Visual Analytics for Studying Dragonfly Network Performance

Kelvin Li University of California, Davis July 12, 2016

Motivation

- Our ability to perform simulations has outpaced the techniques for analyzing the simulation results
- Develop a visual analytic tool for scalable data analytics and visualization of large-scale network simulations

Visual Analytics for Exploring Network Simulations

- Understand, analyze, and explore simulation results
- Visualization directed, interactive analysis for studying large-scale network
- Explore the design space of HPC networks
 - Evaluate network performance with different workloads
 - Compare design parameters

CODES Simulation Data

- Multidimensional
- Large
- Complex
- Time-varying data are also available

1056 Nodes Dragonfly Simulation

Dragonfly Network Topology

- g groups (fully-connect), a routers per group, p terminals per router
- Metrics collected from CODES:

s collected from CODES:	Entity	Metric (Unit)
	global link	busy time (ns) traffic (byte)
	local link	busy time (ns) traffic (byte)
	terminal	packets finished data size (byte) busy time (ns) avg. packet latency (ns) avg. hops
Busy time = Saturation time	router	total local busy time (ns) total global busy time (ns) total local traffic (byte) total global traffic (byte)

Circular Layouts for Analyzing Networks

- Effective for showing communication patterns
- High degree of symmetry
 - Check load balancing
 - Detect congestions and identify bottlenecks

Sigovan et al. 2013

Bhatele et al. 2015

Global Link Traffics	
Router Busy Time	
Local Link Traffics	
Terminal Time Spent	

- 33 Groups
 - 264 Routers (8 per group)
 - 1056 Terminals (4 per

router)

Visual Analysis of Dragonfly Networks

- Visual aggregate for perceptual scalability
- Interactive visualizations for directing the process of analysis and exploration
- Explore hierarchical structures in Dragonfly Networks
 - Reserve structural properties in data aggregation (Topology-aware)

Aggregation by Groups

- Aggregate multiple Dragonfly groups into one
- Routers and terminals with the same rank in the groups are aggregated
- Performance metrics can be summed up or averaged

Useful for checking global link traffic and load balancing between and within groups.

1056 Nodes, Non-Minimal Routing Uniform Random Traffic

9K Nodes Minimal Routing Uniform Random Traffic

Comparing Routing Methods with Uniform Random Traffic

1056 Nodes, Non-Minimal Routing Uniform Random Traffic

5K nodes

9K nodes

User Defined Visual Mapping

Visualizing Network Simulation

- Focus on the aspects based on the analysis tasks in hand
- Customize visual components by choosing entities and metrics
- Better use of visualization to direct data exploration and analyses

Visual Analysis of Time-varying Data

- Analyze temporal patterns of the workload traffic and its effect on network performance
- Exploring both structural and temporal properties
 - Interactive visual analysis for highlighting connections

Time-varying Data

- Stacked time-series plots for comparing different performance metrics
- Aggregate data to provide different levels of granularity

Visual Interface for Exploring Time-varying Data

AMG 1728 MPI rank on 2.5K Dragonfly network

Network and Performance Data in CODES

Future Development

- Data analytics and visualization:
 - Alternative layouts for more network models
 - Improve the user interface
 - More data mining techniques
- Network and Performance Analysis:
 - Analyze simulator performance data in ROSS
 - Study other network models
 - Support analyses and explorations for different levels of data in CODES
 - Explore the connections between model-level and simulator-level properties

Thank You!