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OVERVIEW

§ Refined Networking Models
– Credit flow control (torus, dragonfly)
– Adaptive routing (dragonfly)

§ Slim Fly network topology – covered in Noah’s talk
§ New and updated APIs

– Message passing
– LP mapping
– Workloads
– Modelnet state sampling

§ Full list in CODES repository – doc/RELEASE_NOTES
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REFINED NETWORKING MODELS
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CREDIT-BASED FLOW CONTROL IN 
DRAGONFLY/TORUS NETWORKS

§ Before – buffer overflow on routers killed the simulation
§ After – credit-based flow control

– Source nodes/routers track buffer availability on destination nodes/routers
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Dest. router X, port P queue

Routed to destination

Source router
credit(X,P): 2 à 3

credit



DRAGONFLY ADAPTIVE ROUTING

§ Minimal and random non-minimal (Valiant) routing available
§ Adaptive routing - minimal routing w/ random non-minimal fallback on full 

destination queue
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(i) Packet arrives at R0, Destination Router = R7 (ii) Packet traverses to R1 over local channel 
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(iii) Packet traverses from R1 to R4 over the global channel (iv) Packet traverses to R7 over local channel 
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NEW AND UPDATED APIS
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CALLBACK API

§ Problem: event destination data layout needs to be known at the caller, makes it 
awkward to deal with multiple LP types

Convention for RPC-style event management
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Server LPtype: server_event_t

type: ???



CALLBACK API

§ Solution
– define convention for multi-LP-type control flow (RPC-flavored)

• Assume: callee event type known
• Assume: caller event type unknown

– provide helper datatypes, functions/macros to simplify data structure 
management

§ Convention
– msg_header (codes/lp-msg.h)

• header identifying msg type
• provided by caller

– tag
• differentiate concurrent messages 

from same source LP
• provided by caller

– callee ”return” type
• pass data from callee to caller
• filled in by callee.

Convention for RPC-style event management

8



CALLBACK API

§ Helpers (codes/codes-callback.h)
– Offsets for header, tag, return value in callee
– Callee parameter set including offsets, tag,

header
– macros to setup structures

Convention for RPC-style event management
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= offsetof(client_msg, __)

provided by caller

written by caller

Full example at soc talk repository, callback.c



MAPPING CONTEXT API

§ Problem: lack of flexibility in implicit LP mappings
– modelnet, local storage model, resource LP

Managing implicit LP messaging
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Server Dragonfly
0 0
1 1
2 0
3 1
... ...

Default Mapping

Server Dragonfly
0 0
1 0
... ...
4 0
5 1

What about...?



MAPPING CONTEXT API

§ Solution: provide a small set of deterministic contexts in which implicit LP 
mapping is performed
– (codes/codes-mapping-context.h)
– Modelnet, local storage model accepts

mapping contexts
§ Options:

– Default: modular ID arithmetic
– Ratio-apportioned mapping (5:1 in example)
– Direct group-relative ID
– Escape hatch: direct LP-ID mapping

Managing implicit LP messaging
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Full example at soc repo,
mapctx.c

Server Dragonfly
0 0
1 1
2 0
3 1
... ...

Default mapping

Server Dragonfly
0 0
1 0
... ...
4 0
5 1

Ratio-apportioned
mapping



MULTI-JOB WORKLOADS

§ Problem: CODES workload API only worked for a single application at a time
§ Solution: job mapping API - map from job/rank to flat ID space (representing 

cores, nodes)
– MPI replay simulation updated to support concurrent workloads
– scripts provided for allocating system resources to

applications
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Full example at soc repo,
jobmap.c

“List” mapping
- Line per job
- i-th entry – node

for rank i

“Identity” mapping
- rank i – node i



MODELNET SAMPLING API

§ Problem: end-of-sim network aggregates are useful, but miss the full picture. 
Need finer-grained system (LP) characterization

§ Solution: periodically sample state of modelnet LPs
– simple as adding call “model_net_enable_sampling(interval, end_time)” 

before simulation starts
§ Binary format, so can’t show it here J
§ Currently only supported in the dragonfly model

Point-in-time view of system state
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SUMMARY
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SUMMARY

§ Model improvements
– dragonfly, torus fidelity
– data gathering

§ Model composition, workload improvements
– mapping improvements
– event flow conventions
– multi-app workloads

§ Feedback welcome!
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CALLBACK API

§ Example macro – GET_INIT_CB_PTRS
– m->cb – codes_cb_params passed to callee
– mret – event to write output to
– lp->gid - LP ID of the callee
– h, tag, rc – pointer declarations for header, tag,

return variable
– server_return_t -

return type

Convention for RPC-style event management
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Full example at soc talk repository, callback.c


