
Design of Shared Memory Pools for
Improved Communications in ROSS

Chris	Carothers,	Elsa	Gonsiorowski,		Justin	LaPre,	
Neil	McGlohon,	Mark	Plagge,	Caitlin	Ross	and	Noah	
Wolfe
Rensselaer	Polytechnic	Institute
Center	for	Computational	Innovations
chrisc@cs.rpi.edu or	chris.carothers@gmail.com

Rob	Ross,	Phil	Carns,	Kevin	Harms,	John	Jenkins,	
Misbah Mubarak	and	Shane	Snyder
Argonne	National	Laboratory
Mathematics	and	Computer	Science
rross@mcs.anl.gov

Outline

§ ROSS	Overview	

§ Shared	Memory	Pool	
Design

2

Massively	Parallel	Discrete-Event	Simulation	Via	
Time	Warp

Local Control Mechanism:
error detection and rollback

LP 1 LP 2 LP 3

V
i
r
t
u
a
l

T
i
m
e

(1) undo
state D’s

(2) cancel
“sent” events

Global Control Mechanism:
compute Global Virtual Time (GVT)

LP 1 LP 2 LP 3

V
i
r
t
u
a
l

T
i
m
e

GVT

collect versions
of state / events
& perform I/O
operations
that are < GVT

processed event

“straggler” event

unprocessed event

“committed” event

ROSS	Data	Structures	– MPI	rank	or	Processing	Element	(PE)

LP	w/	
Model	
State

LP	w/	
Model	
State

LP	w/	
Model	
State

LP	w/	
Model	
State

Kernel	Process	(KP)

Ev Ev Ev Ev Ev

Processed	Event	Lists	

Remote	event	
AVL	Tree

Pending	events	/	
Splay	Tree

Ev Ev Ev Ev Ev

Network	Free	Event	List	(NEL)

Ev Ev Ev Ev Ev

Model	Free	Event	List	(FEL)

MPI

LP	w/	
Model	
State

LP	w/	
Model	
State

LP	w/	
Model	
State

LP	w/	
Model	
State

Kernel	Process	(KP)

LP	w/	
Model	
State

LP	w/	
Model	
State

LP	w/	
Model	
State

LP	w/	
Model	
State

Kernel	Process	(KP)

Ev Ev Ev Ev Ev
Ev Ev Ev Ev Ev

RNG	lib

ROSS: Local Control Implementation

Local Control Mechanism:
error detection and rollback

LP 1 LP 2 LP 3

V
i
r
t
u
a
l

T
i
m
e

(1) undo
state D’s

(2) cancel
“sent” events

§ MPI_ISend/MPI_Irecv used	to	
send/recv off	core	events

§ Event	&	Network	memory	is	
managed	directly.
– Pool	is	allocated	@	startup

§ Event	list	keep	sorted	using	a	
Splay	Tree	(logN)

§ LP-2-Core	mapping	tables	are	
computed	and	not	stored	to	
avoid	the	need	for	large	global	
LP	maps.

§ AVL	Tree	used	to	keep	track	of	
“remote”	event	sends	to	
support	cancel/rollback	
operations

ROSS: Global Control Implementation

GVT	(kicks	off	when	memory	is	low):
1. Each	core	counts	#sent,	#recv
2. Recv all	pending	MPI	msgs.
3. MPI_Allreduce Sum	on	(#sent	-

#recv)
4. If	#sent	- #recv !=	0	goto 2
5. Compute	local	core’s	lower	bound	

time-stamp	(LVT).
6. GVT	=	MPI_Allreduce Min	on	LVTs

gvt-interval/batch	parameters	control	
how	frequently	GVT	is	done.

Now	have	“optimistic	realtime”	GVT
--sync=5	option

Note,	repurposed	GVT	to	implement	
conservative	YAWNS	algorithm	as	
well	!

Global Control Mechanism:
compute Global Virtual Time (GVT)

LP 1 LP 2 LP 3

V
i
r
t
u
a
l

T
i
m
e

GVT

collect versions
of state / events
& perform I/O
operations
that are < GVT

ROSS Model Developer Tips & Tricks
§ Make	sure	you	model’s	event	population	is	stable	(e.g.,	event	handlers	on	

average	don’t	create/schedule	more	than	1	event).
§ Don’t	access	another	LP’s	state	directly	è NO	SHARED	LP	STATE!
§ Message/event	data	is	read-only,	except	when	using	for	state-saving
§ Use	distinct	RNG	seeds	for	different	actions	within	an	LP	to	avoid	

correlations	in	time-stamps.
– Note,	you	can	control	the	number	of	seed	sets	per	LP.

