Simulation study of distributed metadata server

Junji Kobayashi, Osamu Tatebe University of Tsukuba HPCS Lab.

Background

- Distributed file system manages metadata intensively
- There is no simple way to distribute metadata servers
 - since it manages tree based namespace

 the performance is limited by synchronization for consistency and serialization

Background

- Metadata server is not easy to scale
 - handling a lot of small files scalably is difficult
- In HPC field ...
 - The number of files and nodes continue to grow
 - scalable distributed metadata management server is essential to solve this issue

PPMDS: A distributed metadata management system

• Feature

• <u>scalable</u>

• shared nothing Key-value stores

• consistent

- distributed transaction based on non-blocking STM
- These features have enabled
 - highly parallel read/write/delete accesses to a single directory

PPMDS: A distributed metadata management system

 result of file creation performance at a single directory using 14 metadata servers and 88 clients

Simulation of PPMDS: PPMDSsim

- Simulate clients & servers using CODES/ROSS
- Client LP supports file_create,file_stat,file_removal
- Server LP represents server nodes. Each Server LP has Key-Value-Store and supports load/store inode entry
- Switch LP represents network switches

Simulation of PPMDS: PPMDSsim

• Configurable parameters in PPMDSsim

parameter	value	
packet_size	1,500	network packet size
net_startup_ns	32,000	network startup latency
net_bw_mbps@cli	125	network bandwidth between client-switch(MB/sec)
net_bw_mbps@srv	1250	network bandwidth between server-switch(MB/sec)
net_bw_mbps@sw	1250	network bandwidth between switch-switch(MB/sec)
payload_size	512	message transmission payload size (byte)
store_inode_event_latency	500,000	transmission latency of the message that inode entry is stored (ns)

Simulation result of parallel file creation to a single directory

- 1 ~ 14 server LP nodes and 11 ~ 88 client LP nodes
- The result of the simulation shows a similar performance behavior to a real system

Number of client LPs

Performance of parallel simulation

 Measure the running time of parallel simulation with 128 server LP nodes and client LP per file creation = 300 (Synchronization Protocol : optimistic)

Performance of parallel simulation

• There is a case such that the running time increases even when the number of processes increases

Performance of parallel simulation

- To improve the performance of parallel simulation
 - ROSS supports a number of parameters that effect optimistic mode performance such as batch, gvt_interval, KP count ...
- When the global variable g_tw_nkp is set to 512 from 16, the performance slightly improves

1096cli nkp = 512

Next Steps

- Improvement of the simulation accuracy
 - The result of file-creation simulation shows similar performance behavior, but the performance number is not same
- Support of directory operations
 - Directory operation requires complex operations including a transaction across several servers
 - Simulation study of several access patterns is required