
WHAT’S NEW IN CODES

drhgfdjhngngfmhgmghmghjmghfmf

JOHN JENKINS
Argonne National Laboratory
jenkins@mcs.anl.gov

2016-07-13
Argonne National Laboratory

SUMMER OF CODES 2016
HTTPS://XGITLAB.CELS.ANL.GOV/CODES/SOC-2016-WHATSNEWINCODES



OVERVIEW

§ Refined Networking Models
– Credit flow control (torus, dragonfly)
– Adaptive routing (dragonfly)

§ Slim Fly network topology – covered in Noah’s talk
§ New and updated APIs

– Message passing
– LP mapping
– Workloads
– Modelnet state sampling

§ Full list in CODES repository – doc/RELEASE_NOTES

2



REFINED NETWORKING MODELS

3



CREDIT-BASED FLOW CONTROL IN 
DRAGONFLY/TORUS NETWORKS

§ Before – buffer overflow on routers killed the simulation
§ After – credit-based flow control

– Source nodes/routers track buffer availability on destination nodes/routers

4

Dest. router X, port P queue

Routed to destination

Source router
credit(X,P): 2 à 3

credit



DRAGONFLY ADAPTIVE ROUTING

§ Minimal and random non-minimal (Valiant) routing available
§ Adaptive routing - minimal routing w/ random non-minimal fallback on full 

destination queue

5

(i) Packet arrives at R0, Destination Router = R7 (ii) Packet traverses to R1 over local channel 

P 

(iii) Packet traverses from R1 to R4 over the global channel (iv) Packet traverses to R7 over local channel 

G0 G1 

G0 G1 G0 G1 

R0 R1 

R2 R3 

R4 R5 

R6 R7 

P 

G0 G1 

R0 R1 

R2 R3 

R4 R5 

R6 R7 

P 
R0 R1 

R2 R3 

R4 R5 

R6 R7 

R0 R1 

R2 R3 

R4 R5 

R6 R7 

P 

Non-minimal – repeat
(ii), (iii) to intermediate
group



NEW AND UPDATED APIS

6



CALLBACK API

§ Problem: event destination data layout needs to be known at the caller, makes it 
awkward to deal with multiple LP types

Convention for RPC-style event management

7

Server LPtype: server_event_t

type: ???



CALLBACK API

§ Solution
– define convention for multi-LP-type control flow (RPC-flavored)

• Assume: callee event type known
• Assume: caller event type unknown

– provide helper datatypes, functions/macros to simplify data structure 
management

§ Convention
– msg_header (codes/lp-msg.h)

• header identifying msg type
• provided by caller

– tag
• differentiate concurrent messages 

from same source LP
• provided by caller

– callee ”return” type
• pass data from callee to caller
• filled in by callee.

Convention for RPC-style event management

8



CALLBACK API

§ Helpers (codes/codes-callback.h)
– Offsets for header, tag, return value in callee
– Callee parameter set including offsets, tag,

header
– macros to setup structures

Convention for RPC-style event management

9

= offsetof(client_msg, __)

provided by caller

written by caller

Full example at soc talk repository, callback.c



MAPPING CONTEXT API

§ Problem: lack of flexibility in implicit LP mappings
– modelnet, local storage model, resource LP

Managing implicit LP messaging

10

Server Dragonfly
0 0
1 1
2 0
3 1
... ...

Default Mapping

Server Dragonfly
0 0
1 0
... ...
4 0
5 1

What about...?



MAPPING CONTEXT API

§ Solution: provide a small set of deterministic contexts in which implicit LP 
mapping is performed
– (codes/codes-mapping-context.h)
– Modelnet, local storage model accepts

mapping contexts
§ Options:

– Default: modular ID arithmetic
– Ratio-apportioned mapping (5:1 in example)
– Direct group-relative ID
– Escape hatch: direct LP-ID mapping

Managing implicit LP messaging

11

Full example at soc repo,
mapctx.c

Server Dragonfly
0 0
1 1
2 0
3 1
... ...

Default mapping

Server Dragonfly
0 0
1 0
... ...
4 0
5 1

Ratio-apportioned
mapping



MULTI-JOB WORKLOADS

§ Problem: CODES workload API only worked for a single application at a time
§ Solution: job mapping API - map from job/rank to flat ID space (representing 

cores, nodes)
– MPI replay simulation updated to support concurrent workloads
– scripts provided for allocating system resources to

applications

12

Full example at soc repo,
jobmap.c

“List” mapping
- Line per job
- i-th entry – node

for rank i

“Identity” mapping
- rank i – node i



MODELNET SAMPLING API

§ Problem: end-of-sim network aggregates are useful, but miss the full picture. 
Need finer-grained system (LP) characterization

§ Solution: periodically sample state of modelnet LPs
– simple as adding call “model_net_enable_sampling(interval, end_time)” 

before simulation starts
§ Binary format, so can’t show it here J
§ Currently only supported in the dragonfly model

Point-in-time view of system state

13



SUMMARY

14



SUMMARY

§ Model improvements
– dragonfly, torus fidelity
– data gathering

§ Model composition, workload improvements
– mapping improvements
– event flow conventions
– multi-app workloads

§ Feedback welcome!

15



www.anl.gov

THANKS!



EXTRAS



CALLBACK API

§ Example macro – GET_INIT_CB_PTRS
– m->cb – codes_cb_params passed to callee
– mret – event to write output to
– lp->gid - LP ID of the callee
– h, tag, rc – pointer declarations for header, tag,

return variable
– server_return_t -

return type

Convention for RPC-style event management

18

Full example at soc talk repository, callback.c