§ Get	you	model	working	serial first
§ Get	your	model	working	YAWNS/conservative	next	(--synch=2)
§ Get	your	model	working	optimistically	last	(--synch=3)

– Debug	using	–synch=4	scheduler
§ Model	is	not	valid	until	serial,	conservative	and	optimistic	all	

execute/commit	the	same	number	of	events.
§ Avoid	tie	events	by	adding	“random	jitter”	to	event	time	stamps
§ Reduce	rollbacks	by	shrinking	“batch”	parameter

7

Outline

§ ROSS	Overview	

§ Shared	Memory	Pool	
Design

8

Motivation and Design Constraints
§ We	have	observed	that	for	larger	remote	communication	rates,	ROSS’	performance	

degrades	(potentially	significantly)	due	to	much	greater	MPI	overheads.
– Know	this	because	original	ROSS	was	written	for	shared	memory
– Pthread ROSS	is	2x	faster	than	MPI	ROSS	on	1	node	of	BG/Q
– Main	optimization	is	it	passes	pointers	to	events	as	opposed	to	transferring	a	

full	copy	of	event	data	via	MPI	communications
§ So,	MPI	implementation	is	leaving	a	good	bit	of	performance	on	the	table
§ A	hybrid	MPI	+	Pthreads is	natural	choice	…	but..

– Would	need	to	encapsulate	the	global	ROSS	state	into	per-thread	state
– Moving	to	a	fully	global	shared	memory	space	w/i	a	node	will	break	all	of	CODES
– Allowing	pthreads to	invoke	MPI	operations	creates	new	overheads
– Global	shared	address	space	introduces	potential	for	“false	sharing”	among	

threads
§ A	better	choice	is	to	leverage	MPI	shared	memory	buffer	API.

– MPI_Win_allocate_shared provides	a	shared	buffer	to	MPI	rank	w/I	the	
same	compute	node

– Built	on	SystemV shared	memory	using	shmget/shmat

9

Design Overview

10

LP	w/	
Mod
el	

State

LP	w/	
Mod
el	

State
LP	w/	
Mod
el	

State

LP	w/	
Mod
el	

State

Kernel	Process	(KP)

E
v

E
v

E
v

E
v

E
v

Processed	Event	Lists	

Remote	event	
AVL	Tree

Pending	events	/	
Splay	Tree

E
v

E
v

E
v

E
v

E
v

Network	Free	Event	List	
(NEL)

E
v

E
v

E
v

E
v

E
v

Model	Free	Event	List	
(FEL)

MPI

LP	w/	
Mod
el	

State

LP	w/	
Mod
el	

State
LP	w/	
Mod
el	

State

LP	w/	
Mod
el	

State

Kernel	Process	(KP)

LP	w/	
Mod
el	

State

LP	w/	
Mod
el	

State
LP	w/	
Mod
el	

State

LP	w/	
Mod
el	

State

Kernel	Process	(KP)

E
v

E
v

E
v

E
v

E
vE

v
E
v

E
v

E
v

E
v

RNG	lib

LP	w/	
Mod
el	

State

LP	w/	
Mod
el	

State
LP	w/	
Mod
el	

State

LP	w/	
Mod
el	

State

Kernel	Process	(KP)

E
v

E
v

E
v

E
v

E
v

Processed	Event	Lists	

Remote	event	
AVL	Tree

Pending	events	/	
Splay	Tree

E
v

E
v

E
v

E
v

E
v

Network	Free	Event	List	
(NEL)

E
v

E
v

E
v

E
v

E
v

Model	Free	Event	List	
(FEL)

MPI

LP	w/	
Mod
el	

State

LP	w/	
Mod
el	

State
LP	w/	
Mod
el	

State

LP	w/	
Mod
el	

State

Kernel	Process	(KP)

LP	w/	
Mod
el	

State

LP	w/	
Mod
el	

State
LP	w/	
Mod
el	

State

LP	w/	
Mod
el	

State

Kernel	Process	(KP)

E
v

E
v

E
v

E
v

E
vE

v
E
v

E
v

E
v

E
v

RNG	lib

Shared	
Memory	
Pool

Problem with MPI SHM API

11

Shared	memory	buffer	pool’s	address	differs	across	MPI	ranks

MPI SHM API – can’t store address pointers (yet!)
§ Need	to	store	“shared”	free	event	lists	in	

buffer
§ Need	to	perform	operations	like:

