 5000 sq. deg. footprint, with
measurements of both galaxy density and cosmic shear.
For CMB-X we use a 4000 sq. deg. footprint and the lens-
ing reconstruction noise curves projected for an experi-
ment with a depth of 5 µK-arcmin. In Fig. 2 we show
the constraints on b

1

and m
1

(the others bias parame-
ters closely following these ones) as a function of L

max

for four di↵erent cases: DES + CMB-X lensing with no
footprint overlap (dashed), DES + CMB-X lensing with
full footprint overlap (dotted), DES + CMB-X lensing
with no footprint overlap and Planck prior (dot-dashed)
and DES + CMB-X lensing with full footprint overlap
and a Planck prior (solid). The projected errors on all
the parameters are summarized in Tab. II1. They show
that when information from CMB lensing is included in
the analysis, the multiplicative and linear galaxy bias
can be constrained to the percent or sub percent level
depending on whether the experiments’ footprints over-
lap and whether a prior on the cosmological parameter is
added. Also, considering the constrain on the equation of
state of dark energy, these results show that, regardless
of whether a prior is assumed or not for the cosmologi-
cal parameters, overlapping the experiments’ footprints
leads quite generally to a sensible improvement in the
error on w.

Discussion. The key point of all the results presented
thus far is the following. For a survey aiming at con-
straining cosmology through cosmic shear and galaxy
density measurements, the set of parameters {�

8

, bi,mi}
is completely degenerate. It is then clear that any in-
formation that can potentially break these degeneracies,
whenever added to the analysis, will improve the con-
straints on the cosmological and bias parameters. In the
results presented above, three di↵erent kinds of infor-
mation are at play in breaking these degeneracies: the
Planck prior on the cosmological parameters, the cosmo-
logical information carried by CMB lensing alone and
the cross-correlation information (CMB lensing + galax-
ies and CMB lensing + cosmic shear) arising when the
experiments’ footprints do overlap. Their e↵ect can be
clearly noted by comparing the curves in Fig. 2 and con-
sidering columns 1-5 of Tab. II. First, it is possible to
point out that just the inclusion of CMB lensing infor-
mation, even in a patch of sky not overlapping with the
one surveyed by the galaxy survey, allows to drastically

1

In the “DES only” case we add a 50% prior on the completely

degenerate set {�
8

, bi,mi} in order to invert the Fisher matrix

which would otherwise be singular.

4

FIG. 2: Constraints on b
1

and m
1

forecasted for DES + CMB
lensing with no footprint overlap (dashed), DES + CMB lens-
ing with no footprint overlap and Planck prior (dot-dashed),
DES + CMB lensing with full overlap (dotted), DES + CMB
lensing with full overlap and Planck prior (solid) as a func-
tion of the maximum multipole L

max

included in the analysis.
The constraints on the other bias parameters closely follow
the ones plotted here.

constrain the galaxy and multiplicative bias to a few per-
cent. Next, considering the dashed curves (DES + CMB-
X, no overlap, no prior) as a baseline, Fig. 2 shows that
multiplicative bias seem to be more sensitive to the over-
lapping of the footprints while the linear galaxy bias is
more sensitive to the prior on cosmological parameters.

Furthermore, it is necessary to point out the following
caveat. In the analysis that we carried out we did not
include the e↵ect of photometric redshift errors. Since
the redshift bins used are quite wide, it is reasonable to
expect that photo-z error will have a limited impact on
the conclusions drawn in this work. The investigation of
this particular aspect is the focus of a current work [20].

Finally, it seems also relevant to point out the follow-
ing two general facts: first, the constraints on the multi-
plicative bias forecasted in this work for DES also repre-
sent an upper bound for any future cosmic shear survey
with a photometry comparable or better than DES’ (like
the LSST) provided that its footprint will also overlap
with/include the CMB lensing field. Second, since CMB
lensing depends only on the distribution of the dark mat-
ter density field, any cross-correlation of a physical ob-
servable with it will allow to constrain and extract the
biasing relation of the latter. The results reported in
this work represent a good example of this latter fact,
showing that the actual nature of the biasing relation is
not so relevant: while the linear galaxy bias is a physi-
cal quantity, the shear multiplicative bias is a systematic.
Nonetheless they can both be constrained significantly by

a cross-correlation with CMB lensing. As such, it seems
possible to conclude by speculating that CMB lensing
may provide the ultimate calibration tool for galaxy and
cosmic shear surveys, allowing them to constrain their
systematics to high accuracy and to self-calibrate their
observations.
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Bottom line...
• Cross-correlation with CMB lensing allow to break 

the degeneracy between multiplicative bias, galaxy 
bias and    , even without overlapping the footprints!

• Existing data already allow to constrain galaxy 
density bias to ~10% for DES-SV galaxies in 4 
redshift bins (caveats: photo-z errors and i24).

• Using CMB lensing in conjunction with galaxy 
density and shear allows self-calibration of these 
measurements.

• This is true for future surveys too (LSST, Euclid)!!

