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Massively	Parallel	Discrete-Event	Simulation	Via	
Time	Warp

Local Control Mechanism:
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ROSS	Data	Structures	– MPI	rank	or	Processing	Element	(PE)
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ROSS: Local Control Implementation

Local Control Mechanism:
error detection and rollback
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§ MPI_ISend/MPI_Irecv used	to	
send/recv off	core	events

§ Event	&	Network	memory	is	
managed	directly.
– Pool	is	allocated	@	startup

§ Event	list	keep	sorted	using	a	
Splay	Tree	(logN)

§ LP-2-Core	mapping	tables	are	
computed	and	not	stored	to	
avoid	the	need	for	large	global	
LP	maps.

§ AVL	Tree	used	to	keep	track	of	
“remote”	event	sends	to	
support	cancel/rollback	
operations



ROSS: Global Control Implementation

GVT	(kicks	off	when	memory	is	low):
1. Each	core	counts	#sent,	#recv
2. Recv all	pending	MPI	msgs.
3. MPI_Allreduce Sum	on	(#sent	-

#recv)
4. If	#sent	- #recv !=	0	goto 2
5. Compute	local	core’s	lower	bound	

time-stamp	(LVT).
6. GVT	=	MPI_Allreduce Min	on	LVTs

gvt-interval/batch	parameters	control	
how	frequently	GVT	is	done.

Now	have	“optimistic	realtime”	GVT
--sync=5	option

Note,	repurposed	GVT	to	implement	
conservative	YAWNS	algorithm	as	
well	!

Global Control Mechanism:
compute Global Virtual Time (GVT)
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ROSS Model Developer Tips & Tricks
§ Make	sure	you	model’s	event	population	is	stable	(e.g.,	event	handlers	on	

average	don’t	create/schedule	more	than	1	event).
§ Don’t	access	another	LP’s	state	directly	è NO	SHARED	LP	STATE!
§ Message/event	data	is	read-only,	except	when	using	for	state-saving
§ Use	distinct	RNG	seeds	for	different	actions	within	an	LP	to	avoid	

correlations	in	time-stamps.
– Note,	you	can	control	the	number	of	seed	sets	per	LP.

§ Get	you	model	working	serial first
§ Get	your	model	working	YAWNS/conservative	next	(--synch=2)
§ Get	your	model	working	optimistically	last	(--synch=3)

– Debug	using	–synch=4	scheduler
§ Model	is	not	valid	until	serial,	conservative	and	optimistic	all	

execute/commit	the	same	number	of	events.
§ Avoid	tie	events	by	adding	“random	jitter”	to	event	time	stamps
§ Reduce	rollbacks	by	shrinking	“batch”	parameter
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Motivation and Design Constraints
§ We	have	observed	that	for	larger	remote	communication	rates,	ROSS’	performance	

degrades	(potentially	significantly)	due	to	much	greater	MPI	overheads.
– Know	this	because	original	ROSS	was	written	for	shared	memory
– Pthread ROSS	is	2x	faster	than	MPI	ROSS	on	1	node	of	BG/Q
– Main	optimization	is	it	passes	pointers	to	events	as	opposed	to	transferring	a	

full	copy	of	event	data	via	MPI	communications
§ So,	MPI	implementation	is	leaving	a	good	bit	of	performance	on	the	table
§ A	hybrid	MPI	+	Pthreads is	natural	choice	…	but..

– Would	need	to	encapsulate	the	global	ROSS	state	into	per-thread	state
– Moving	to	a	fully	global	shared	memory	space	w/i	a	node	will	break	all	of	CODES
– Allowing	pthreads to	invoke	MPI	operations	creates	new	overheads
– Global	shared	address	space	introduces	potential	for	“false	sharing”	among	

threads
§ A	better	choice	is	to	leverage	MPI	shared	memory	buffer	API.