– event->next = ListHead
– ListHead = event

§ Current	API	requires	translating	pointer	code	
to	“offset	+	base”	
– Buffer[event].next = ListHead
– ListHead = event

§ Greatly	complicates	pointer-based	code
– Performance	loss	of	~2x

§ Greater	potential	for	bugs	with	“offset	+	
base”		code
– +++		lifetime	employment!	J
– --- if	grad	student,	you’ll	never	finish	your	

thesis

12

Shared	
Memory	
Pool

Solution: “Force” all MPI ranks to attach shared
memory pool at same virtual address

§ Current	need	to	abandon	the	MPI	SHM	
API	at	this	point	…

§ Create	shared	memory	pool	using	
“shmget”	system	call.

§ Find	a	common	available	virtual	address	
space	using	“mmap”	system	call	across	
ranks	on	same	compute	nodes

§ Use	“shmat”	to	attach	to	created	
memory	pool	at	common	address	
previous	determined

§ *	Special	thanks	to	Kamil Iskra @	ANL	
for	this	approach

13

Shared	
Memory	
Pool

Structure & Function of Shared Memory Pool
§ Now,	that	we	have	pointers,	we	can	

have	a	shared	memory	pool	that	
resembles	the	shared	memory	
approaches	used	previously.	

§ Free	list	contains	events	that	can	be	
shared	by	“sender”	rank		among	N-1	
other	ranks	on	the	same	compute	node

§ Send	event	results	sender	allocating	an	
event	from	their	pool	and	inserting	into	
desk	ranks	“eventq”	

§ Receiver	rank	directly	uses	shared	
events	and	places	event	into	Splay	Tree	
once	any	local	rollback	processing	is	
complete

§ Direct	event	cancellation	supported	on	
shared	events.	Here,	pointer	to	original	
event	is	threaded	into	“cancelq”	for	
rollback	processing	by	receiver	rank	

14

struct tw_shared_pool
{

tw_eventq free_list;
pthread_mutex fl_lck;
tw_eventq eventq;
pthread_mutex eq_lck;
tw_eventq cancelq
pthread_mutex

can_lck;
};

struct tw_shared_pool
pool[0…N-1]

Rest of memory is used
to populate free lists
of each Rank’s shared
pool

Buffer Return and Better GVT
§ Buffer	Return:	when	GVT	frees	a	

shared	event	for	reuse,	it	needs	to	be	
return	to	the	sender.
– Acquire	“fl_lck”	
– Insert	on	sender’s	“free_list”
– Release	“fl_lck”
– Need	to	agument the	event	structure	

with	sender	information
§ Leverage	Fujimoto’s	Shared	Memory	

GVT	for	LVT	w/i a	compute	node
– Pull	out	all	network	MPI	events
– Sets	a	“flag”	that	all	ranks	w/i a	

compute	node	can	“see”
– No	events	lost	in	shared	memory	pool	
– Each	ranks	computes	own	LVT
– Min	of	all	LVTs	is	LVT	for	compute	

node.
– Use	Allreduce approach	but	only	1	rank	

from	each	compute	need	needs	to	
particpate 15

struct tw_shared_pool
{

tw_eventq free_list;
pthread_mutex fl_lck;
tw_eventq eventq;
pthread_mutex eq_lck;
tw_eventq cancelq
pthread_mutex

can_lck;
};

struct tw_shared_pool
pool[0…N-1]

Rest of memory is used
to populate free lists
of each Rank’s shared
pool

Preparing of Many-Core Architectures

16

How	many	sharing	groups	will	be	needed	for	optimal	performance	?	

Status
§ Branch	in	GITHub is	started
§ Cmake build	scripts	have	been	modifed

to	select	shared	pool	functionality
§ Coding	has	begun:

– Need	to	verify	shget/mmap test	and	
shmat path	creates	a	common	
shared	memory	pool	across	all	MPI	
ranks.

– Determine	which	MPI	ranks	are	co-
located	on	a	common	compute	
node.

§ Initial	functionality	by	year	end.

17

Thank You & Acknowledgments

This	work	was	supported	by	the	Director,	Office	of	Advanced	Scientific	
Computing	Research,	Office	of	Science,	of	the	U.S.	Department	of	Energy	
under	Contract	No.	DE-AC02-06CH11357.

18