�8
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Outline

• An introductory example: 
Type Ia Supernovae and weak 
lensing

• CMB lensing and the extraction of 
biasing relations:

• CMB lensing and galaxy redshift 
surveys

• CMB lensing and the Lyman-α 
forest.
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• Whenever light travels through a gas cloud, a 
fraction of it (that at the cloud's redshift has the 
appropriate frequency) is scattered through Lyman-
α transition in neutral hydrogen.

• The quasar spectra is then characterized by a 
“forest” of “absorption” lines.

• The forest is a map of neutral H along the los.

• Understanding the forest requires understanding 
and modeling the physics of the IGM.

• Fluctuations in the flux are related to 
overdensities

• On large scales (> 1 Mpc) the Lyman-α forest can 
be used as a dark matter tracer [Viel et al. 2001]

• The flux-matter relation has many sources of 
uncertainty.

Lyman-α forest and CMB lensing 
cross-correlation

• Quasar emits light which, as it travels through the universe, is redshifted.

F = exp
�
�A(1 + �)�

⇥

�IGM � �
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Lyman-α forest and CMB lensing 
cross-correlation

What can we hope to learn from this?

• The CMB convergence field κ is 
sensitive only to the DM distribution, 
hence it’s very clean.

• This x-correlation is a completely 
independent probe that

1. provides extra information about the 
flux-dark matter bias.

2. can in principle probe effects characteristic 
of small scales (gas dynamics, neutrinos, scale 
dependent modifications of gravity).

[Tegmark, 2002]
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• S/N for single line-of-sight.              los for Boss, ~      los for BigBoss.

• Estimates for total S/N are ~30 (75) for            and ~9.6 (24) for             when Planck dataset is 
xcorrelated with Boss (BigBoss).

• The growth of structure enters twice for            : once for the long-wavelengths and once for the 
short wavelengths.  The variance is dominated by long wavelengths only.

Results: detectability (BOSS+Planck)

[Vallinotto++; PRL (2009)]

⇥�F⇥⇤ ⇥�F2⇥⇤

⇥�F2⇥⇤

1.6 · 105 106

⇥�F⇥⇤ ⇥�F2⇥⇤
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• S/N for single line-of-sight.              los for Boss, ~      los for BigBoss.

• Estimates for total S/N are ~30 (75) for            and ~9.6 (24) for             when Planck dataset is 
xcorrelated with Boss (BigBoss).

• The growth of structure enters twice for            : once for the long-wavelengths and once for the 
short wavelengths.  The variance is dominated by long wavelengths only.

Results: detectability (BOSS+Planck)

[AV, Das, Spergel, Viel, 2009]

⇥�F⇥⇤ ⇥�F2⇥⇤

⇥�F2⇥⇤

1.6 · 105 106

⇥�F⇥⇤ ⇥�F2⇥⇤

Mode coupling
at work!
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Cosmological application: 
neutrino masses

          is sensitive to 
intermediate to small scales 
and to the power spectrum 
normalization     .�8

⇥�F2⇥⇤
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Cosmological application: 
neutrino masses

�8
�

m�         and      are not 
independent if they are to 
be consistent with CMB 
measurements.

          is sensitive to 
intermediate to small scales 
and to the power spectrum 
normalization     .�8

⇥�F2⇥⇤

[Komatsu et al., 2008]
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Cosmological application: 
neutrino masses

�8
�

m�         and      are not 
independent if they are to 
be consistent with CMB 
measurements.

          is sensitive to 
intermediate to small scales 
and to the power spectrum 
normalization     .�8

⇥�F2⇥⇤ }We can use
to put limits on 
the neutrino mass

⇥�F2⇥⇤

[Komatsu et al., 2008]
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Cosmological application: 
neutrino masses

• Caveat: non-linear effects due to gravitational collapse 
need to be taken into account.

[Komatsu et al., 2008] [Vallinotto++,  ApJ 2009]

3

2
1
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Caveats
• Semianalytical results currently do not take into account non-linear 

effects due to gravitational collapse

• Extension is straightforward

• Signal is expected to increase, S/N is hard to say.

• All results do not take into account small scales (<1 Mpc) IGM 
physics and use “gaussian approximation” to evaluate the 
correlators’ variance

• Numerical simulations will be crucial for the calibration of this 
cross-correlation signal and for the extraction of IGM physics.
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A few things I left out...

• How lensing universally contributes to any correlation 
function.

• How white dwarfs can put stringent bounds on inelastic 
dark matter.

• Using simulations to make educated guesses on what 
cross-correlation packs more S/N (in progress).

• Cross-correlations to constrain photo-z errors (in 
progress).

• 21-cm and its cross-correlations (in progress).
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Conclusions
• A deeper understanding of the universe arises from 

conceiving it as a network of interrelated phenomena.

• Cross-correlation allow to:

• extract further cosmological and (when supported 
by simulations) astrophysical information,

• constrain experiments’ systematics.

• They require a broad and very interesting array of 
tools: analytical, numerical and observational.
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