– MPI_Win_allocate_shared provides	a	shared	buffer	to	MPI	rank	w/I	the	
same	compute	node

– Built	on	SystemV shared	memory	using	shmget/shmat
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Design Overview
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Problem with MPI SHM API
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Shared	memory	buffer	pool’s	address	differs	across	MPI	ranks



MPI SHM API – can’t store address pointers (yet!)
§ Need	to	store	“shared”	free	event	lists	in	

buffer
§ Need	to	perform	operations	like:

– event->next = ListHead
– ListHead = event

§ Current	API	requires	translating	pointer	code	
to	“offset	+	base”	
– Buffer[event].next = ListHead
– ListHead = event

§ Greatly	complicates	pointer-based	code
– Performance	loss	of	~2x

§ Greater	potential	for	bugs	with	“offset	+	
base”		code
– +++		lifetime	employment!	J
– --- if	grad	student,	you’ll	never	finish	your	

thesis
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Solution: “Force” all MPI ranks to attach shared 
memory pool at same virtual address

§ Current	need	to	abandon	the	MPI	SHM	
API	at	this	point	…

§ Create	shared	memory	pool	using	
“shmget”	system	call.

§ Find	a	common	available	virtual	address	
space	using	“mmap”	system	call	across	
ranks	on	same	compute	nodes

§ Use	“shmat”	to	attach	to	created	
memory	pool	at	common	address	
previous	determined

§ *	Special	thanks	to	Kamil Iskra @	ANL	
for	this	approach
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Structure & Function of Shared Memory Pool
§ Now,	that	we	have	pointers,	we	can	

have	a	shared	memory	pool	that	
resembles	the	shared	memory	
approaches	used	previously.	

§ Free	list	contains	events	that	can	be	
shared	by	“sender”	rank		among	N-1	
other	ranks	on	the	same	compute	node

§ Send	event	results	sender	allocating	an	
event	from	their	pool	and	inserting	into	
desk	ranks	“eventq”	

§ Receiver	rank	directly	uses	shared	
events	and	places	event	into	Splay	Tree	
once	any	local	rollback	processing	is	
complete

§ Direct	event	cancellation	supported	on	
shared	events.	Here,	pointer	to	original	
event	is	threaded	into	“cancelq”	for	
rollback	processing	by	receiver	rank	
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struct tw_shared_pool
{

tw_eventq free_list;
pthread_mutex fl_lck;
tw_eventq eventq;
pthread_mutex eq_lck;
tw_eventq cancelq
pthread_mutex

can_lck;
};

struct tw_shared_pool
pool[0…N-1]

Rest of memory is used 
to populate free lists 
of each Rank’s shared 
pool



Buffer Return and Better GVT
§ Buffer	Return:	when	GVT	frees	a	

shared	event	for	reuse,	it	needs	to	be	
return	to	the	sender.
– Acquire	“fl_lck”	
– Insert	on	sender’s	“free_list”
– Release	“fl_lck”
– Need	to	agument the	event	structure	

with	sender	information
§ Leverage	Fujimoto’s	Shared	Memory	

GVT	for	LVT	w/i a	compute	node
– Pull	out	all	network	MPI	events
– Sets	a	“flag”	that	all	ranks	w/i a	

compute	node	can	“see”
– No	events	lost	in	shared	memory	pool	
– Each	ranks	computes	own	LVT
– Min	of	all	LVTs	is	LVT	for	compute	

node.
– Use	Allreduce approach	but	only	1	rank	

from	each	compute	need	needs	to	
particpate 15

struct tw_shared_pool
{

tw_eventq free_list;
pthread_mutex fl_lck;
tw_eventq eventq;
pthread_mutex eq_lck;
tw_eventq cancelq
pthread_mutex

can_lck;
};

struct tw_shared_pool
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Preparing of Many-Core Architectures
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How	many	sharing	groups	will	be	needed	for	optimal	performance	?	



Status
§ Branch	in	GITHub is	started
§ Cmake build	scripts	have	been	modifed

to	select	shared	pool	functionality
§ Coding	has	begun:

– Need	to	verify	shget/mmap test	and	
shmat path	creates	a	common	
shared	memory	pool	across	all	MPI	
ranks.

– Determine	which	MPI	ranks	are	co-
located	on	a	common	compute	
node.

§ Initial	functionality	by	year	end.
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